Текст книги "По ту сторону кванта"
Автор книги: Леонид Пономарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 12 (всего у книги 22 страниц)
Сейчас мы должны усвоить несколько новых фактов. Пусть вначале они покажутся не очень простыми – всё равно понять их необходимо, если мы не хотим без конца повторять гладкие, обкатанные фразы о «таинственной стране микромира», которые лишь засоряют ум, поскольку на поверку ничего реального не означают.
Говорим ли мы об атомах или о квантах – мы вновь и вновь обращаемся к свойствам светового луча. Это не случайно. По существу, в нём заключена почти вся нынешняя физика. Сейчас мы ещё раз – и более пристально – взглянем на его свойства. Для этого нам нужно возвратиться к Исааку Ньютону и вспомнить смысл его спора с Христианом Гюйгенсом о природе светового луча.
Всегда, во все времена все знали, что луч света в пустоте распространяется прямолинейно; это знание человек приобретает в детстве без всякой науки и физических приборов – после того, как несколько раз ушибётся об угол стола. Впоследствии это знание помогает ему избегать многих других опасностей, и постепенно он убеждается в его истинности. Чтобы сделать явление распространения луча более наглядным, в учебниках обычно соединяют источник света и глаз наблюдателя прямой линией, то есть рисуют воображаемую траекторию светового луча.
Траектория светового луча
И по смыслу, и по возникающим образам траектория светового луча ничем не отличается от траектории движения частицы. На этом основании во времена Ньютона луч света представляли себе как поток очень маленьких частиц. Конечно, путь этих «световых частиц» (как и путь обычных частиц) может искривляться, допустим, при переходе из воздуха в воду, но понятие траектории ив этом случае сохраняется. В повседневной жизни это понятие очень полезно и не приводит к недоразумениям: оно помогает избегать автомобилей на улицах, определять положение звёзд на небе и конструировать фотоаппараты.
Оптико-механическая аналогия
С развитием экспериментальной физики люди раздвинули узкие границы повседневного опыта и обнаружили новые свойства светового луча: оказывается, он нацело теряет свои привычные свойства, если огибает «очень маленькое препятствие». Физика – наука количественная, и в ней такое неопределённое утверждение не имеет смысла. Маленькое – по сравнению с чем?
Христиан Гюйгенс представлял себе распространение света как колебания некоего «светового эфира». Образ, при этом возникающий в сознании, напоминает круги от брошенного в пруд камня либо же бесконечные ряды морских волн. В правомерности этих образов перестали сомневаться вовсе после трудов Максвелла и Герца, которые доказали, что свет – это просто частный случай электромагнитных колебаний.
Вспомним (мы об этом говорили в первой главе): у всякого колебания есть характеристика – длина волны. Теперь наше утверждение приобретает строгий смысл:
«Луч света теряет свои привычные свойства, если размеры препятствия сравнимы с длиной его волны».
В этом случае луч света уже не распространяется прямолинейно – происходит явление дифракции. Кроме того, отдельные волны луча начинают взаимодействовать между собой – усиливать и гасить друг друга, или, как принято говорить в физике, начинают интерферировать. Оба явления – дифракция и интерференция – в конечном итоге дают на экране дифракционную картину, которую с точки зрения Ньютона понять довольно трудно. Волновая же теория света объясняет её вполне естественно, и это определило её победу.
Со временем к свойствам света настолько привыкли, что они превратились в некий эталон для всех вообще волновых процессов. Теперь, если в каком-либо процессе замечали вдруг явления интерференции и дифракции, то уже не сомневались в его волновой природе. Потому, собственно, все сразу и признали гипотезу де Бройля о волнах материи, увидев первые снимки дифракции электронов.
Взгляните на три почти одинаковые фотографии на странице 164: слева – дифракция видимого света, справа – дифракция электронов, внизу – волны на воде. Глядя на них, не поверить в волновую природу электрона очень трудно. Для нынешнего поколения физиков это уже не вопрос веры, а факт точного знания и даже средство для технических приложений.
В стройной теории волновой оптики оставалась одна неувязка: луч света мы воспринимаем всё-таки как луч, а не как волну. Как объяснить такой факт с точки зрения волновой оптики? Задачу решил Огюстен Жан Френель, и его объяснение можно найти теперь в любом учебнике физики.
Оказывается, при интерференции все волны от источника света гасят друг друга, кроме тех, которые находятся внутри узкого канала толщиной в половину длины волны света. (Для видимого света толщина канала λ/2 ≈ 3∙10−5 см.) Если мы пренебрежём толщиной «светового канала», то получим ту самую траекторию светового луча, к которой все мы привыкли в обычной жизни.
Известен даже способ её построения: сначала нужно провести линии через все гребни волн – как говорят в физике, отметить фронт волны. А затем от источника света провести линию, которая перпендикулярна к фронту волны. Это и будет траектория светового луча. Если вблизи препятствия фронт волны искажается, то одновременно с этим искривляется и траектория луча – луч света огибает препятствие, происходит, дифракция.
Траектория светового луча
В 1834 году Уильям Роуан Гамильтон (1805–1865), знаменитый профессор астрономии в Дублинском университете, занимался непонятной для современников задачей. Он хотел доказать, что формальная аналогия между траекторией движения частицы и траекторией светового луча имеет строгий математический смысл.
Мы уже знаем: в физике понятию закона движения соответствуют формулы – уравнения движения. Для волн и частиц они совершенно различны: решая одни, мы вычисляем траекторию частицы, решая другие, находим форму и скорость фронта волны. Но мы также знаем, что в оптике можно нарисовать траекторию светового луча, зная движение фронта его волны.
Траектория частицы
Гамильтон доказал, что в механике можно сделать нечто противоположное: заменить траекторию частицы движением фронта некоторой волны. Или более точно: уравнения движения механики можно записать в таком виде, что они полностью совпадут с уравнениями геометрической оптики, которые описывают распространение луча света без учёта его волновых свойств. Тем самым Гамильтон доказал оптико-механическую аналогию: движение частицы по траектории можно представить как распространение луча света без учёта его волновых свойств.
ВОЛНОВАЯ МЕХАНИКА ШРЁДИНГЕРАЭрвин Шрёдингер (1887–1961) в 1911 году окончил Венский университет, где были ещё живы традиции Доплера, Физо, Больцмана и весь дух классических времён физики: основательность при изучении явлений и неторопливый к ним интерес. В 1925 году это был уже немолодой профессор Цюрихского университета, сохранивший, однако, юношеское стремление понять самое главное в тогдашней физике: «Как устроен атом? И как в нём движутся электроны?»
В конце 1925 года в одной из статей Эйнштейна Шрёдингер прочёл несколько слов похвалы в адрес де Бройля и его гипотезы. Этих немногих сведений ему оказалось достаточно, чтобы поверить в гипотезу де Бройля о волнах материи и развить её до логического конца (что всегда трудно, и не только в науке).
Ход его рассуждений легко понять, по крайней мере, теперь, почти полвека спустя. Прежде всего, он вспомнил оптико-механическую аналогию Гамильтона. Он знал, что она доказана лишь в пределе геометрической оптики – тогда, когда можно пренебречь волновыми свойствами света. Шрёдингер пошёл дальше и предположил: оптико-механическая аналогия остаётся справедливой также и в случае волновой оптики. Это означает, что всегда любое движение частиц подобно явлению распространения волн.
Как и всякое глубокое открытие, гипотеза Шрёдингера ниоткуда логически не следовала.
Но, как всякое открытие, логические следствия она имела.
Прежде всего, если Шрёдингер прав, то движение частиц должно обнаруживать волновые свойства в тех областях пространства, размеры которых сравнимы с длиной волны этих частиц. В большой степени это относится и к движению электрона в атоме: сравнив формулы де Бройля (λ=h/m∙v) и Бора (m∙v∙r=h/2π), легко усмотреть, что диаметр атома d = λ/π примерно в три раза меньше, чем длина волны электрона λ. Но эта длина – единственная, которую мы вспоминаем, когда говорим о размерах электрона в атоме. Теперь становится очевидным, что представить его в атоме частицей невозможно, ибо тогда придётся допустить, что атом построен из таких частиц, которые больше его самого. Отсюда сразу, и немного неожиданно, следует уже известный нам из предыдущей главы постулат Гейзенберга: не существует понятия траектории электрона в атоме.
Действительно, не может нечто большее двигаться внутри чего-то меньшего, и притом ещё по какой-то траектории, тогда не существует и проблемы устойчивости атома, так как электродинамика запрещает электрону двигаться в атоме лишь по траектории и не отвечает за явления, которые происходят при других типах движений. Всё это означает, что в атоме электроны существуют не в виде частиц, а в виде некоторых волн, смысл которых мы поймём немного позже. А пока ясно только одно: какова бы ни была природа этих электронных волн, их движение должно подчиняться волновому уравнению. Шрёдингер нашёл это уравнение. Вот оно:
(d2ψ)/(dx2) + [2∙m/(ħ2)]∙[E − U(x)]ψ = 0
Волновая механика
Для тех, кто видит его впервые, оно абсолютно непонятно и может возбудить лишь любопытство или чувство инстинктивного протеста, причём последнее без серьёзных оснований.
Волны
В самом деле, представленный на этой странице рисунок столь же непонятен, как и уравнение Шрёдингера, однако мы принимаем его без внутреннего сопротивления. Мы совсем успокоимся, узнав, что это просто герб города Парижа, в котором мы никогда не были и, быть может, никогда не побываем. Только самые дотошные станут допытываться, почему он выглядит именно так, а не иначе. Как и в уравнении Шрёдингера, в этом гербе каждая черта и каждый символ исполнены смысла. Вверху – королевские лилии, которые появились в геральдических знаках Франции уже в конце V века – после победы Хлодвига над гуннами у берегов реки Ли. (По преданию, воины Хлодвига, возвращаясь домой, украсили свои шлемы и щиты цветами белых лилий «ли-ли», по-русски «белый-белый»). Внизу герба – корабль, похожий очертаниями на Ситэ – остров посреди Сены, где в древности обитало племя паризиев, по имени которых назван Париж. А форма герба напоминает парус – в память об основном занятии древних обитателей Парижа. Как видите, понять герб несложно, однако только жителям города он по-настоящему близок.
Подойдём к уравнению Шрёдингера точно так же. Примем его вначале просто как символ квантовой механики, как некий герб квантовой страны, по которой мы теперь путешествуем, и постараемся понять, почему он именно таков. Некоторые штрихи в этом гербе нам уже понятны: m – это масса электрона, ħ – постоянная Планка h, делённая на 2π, E – полная энергия электрона в атоме, U(x) – его потенциальная энергия, x – расстояние от ядра до электрона. Несколько сложнее понять символ второй производной d2/dx2, но с этим пока ничего нельзя поделать, вначале придётся просто запомнить, что это символ дифференциального исчисления, из-за которого уравнение Шрёдингера не простое, а дифференциальное.
Самое сложное – понять, что собой представляет ψ-функция (читается: пси-функция). Это действительно не просто, и вначале даже сам Шрёдингер истолковал неправильно её смысл. Мы также поймём его несколько позднее, а сейчас важно усвоить следующее: несмотря на свою необычность, пси-функция всё же как-то представляет движение электрона в атоме. По-другому, чем матрицы Гейзенберга {Xnk} и {Pnk}, но всё-таки представляет, и притом хорошо. Настолько хорошо, что с её помощью многие задачи квантовой механики можно решать значительно проще и быстрее, чем с помощью матриц Гейзенберга.
Физики довольно быстро оценили преимущества волновой механики: её универсальность, изящество и простоту, и с тех пор почти забросили механику матричную.
Однако победа далась не сразу.
ВОКРУГ КВАНТАПредставьте себе, что вы стоите перед зеркалом в зелёном свитере и вдруг замечаете, что ваше изображение одето в красный свитер. Прежде всего вы, вероятно, протрёте глаза, а если это не поможет, пойдёте к врачу. Потому что «так не бывает». В самом деле, зелёные лучи – что волны, длина которых λ = 5500 Å. Встретив на пути препятствие – зеркало, они отражаются, но при этом никак не могут изменить свою длину и стать, например, красными (λ = 7500 Å). А Комптон наблюдал именно это явление. Направив на мишень пучок рентгеновых лучей с длиной волны λ, он обнаружил, что длина волны рассеянных лучей λ больше длины волны падающих, то есть рассеянные лучи действительно «краснее» первоначальных!
Чудо это можно понять, если вспомнить гипотезу Эйнштейна о квантах света, которую он предложил для объяснения явлений фотоэффекта. Действительно, в этом случае вместо рентгеновых волн с длиной λ и частотой ν=c/λ нужно представлять себе поток частиц – квантов с энергией E=h∙ν. Сталкиваясь с электронами атомов мишени, они выбивают их оттуда (затратив энергию P), разгоняют до скорости v (дополнительно затратив энергию m∙v2/2), а сами рассеиваются с меньшей энергией E'=h∙ν'. Очевидно, что h∙ν=h∙ν'+P+m∙v2/2
Если атом полностью поглотит квант света (E'= 0), то мы увидим обычное явление фотоэффекта, а уравнение Комптона превратится в уравнение Эйнштейна:
h∙ν=P+m∙v2/2
Оба эти опыта можно провести в камере Вильсона, проследить путь каждого выбитого электрона и тем самым наглядно представить процесс столкновения светового кванта с электроном.
Но в таком случае что нам мешает увидеть себя в красном свитере? Оказывается, всё те же квантовые законы, которые запрещают электрону поглощать произвольные порции энергии. Электрон на стационарной орбите в атоме может поглотить только такой квант, который либо перебросит его из одного стационарного состояния в другое, либо выбросит его из атома (вспомните опыт Франка и Герца). Энергия «зелёных квантов» (длина их волны (λ = 5,5∙10−5 см = 5500 Å) равна
E = h∙ν = (h∙c)/λ = (6,62∙10−27∙3∙1010)/(5,5∙10−5) = 3,6∙10−12 эрг ≈ 2 эв.
А этого слишком мало, чтобы вырвать электрон из атома (нужно впятеро больше, P ≈ 10 эв). Поэтому они упруго (без потери энергии) отразятся от атомов зеркала и при этом нисколько не «покраснеют».
Совсем другую картину являют собой рентгеновы лучи (λ ≈ 1 Å). Их энергия примерно в 5 – 10 тысяч раз больше, и потому явления, которые с ними происходят, иные. Например, они вовсе не отражаются от зеркала, а свободно через него проходят, срывая по пути электроны с его атомов.
Конечно, даже простой процесс отражения зелёного света от зеркала несколько сложнее, чем мы это сейчас представили. Но существует ещё одна – главная – трудность: в нашей стройной картине, где вместо волн света сплошь одни только кванты света, нет места опытам Фридриха, Книппинга и Лауэ, которые открыли дифракцию рентгеновых лучей и тем самым доказали их волновую природу.
Как примирить эти несовместимые представления: лучи-волны и лучи-кванты?
В следующей главе мы увидим, что квантовая механика справилась и с этой задачей.
Мы не думаем об этом каждый день, точно так же, как и об устройстве телефона. Мы просто пользуемся приборами, в которых электрон «работает», – телевизором, рентгеновским аппаратом, электронным микроскопом. Но если задуматься, как устроены эти аппараты, то вопрос о природе электрона сразу потеряет свой академический характер.
В телевизионной трубке изображение получают с помощью электронов, которые разгоняются напряжением V ≈ 10 000 в. При этом они приобретают скорость v ≈ 5∙109 см/сек – всего в шесть раз меньше скорости света. Длину их волны легко вычислить по формуле де Бройля: λ = h/m∙v, она равна λ ≈ 0,1 Å то есть в 10 раз меньше размеров атома. И поскольку в телевизоре электроны распространяются прямолинейно, мы их воспринимаем как поток частиц.
В электронном микроскопе тот же электрон работает как волна: пучок электронов разгоняют напряжением в 100000 вольт до скорости 1010 см/сек, что соответствует длине волны в 0,05 Å. Кроме того, этот пучок проходит через систему магнитных линз, точно так же, как в обычном микроскопе луч света проходит через линзы оптические. В волновой оптике хорошо известно, что из-за явлений дифракции даже в лучший микроскоп нельзя разглядеть предмет, если его размеры меньше, чем половина длины волны света, которым он освещён. Длина волны видимого света равна 5000 Å, поэтому в обычный микроскоп можно различать лишь предметы, размеры которых превышают 2500 Å. Размеры бактерий превышают 10−4 см = 10 000 Å, поэтому их легко наблюдать в обычный микроскоп. Но уже вирусы в такой микроскоп различить нельзя: их размеры меньше 1000 Å (например, диаметр вируса гриппа всего 800 Å).
Теоретически электронный микроскоп позволяет разглядеть объекты размером до 0,02 Å, то есть в 50 раз меньше атома. Означает ли это, что мы можем таким способом рассмотреть отдельный атом? Нет, конечно. Энергия связи электрона в атоме (P) равна примерно 10 электрон-вольтам (энергия, которую приобретает электрон, пройдя разность потенциалов 10 в). А в электронном микроскопе электроны приобретают энергию около 100 тысяч электрон-вольт. Такие «лучи» сразу же, при первом столкновении с атомом, разрушат его. (В самом деле, легко сообразить, что если мы захотим получить на стене тень от пылинки, стреляя по ней из ружья, то ничего хорошего из такой затеи не выйдет.) Реально в электронный микроскоп удалось пока рассмотреть объекты размером 5 – 10 Å, то есть в 5 – 10 раз больше атома.
Как и многие открытия в физике, дифракция электронов была обнаружена во многом «случайно», хотя, как любил повторять Пастер, «случай говорит только подготовленному уму».
В 1922 году по заказу американской фирмы «Белл-телефон» Клинтон Джозеф Дэвиссон (1881–1958) и его сотрудник Кенсмен изучали отражение электронных пучков от поверхности металлов и вдруг заметили какие-то аномалии. В 1925 году, после работ де Бройля, ученик Макса Борна Вальтер Эльзассер предположил, что эти аномалии объясняются электронными волнами. Дэвиссон прочёл эту заметку, но не придал ей значения. В 1926 году он приехал в Европу и показывал свои графики Максу Борну и Джеймсу Франку в Гёттингене, а также Дугласу Хартри в Оксфорде. Все они единодушно признали в них волны де Бройля. В пути через океан Дэвиссон изучал работы Шрёдингера и вскоре по приезде в Америку вместе с Лестером Альбертом Джермером (род. 1896) подтвердил гипотезу де Бройля опытом.
Дж. П. Томсон подошёл к проблеме с другого конца. Он с самого начала относился к гипотезе де Бройля с большим сочувствием и вскоре после посещения Англии Дэвиссоном стал обдумывать способы доказать её на опыте. В Англии после работ Крукса и Дж. Дж. Томсона опыты с катодными лучами стали непременным и привычным элементом образования. Быть может, поэтому Дж. П. Томсон прежде всего задумался, а нельзя ли приспособить их для новых опытов. Почти сразу же отыскалась подходящая готовая установка в Абердине, с которой работал студент Александр Рейд. Уже через два месяца они получили на этой установке прекрасные фотографии дифракции электронов, которые в точности напоминали дифракцию рентгеновых лучей. Это было естественно, поскольку в их опытах электроны ускорялись потенциалом в 150 вольт (обычное напряжение городской сети). Длина волны таких электронов равна примерно Å = 10−8 см, то есть сравнима с длиной волны рентгеновых лучей и с размерами атомов.
Небольшая справка: Джордж Паджет Томсон – сын знаменитого Джи-Джи – Джозефа Джона Томсона, который в конце века установил, что электрон – это частица. По иронии судьбы тридцать лет спустя сын доказал, что электрон – это волна. И оба они правы, оба удостоены Нобелевской премии, за свои открытия.
Греческую букву ψ («пси») для обозначения волновой функции Шрёдингер выбрал более или менее случайно. Но для многих она стала неким символом непонятности квантовой механики. Чтобы лишить её мистического ореола, предлагаем читателям проследить предполагаемую эволюцию буквы «буки» древнерусского письма «глаголицы» и её связь с более древними знаками и символами.