355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Леонид Пономарев » По ту сторону кванта » Текст книги (страница 16)
По ту сторону кванта
  • Текст добавлен: 7 октября 2016, 00:27

Текст книги "По ту сторону кванта"


Автор книги: Леонид Пономарев


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 22 страниц)

ВОЛНЫ ВЕРОЯТНОСТИ

Макс Борн (1882–1970) преподавал физику в признанном центре немецкой науки – в Гёттингене. Он пристально следил за развитием теории атома и был одним из первых, кто придал квантовым идеям Гейзенберга строгую математическую форму. В начале 1927 года он заинтересовался опытами по дифракции электронов.

Само по себе это явление после работ де Бройля уже не казалось удивительным. Любой физик, взглянув на дифракционную картину, мог бы теперь объяснить её появление с помощью гипотезы о «волнах материи». Более того, по формуле де Бройля λ=h/mv он мог вычислить длину этих «волн материи» и на опыте убедиться в правильности своих вычислений. Однако по-прежнему никто не мог объяснить, что он разумеет под словами «волны материи». Пульсацию электрона-шарика? Колебания какого-то эфира? Или вибрацию чего-либо ещё более гипотетического? То есть насколько материальны сами «волны материи».

Волны вероятности

Летом 1927 года Макс Борн предположил: «волны материи» – это просто «волны вероятности», которые описывают вероятное поведение отдельного электрона, например вероятность его попадания в определённую точку фотопластинки.

Всякая новая и глубокая идея не имеет логических оснований, хотя нестрогие аналогии, которые к ней привели, можно проследить почти всегда. Поэтому вместо того чтобы доказывать правоту Борна (это невозможно), попытаемся почувствовать естественность его гипотезы. Обратимся снова к игре в «орёл-решку» и вспомним причины, которые вынудили нас тогда применить теорию вероятностей. Их три:

полная независимость отдельных бросаний монеты;

полная неразличимость отдельных бросаний;

случайность исхода каждого отдельного бросания, которая проистекает от полного незнания начальных условий каждого опыта, то есть от неопределённости начальной координаты и импульса монеты.

Все эти три условия выполняются в атомных явлениях и, в частности, в опытах по рассеянию электронов. В самом деле:

электроны ведь всё-таки частицы, и потому каждый из них рассеивается независимо от других;

кроме того, электроны так бедны свойствами (заряд, масса, спин – и всё), что в квантовой механике они неразличимы, а вместе с тем неразличимы и отдельные акты рассеяния;

и наконец, начальные значения координат и импульсов электронов нельзя определить даже в принципе – это запрещено соотношением неопределённостей Гейзенберга δx δp ≥ ½h.

В таких условиях бессмысленно искать траекторию каждого электрона. Вместо этого мы должны научиться вычислять вероятность ρ(x) попадания электронов в определённое место x фотопластинки (или, как принято говорить в физике, вычислять функцию распределения ρ(x)).

При игре в «орёл-решку» это очень просто: даже без вычислений ясно, что вероятность выпадания «орла» равна ½. В квантовой механике дело немного осложняется. Чтобы найти функцию ρ(x), описывающую распределение электронов на фотопластинке, необходимо решить уравнение Шрёдингера.

Макс Борн утверждал: вероятность ρ(x) найти электрон в точке x равна квадрату волновой функции ρ(x)=|ψ(x)|2

Утверждение Борна легко проверить. В самом деле, разделим дифракционную картину на концентрические круги и пронумеруем их, как мишень в тире. Затем сосчитаем число Nk электронов, попавших в каждое кольцо с радиусом xk, и поделим эти числа на общее число электронов N, попавших на пластинку. Тогда, как и в случае стрелковой мишени, мы получим набор чисел ρ(xk)=Nk/N, которые равны вероятности обнаружить электрон на расстоянии xk от центра мишени. Теперь не трудно нарисовать распределение электронов по пластинке и проследить, как меняется их число при удалении от центра дифракционной картины.

График функции ρ(x) выглядит сложнее, чем диаграмма эллипса рассеяния при стрельбе в тире. Но если вид эллипса нам не под силу предсказать, то функцию ρ(x) мы можем вычислить заранее. Её вид однозначно определяется законами квантовой механики: несмотря на свою необычность, они всё-таки существуют, чего нельзя сказать с уверенностью о законах поведения человека, от которого зависит эллипс рассеяния.

ИЗ ЧЕГО СОСТОИТ ЭЛЕКТРОННАЯ ВОЛНА?

Когда мы стоим на берегу моря, то у нас не возникает сомнений, что на берег набегают волны, а не что-либо другое. И нас не удивляет тот достоверный факт, что все волны состоят из огромного числа частиц – молекул.

Волны вероятности – такая же реальность, как и морские волны. И нас не должно смущать то обстоятельство, что волны эти построены из большого числа отдельных, независимых и случайных событий.

Морской воде присущи и свойства волны, и свойства частиц одновременно. Это нам кажется естественным. И если мы удивлены, обнаружив такие же свойства у вероятности, то наше недоумение, по крайней мере, нелогично.

Когда дует ветер, то в море из беспорядочного скопления отдельных молекул возникают правильные ряды волн. Точно так же, когда мы рассеиваем пучок электронов, то отдельные случайные события – пути электронов – закономерно группируются в единую волну вероятности.

Чтобы убедиться в реальности морских волн, не обязательно попадать в кораблекрушение, но хотя бы поглядеть на море желательно. Чтобы обнаружить волны вероятности, нужны сложные приборы и специальные опыты. Конечно, эти опыты сложнее, чем простой взгляд с прибрежного утёса к горизонту, но ведь нельзя же только на этом основании отрицать само существование вероятностных волн.

Полистав толстые учебники гидродинамики, можно убедиться, что пути молекул, из которых состоит морская волна, ничем не напоминают волновых движений: молекулы движутся по кругам и эллипсам, вверх и вниз и вовсе не участвуют в поступательном движении волны. Они составляют волну, но не следуют за её движением. Форму этой волны определяют законы гидродинамики.

Из чего состоит электронная волна

Точно так же движение отдельных электронов в атоме вовсе не похоже на те колебания, которым мы уподобили его раньше. Но в целом ненаблюдаемые пути электронов принадлежат единому наблюдаемому ансамблю – волне вероятности. Форму этой волны диктуют законы квантовой механики.

Аналогии такого рода можно продолжать и дальше, но сейчас важнее уяснить другое. Как теперь надо понимать слова «электрон – это волна»? Ведь если это не материальная волна, а волна вероятности, то её даже нельзя обнаружить в опытах с отдельным электроном. Иногда волновой характер квантовомеханических явлений трактуют как результат некоего мистического взаимодействия большого числа частиц между собой. Это объяснение мотивируют как раз тем, что волновые закономерности атомных явлений вообще нельзя обнаружить, если проводить опыты с отдельно взятой атомной частицей. Ошибка таких рассуждений объясняется элементарным непониманием природы вероятностных законов: вычислить волновую функцию ψ(x) и распределение вероятностей ρ(x) можно для отдельной частицы, но измерить распределение ρ(x) можно только при многократном повторении однотипных испытаний с одинаковыми частицами.

И всё же вероятность – это характеристика отдельного события. А потому каждому электрону присущи волновые свойства, хотя мы обнаружить их можем только в пучке электронов. (Точно так же при игре в «орёл-решку» вероятность ½ выпадения «орла» – это свойство каждого события, но измерить эту вероятность можно лишь при большом числе испытаний.)

Без понятия вероятности современную квантовую механику представить очень трудно. Пожалуй, это главное, чем она отличается от механики классической. Конечно, и классическая физика постоянно использует теорию вероятностей. Например, в кинетической теории газов. Однако там ещё можно успокаивать себя в надежде обойтись без теории вероятностей, если удастся научиться решать одновременно очень много уравнений движения молекул газа. Квантовая механика не оставляет такой надежды, её уравнения принципиально позволяют вычислять только вероятности событий. Тем не менее для атомных явлений это описание будет настолько же полным, насколько исчерпывающе описание классического движения с помощью понятия траектории.

Форма атома 1

Все предыдущие примеры и рассуждения помогают нам понять, что представляет собой электрон вне атома и почему эта частица наделена также свойствами волны. Как же эти свойства – волны и частицы – можно совместить без логических противоречий внутри атома?

АТОМ

Если вы заметили, мы нигде не пытались определить форму атома непосредственно на опыте. Мы её вычислили из волнового уравнения Шрёдингера. Мы в неё поверили, поскольку то же самое уравнение позволяет правильно предсказать самые тонкие особенности наблюдаемых спектров атомов. Сейчас эта форма атомов общепризнана, и в предыдущей главе мы даже нарисовали несколько таких форм.

Форма атома 2

Однако если понимать приведённые рисунки атома буквально, то приходится представлять себе электрон как некое заряженное облако, форма которого зависит от степени возбуждения атома. По многим причинам такая картина неудовлетворительна.

Форма атома 3

Прежде всего электрон – всё-таки частица, и убедиться в этом очень просто, наблюдая, например, его следы в камере Вильсона. Кроме того, мы теперь достаточно хорошо знаем, что никаких реальных колебаний и материальных волн в атоме нет. Реальны только волны вероятности. Как это новое знание изменит наши прежние представления об атоме?

Форма атома 4

Поставим мысленный опыт по определению формы атома водорода. Возьмём, как и прежде, «электронную пушку», но теперь будем обстреливать из неё не фольгу, а отдельно взятый атом водорода. Что мы при этом должны увидеть?

Большинство электронов «прошьёт» атом водорода, как снаряд рыхлое облако, не свернув с пути. Но, наконец, один из них, столкнувшись с электроном атома, вырвет его оттуда и при этом сам изменит направление своего движения. Теперь позади атома мы увидим не один, а два электрона: один – из «пушки», другой – из атома. Допустим, что мы так точно измерили их пути, что можем восстановить точку их встречи в атоме. Можем ли мы на этом основании утверждать, что электрон в атоме водорода находился именно в этой точке?

Нет, не можем. Мы не в состоянии даже проверить своё допущение, поскольку атома водорода больше не существует – наше измерение его разрушило.

Этой беде, однако, легко помочь: все атомы водорода неразличимы, и, чтобы повторить опыт, можно взять любой из них. Повторный опыт нас разочарует: мы обнаружим электрон в атоме совсем не там, где ожидали найти его на основании первого измерения.

Третье, пятое, десятое измерения только укрепят нашу уверенность в том, что электрон в атоме не имеет определённого положения: каждый раз мы будем его находить в новом месте. Но если мы возьмём очень много атомов, проведём очень много измерений и при этом всякий раз будем отмечать точкой место электрона в атоме, найденное в каждом отдельном опыте, то в конце концов мы с удивлением обнаружим, что точки эти расположены не беспорядочно, а группируются в уже знакомые нам фигуры, которые мы раньше вычислили из уравнения Шрёдингера.

Из опытов по дифракции электронов мы уже знаем, как объяснить этот факт. В самом деле, тогда мы не знали, в какое место фотопластинки попадёт электрон, теперь мы не знаем, в каком месте атома мы его найдём. Как и прежде, сейчас мы можем указать только вероятность обнаружения электрона в каком-то определённом месте атома.

В одной точке атома эта вероятность больше, в другой – меньше, но в целом распределение вероятностей образует закономерный силуэт, который мы и принимаем за форму атома.

Ничего другого нам не остаётся. Можно, конечно, возразить, что это не отдельный атом, а некий обобщённый образ многих атомов. Но это будет слабый аргумент: ведь все атомы в одном и том же квантовом состоянии неразличимы между собой. Поэтому точечные картинки, полученные в опыте по рассеянию электронов на многих, но одинаковых атомах, определяют одновременно форму и обобщённого атома, и одного отдельно взятого атома.

Здесь, как и всегда, где работают законы случая, необходимо учитывать их особенности. Для каждого отдельного атома функция ρ(x) указывает лишь распределение вероятностей найти электрон в точке х атома. Именно в этом смысле можно говорить о «вероятной форме отдельного атома». Но картина эта достоверна, поскольку она совершенно однозначна для любой совокупности одинаковых атомов.

Наша теперешняя картина атома бесконечно далека от представлений Демокрита. В сущности, от его представлений почти ничего не осталось.

Но плодотворные заблуждения всегда лучше, чем бесплодная непогрешимость. Не будь их, Колумб никогда бы не открыл Америку.

Сейчас мы достигли предела, который вообще доступен тем, кто пытается проникнуть в глубь атома без формул и уравнений. Тем не менее образ, который мы для себя сформировали, верен во всех деталях. Не пользуясь «математической кухней» квантовой механики, мы не сможем предсказать ни одного атомного явления, однако объяснить кое-что мы теперь в состоянии, если будем использовать новый образ атома грамотно и помнить о его происхождении.

ВЕРОЯТНОСТЬ И СПЕКТРЫ АТОМОВ

Не только форма атома, но и все процессы в нём подчиняются законам теории вероятностей. Имея дело с отдельным атомом, никогда нельзя сказать наверняка, где находится его электрон, куда он попадёт в следующий момент и что произойдёт при этом с самим атомом.

Однако уравнения квантовой механики всегда позволяют вычислить вероятности всех этих процессов. Вероятностные предсказания можно потом проверить и убедиться, что они достоверны, если провести достаточно много одинаковых испытаний. Даже такие люди, как Резерфорд, далеко не сразу поняли эту особенность атомных процессов.

Он был первым читателем тогда ещё рукописной статьи Бора о строении атомов. Ознакомившись с ней, Резерфорд с присущей ему прямотой и резкостью спросил Бора:

«А откуда электрон, сидящий на n-й орбите, знает, куда ему надо прыгнуть: на k-ю или на j-ю орбиту?»

Тогда, в 1913 году, Бор ничего не смог ответить Резерфорду. И лишь теперь, после работы трёх поколении физиков, вопрос прояснился до такой степени, что даже мы в состоянии в нём разобраться.

Электрон вовсе ничего «не знает» заранее – он лишь подчиняется законам квантовой механики. Согласно этим законам для электрона в любом квантовом состоянии (например, в состоянии с квантовым числом n) всегда существует строго определённая вероятность перейти в любое другое состояние (например, в состояние k). Как всегда, вероятность Wnk перехода nk – это число, значение которого зависит от выбора пары квантовых состояний n и k. И если мы переберём всевозможные комбинации номеров n и k, то получим квадратную таблицу чисел Wnk. Мы уже знаем, что такая таблица называется матрицей. И матрица эта представляет внутреннее состояние атома.

Только теперь мы можем оценить интуицию Гейзенберга, который, ничего не зная о законах вероятности, управляющих квантовыми процессами в атоме всё-таки правильно почувствовал их особенности и ввёл свои матрицы. {Xnk} и {Pnk}. Как выяснилось немного позже, через эти матрицы матрица вероятности Wnk выражается довольно просто. А матрицы Гейзенберга, в свою очередь, легко вычислить, решив уравнение Шрёдингера.

Рассуждения, которые мы только что проследили, несмотря на свою простоту, весьма плодотворны. Например, с их помощью довольно легко можно объяснить, почему в жёлтом дублете D-линии натрия – линия D2 в два раза интенсивнее, чем линия D1.

Более того, последовательно используя уравнения квантовой механики, можно выяснить и более тонкие особенности строения этих линий, например законы изменения интенсивности внутри их самих. Но все эти радости доступны только специалистам.

ПРИЧИННОСТЬ И СЛУЧАЙНОСТЬ, ВЕРОЯТНОСТЬ И ДОСТОВЕРНОСТЬ

Вероятностная интерпретация квантовой механики очень многим пришлась не по душе и вызвала многочисленные попытки возврата к прежней, классической схеме описания. Это стремление во что бы то ни стало использовать старые знания в новых условиях по-человечески понятно, но ничем не оправдано. Оно напоминает желание отставного солдата осмыслить всё многообразие жизни с позиций строевого устава. Безусловно, его возмутит беспорядок на танцплощадке, и довольно трудно будет объяснить ему, что там действуют несколько иные законы, чем на армейском плацу.

Ещё не так давно недобросовестные интерпретаторы квантовой механики с подозрительным рвением пытались отменить её только на том основании, что она не укладывалась в рамки ими же придуманных схем. Они возмущались «свободой воли», которая якобы дарована электрону, шельмовали соотношение неопределённостей и всерьёз доказывали, что квантовая механика – бесполезная наука, коль скоро она толкует не о реальных событиях, а об их вероятностях. Те, кто внимательно проследил предыдущие рассуждения, понимают всю вздорность подобных обвинений. Но даже те, кто относится уважительно к теории атома, не всегда чётко сознают, как понимать причинность атомных явлений, если каждое из них – случайно; и насколько достоверны её предсказания, если все они основаны на понятии вероятности.

Причинность и случайность

Житейское понятие причинности: «Всякое явление имеет свою причину» – не требует объяснений, но для науки бесполезно. Причинность в науке требует строгого закона, с помощью которого можно проследить последовательность событий во времени. На языке формул этот закон принимает вид дифференциального уравнения, которое называют уравнением движения. В классической механике такие уравнения – уравнения движения Ньютона – позволяют предсказать траекторию движения частицы.

Именно такая бегло очерченная нами схема объяснения и предсказания явлений природы всегда составляла идеал причинного описания в классической физике. Она не оставляет места для сомнений и кривотолков, и, чтобы подчеркнуть это её качество в дальнейшем, причинность классической физики назвали детерминизмом.

Такой причинности в атомной физике нет. Но там есть своя – квантовомеханическая причинность и свой закон – уравнение Шрёдингера. Он даже более могуществен, чем уравнения Ньютона, так как улавливает и выделяет закономерности в хаосе случайных атомных событий. Подобно калейдоскопу, который в случайном сочетании стеклышек позволяет разглядеть фигуры, имеющие смысл и красоту.

Сочетания слов «статистическая причинность», «вероятностная закономерность» с непривычки режут слух своей несовместимостью. («Масляное масло» – плохо, но всё же разумно, однако «немасленое масло» – это уж слишком.) Они и в самом деле несовместимы. Но в атомной физике мы вынуждены использовать их одновременно для того, чтобы во всей полноте объяснить особенности квантовых явлений. В действительности никакого логического парадокса здесь нет: понятия «случайность» и «закономерность» – дополнительные понятия. В согласии с принципом дополнительности Бора оба они одновременно и равно необходимы, чтобы определить новое понятие «квантовомеханическая причинность», которая есть нечто большее, чем простая сумма понятий «закономерность» и «случайность». Точно так же, как «атомный объект» всегда нечто более сложное, чем бесхитростная сумма свойств «волны» и «частицы».

При всей логической красоте таких построений привыкнуть к ним и признать их естественными всё-таки довольно трудно. Как всегда, в квантовой физике эти логические трудности объясняются особенностями нашего языка и нашего воспитания. Понятия «закономерность» и «случайность», «достоверность» и «вероятность» возникли задолго до квантовой механики, и смысл, который в них обычно вкладывают, не зависит от желания квантовых физиков. По существу, проблема вероятности – это всегда проблема наблюдения: что произойдёт, если мы проделаем то-то и то-то.

В классической физике два одинаковых испытания при одинаковых начальных условиях всегда должны приводить к одному и тому же конечному результату. В этом суть классической причинности, или детерминизма. Своеобразие квантовомеханической причинности состоит в том, что даже при неизменных условиях она может указать лишь вероятность отдельного испытания, но зато совершенно достоверно предсказывает общую картину при большом числе тех же самых испытаний.

Можно без конца жонглировать парадоксами «закономерная случайность», «достоверная вероятность», однако это ничего не прибавит к нашим знаниям об атоме. Суть не в этом. Просто нужно понять хотя бы однажды, что вероятностное описание атома – это не результат усреднения пока неизвестных нам атомных моделей (как это было в случае с бросанием монеты). Здесь мы дошли до предела возможностей нынешней науки: пока остаётся в силе соотношение неопределённостей Гейзенберга, мы принципиально не можем уточнять наши сведения об атомных системах. По существу, нам это и не нужно: все тела в природе состоят из огромного числа атомов, а свойства таких систем квантовая механика предсказывает однозначно и без всякого произвола.

Понятие о вероятности завершило логическую схему квантовой механики. Только с его помощью удалось логически непротиворечиво осуществить высший синтез дополнительных пар понятий: волна – частица, непрерывность – дискретность, причинность – случайность, явление – наблюдение. Лишь после этого удалось наконец установить, что все эти понятия образуют неделимую систему и каждое из них зависит от контекста других. А форма ответов квантовой механики на наши вопросы зависит от того, какую сторону атомного явления мы хотим изучить пристальнее.

Изучая природу, мы всегда – сознательно или бессознательно – расчленяем её на две части: система + наблюдатель. Разделение это неоднозначно и зависит от того, какое явление мы изучаем и что мы хотим о нём узнать.

Если под явлением мы понимаем движение отдельной частицы, то это событие дискретно, случайно и большей частью ненаблюдаемо. Но если явление мы называем результат наблюдения за движением многочисленных одинаковых атомных объектов, то это событие непрерывно, закономерно и описывается волновой функцией.

Квантовая механика изучает только такие события. Для них она даёт достоверные и однозначные предсказания, которые до сих пор ни разу не были опровергнуты опытом.


    Ваша оценка произведения:

Популярные книги за неделю