Текст книги "По ту сторону кванта"
Автор книги: Леонид Пономарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 13 (всего у книги 22 страниц)
ГЛАВА ВОСЬМАЯ
Корпускулярно-волновой дуализм – Соотношение неопределённостей Гейзенберга – Принцип дополнительности
В начале 20-х годов Макс Борн и Джеймс Франк – физики и Давид Гильберт – математик организовали в Гёттингене «семинар по материи». Его посещали и признанные в то время учёные, и знаменитая впоследствии молодёжь. Почти каждый семинар Гильберт начинал вопросом:
«Итак, господа, подобно вам, я хотел бы, чтобы мне сказали точно: что такое атом?»
Глава восьмая
Сейчас мы знаем об атоме больше, чем все участники семинара тех лет, однако ответить Гильберту мы ещё не готовы. Дело в том, что до сих пор мы узнали довольно много фактов, но нам пока недостаёт понятий, чтобы эти факты правильно объяснить.
Благодаря Нильсу Бору даже сейчас, много лет спустя, при слове «атом» мы непроизвольно представляем себе маленькую планетную систему из ядра и электронов. Только потом усилием воли мы заставляем себя вспомнить, что ему присущи также и волновые свойства. Сейчас, как и прежде, обе идеи – «электрон-волна» и «электрон-частица» – существуют в нашем сознании независимо, и невольно мы пытаемся от одной из них избавиться. «Электрон или волна?» – к этому вопросу в 20-х годах физики возвращались постоянно, стремясь, как и все люди, к определённости.
К началу 1926 года в атомной физике сложилось любопытное положение: порознь и независимо возникли сразу две квантовые механики, исходные посылки которых резко различались. Гейзенберг вслед за Бором был убеждён, что электрон – частица, и свои матричные уравнения написал в этом убеждении. А Шрёдингер смог вывести своё дифференциальное уравнение, только поверив вместе с де Бройлем в волновые свойства электрона.
Гейзенберг требовал, чтобы в уравнения входили только те величины, которые можно непосредственно измерить на опыте: частоты спектральных линий и их интенсивности. На этом основании он исключил из теории понятие «траектория электронов в атоме», как величину, в принципе не наблюдаемую. Шрёдингер тоже не использовал понятия траектории, однако записал своё уравнение для ψ-функции, которая также измерена быть не может и смысл которой даже ему самому оставался пока неясным.
Опыт – последний судья во всех спорах – вначале решительно стоял на стороне матричной механики. В самом деле, Фарадей обнаружил неделимость электрического заряда, и дальнейшие опыты Крукса и Томсона строго это доказали. Таким свойством может обладать только частица. Опыты Милликена и фотографии следов электрона в камере Вильсона устранили последние в этом сомнения.
Сомнения
Однако представления об электроне-частице резко противоречили факту удивительной стабильности атома. Мы много раз подчёркивали, что планетарный атом неустойчив. Именно для того, чтобы объяснить устойчивость атома и в то же время сохранить представление об электроне-частице, Бор и придумал свои постулаты.
Де Бройль и Шрёдингер пошли другим путём и показали, что устойчивость атома наиболее естественно объясняется, если допустить, что электрон – волна, а не частица. Эту гипотезу вскоре подтвердили прямыми опытами Дэвиссон, Джермер и Дж. П. Томсон, обнаружив у электрона способность к дифракции.
Опытам принято верить. Но как поверить сразу двум опытам, исключающим друг друга? Возникшая ситуация в истории физики примеров не имела и была настолько необычна, что вначале никто не подозревал о единстве двух механик, а потому все стремились доказать истинность одной из них и ложность другой. Между сторонниками обеих теорий шли ожесточённые споры: одни отстаивали право первородства матричной механики, другие предпочитали математическую простоту волновой механики. Конец этим спорам положил всё тот же Шрёдингер в начале 1927 года, доказав, что обе механики математически эквивалентны. Для каждого физика это означало, что они эквивалентны также и физически, то есть что перед ним одна и та же механика – механика атома, но записанная в разных формах. Это означало также, что верны исходные предпосылки обеих механик: представления матричной механики об электроне-частице и представления волновой механики об электроне-волне.
КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМЧем больше учёные узнавали об атоме, тем менее категоричными становились вопросы, которые они задавали природе. Во времена Планка и Эйнштейна хотели знать: «Луч света – это что: волна или поток частиц-квантов?» После работ де Бройля по-прежнему пытались выяснить: «Электрон – что это: волна или частица?» Лишь постепенно и с большим трудом оформилась простая мысль: «А почему или? Почему эти свойства – свойства волны и частицы – должны исключать друг друга?» По трезвом размышлении оказалось, что логических оснований для альтернативы «или – или» нет. А единственная причина, по которой от неё не отказывались, – всё та же инерция мышления: мы всегда пытаемся осмыслить новые факты с помощью старых понятий и образов.
Существует ещё одна трудность – психологическая: в повседневной жизни мы привыкли, что предметы тем проще, чем они меньше. Например, из 33 матрёшек самая маленькая – самая простая, бильярдный шар значительно проще шара земного, а целое всегда состоит из более простых частей. Когда, сидя у моря, Демокрит делил яблоко, он мог представлять себе атом как угодно, но вряд ли ему приходило в голову, что он устроен сложнее, чем всё яблоко. Это и в самом деле не так. Но бывает, что одни и те же свойства очевидны у малых предметов и совсем незаметны у предметов больших. Точно так же при дроблении вещества (которое мы по традиции мыслим себе построенным из частиц) у него не появляется новых, волновых, свойств – они проявляются. Свойства эти у него были всегда – просто мы их не замечали.
С явлениями подобного типа мы сталкиваемся значительно чаще, чем сознаём это. Бильярдный шар и шар земной всё равно шары, и этим похожи. Однако сколько людей пострадало за эту истину, прежде чем Земля для всех стала шаром. А кривизна бильярдного шара была очевидна даже отцам инквизиции. Всё дело в соотношении явления и наблюдателя. Земля, точно так же, как и каждый её электрон, обладает свойствами волны. Однако если попытаться описать её движение с помощью уравнения Шрёдингера, то при массе Земли 5∙1027 г и скорости, с которой она движется вокруг Солнца – 3∙106 см/сек, придётся приписать этой «частице» волну де Бройля длиной в 4∙10−61 см – число настолько малое, что даже неизвестно, как понимать такую волну.
Однако мы не можем только на этом основании утверждать, что Земля не обладает волновыми свойствами. Ведь с помощью циркуля и линейки мы не можем измерить её кривизну, однако Земли всё-таки круглая.
Число подобных примеров легко умножить, и каждый из них по-своему помогает понять конечный итог размышлений о проблеме «волна – частица».
Вопроса «волна или частица» не существует; атомный объект – это «и волна и частица» одновременно. Более того, все тела в природе обладают одновременно и волновыми и корпускулярными свойствами, и свойства эти лишь различные проявления единого корпускулярно-волнового дуализма.
К этой мысли пришли ещё в 1924 году Бор, Крамерс и Слэтер. В совместной работе они с определённостью заявили, что волновой характер распространения света, с одной стороны, и его поглощение и испускание квантами – с другой являются теми экспериментальными фактами, которые следует положить в основу любой атомной теории и для которых не следует искать каких-либо объяснений.
Непривычное единство свойств «волна – частица» отражено в формулах Планка (E=h∙ν) и де Бройля (λ=h/m∙v). Энергия E и масса m – характеристики частицы; частота ν и длина волны λ – признаки волнового процесса. А единственная причина, по которой мы не замечаем этого дуализма в повседневной жизни, – малость постоянной Планка h=6,62∙10−27 эрг∙сек. Даже если это случайное обстоятельство, с ним надо считаться.
Если бы мы жили в мире, где постоянная Планка сравнима с его привычными масштабами, наши представления об этом мире резко отличались бы от нынешних. Например, нам было бы трудно представить себе дома с резкими очертаниями или стоящий спокойно паровоз. Более того, в этом мире вообще не может быть железнодорожных расписаний: в нём нельзя проложить рельсы-траектории, а можно лишь отметить станции отправления и назначения поездов. Конечно, это мир гипотетический, поскольку величину постоянной Планка мы не в состоянии менять по своему произволу – она всегда неизменна и очень мала. Но атомы тоже так малы, что постоянная Планка сравнима с их масштабами. «Для них» этот необычный мир реально существует, и его непривычную логику нам предстоит теперь понять – точно так же, как Гулливеру пришлось привыкать к нравам лилипутов.
СООТНОШЕНИЕ НЕОПРЕДЕЛЁННОСТЕЙ ГЕЙЗЕНБЕРГАПредположим, что мы настолько прониклись идеей неделимости свойств «волна – частица», что захотели записать своё достижение на точном языке формул. Эти формулы должны установить соотношение между числами, которые соответствуют понятиям «волна» и «частица». В классической механике эти понятия строго разделены и относятся к совершенно различным явлениям природы. В квантовой механике корпускулярно-волновой дуализм вынуждает нас использовать оба понятия одновременно и применять их к одному и тому же объекту. Этот необходимый шаг не даётся даром – мы за него должны платить, и, как оказалось, платить дорого.
Вполне ясно это стало в 1927 году, когда Вернер Гейзенберг догадался, что хотя к атомному объекту одинаково хорошо применимы оба понятия: и «частица» и «волна», однако определить их строго можно только порознь.
В физике слова «определить понятие» означают: «Указать способ измерения величины, которая этому понятию соответствует».
Гейзенберг утверждал: нельзя одновременно, и при этом точно, измерить координату x и импульс p атомного объекта. С учётом формулы де Бройля λ=h/p это означает: нельзя одновременно и в то же время точно определить положение x атомного объекта и длину его волны λ. Следовательно, понятия «волна» и «частица» при одновременном их использовании в атомной физике имеют ограниченный смысл. Более того, Гейзенберг нашёл численную меру такого ограничения. Он доказал, что если мы знаем положение x и импульс p атомной частицы с погрешностями δx и δp, то мы не можем уточнять эти значения бесконечно, а лишь до тех пор, пока выполняется неравенство – соотношение неопределённостей:
δx∙δp ≥ ½h
Этот предел мал, но он существует, и это фундаментально.
Соотношение неопределённостей – строгий закон природы, который никак не связан с несовершенством наших приборов. Оно утверждает: нельзя – принципиально нельзя – определить одновременно и координату и импульс частицы точнее, чем это допускает приведённое неравенство.
Нельзя – точно так же, как нельзя превысить скорость света или достичь абсолютного нуля температур. Нельзя – как нельзя поднять самого себя за волосы или вернуть вчерашний день. И ссылки на всемогущество науки здесь неуместны: сила её не в том, чтобы нарушать законы природы, а в том, что она способна их открыть, понять и использовать.
Нам кажется это немного странным – мы привыкли к всесилию науки и утверждение «невозможно» исключили из её лексикона. Замечательно, однако, что высший триумф любой науки достигается именно в моменты установления таких запретов с участием слова «невозможно». Когда сказали: «Невозможно построить вечный двигатель», возникла термодинамика. Как только догадались, что «нельзя превысить скорость света», родилась теория относительности. И лишь после того, как поняли, что различные свойства атомных объектов нельзя измерять одновременно с произвольной точностью, окончательно сформировалась квантовая механика.
При первом знакомстве с соотношением неопределённостей возникает инстинктивное сопротивление: «Этого не может быть!» Гейзенберг объяснил его причину, отбросив ещё одну идеализацию классической физики – понятие наблюдения. Он доказал, что в атомной механике его нужно пересмотреть, точно так же как и понятие движения.
Подавляющую часть своих знаний о мире человек приобретает с помощью зрения. Эта особенность восприятия человека определила всю его систему познания: почти у каждого слово «наблюдение» вызывает в сознании образ внимательно глядящего человека. Когда вы смотрите на собеседника, то абсолютно уверены, что от вашего взгляда ни один волос не упадёт с его головы, даже если вы смотрите пристально и у вас «тяжёлый взгляд». В сущности, именно на этой уверенности основано понятие наблюдения в классической механике. Классическая механика выросла из астрономии, и поскольку никто не сомневался, что, наблюдая звезду, мы никак на неё не воздействуем, то это молчаливо приняли и для всех других наблюдений.
Понятия «явление», «измерение» и «наблюдение» тесно связаны между собой, хотя и не совпадают. Древние наблюдали явления – в этом состоял их метод изучения природы. Из наблюдений они извлекали затем следствия с помощью чистого умозрения. По-видимому, с тех пор укоренилась уверенность: явление существует независимо от наблюдения.
Мы много раз подчёркивали главное отличие нынешней физики от античной: она заменила умозрение опытом. Теперешняя физика не отрицает, что явления в природе существуют независимо от наблюдения (и конечно, от нашего сознания). Но она утверждает: объектом наблюдения эти явления становятся лишь тогда, когда мы укажем точный способ измерения их свойств. В физике понятия «измерение» и «наблюдение» неразделимы.
Явления природы и физика
Всякое измерение есть взаимодействие прибора и объекта, который мы изучаем. А всякое взаимодействие нарушает первоначальное состояние и прибора и объекта, так что в результате измерения мы получаем о явлении сведения, искажённые вмешательством прибора. Классическая физика предполагала, что все подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, независимое от измерений. Гейзенберг показал, что такое предположение есть заблуждение: в атомной физике «явление» и «наблюдение» неотделимы друг от друга. По существу, «наблюдение» тоже явление, и далеко не самое простое.
Как и многое в квантовой механике, такое утверждение непривычно и вызывает бессознательный протест. И всё же попытаемся его понять или хотя бы почувствовать.
Ежедневный опыт убеждает нас: чем меньше объект, который мы исследуем, тем легче нарушить его состояние. Ничего меньше атомных объектов – атома, электрона – мы в природе не знаем. Определить их свойства усилием воли мы не можем. В конце концов мы вынуждены измерять свойства атомных объектов с помощью самих объектов. В таких условиях прибор неотличим от объекта.
Но почему нельзя добиться, чтобы в процессе измерения один атомный объект лишь незначительно влиял на другой?
Дело в том, что оба они – и прибор и объект – находятся в одном и том же квантовом мире и поэтому их взаимодействие подчиняется квантовым законам. А главная особенность квантовых явлений – их дискретность. В квантовом мире ничего не бывает чуть-чуть – взаимодействия там происходят только квантом: или всё, или ничего. Мы не можем как угодно слабо воздействовать на квантовую систему – до определённого момента она этого воздействия вообще не почувствует. Но коль скоро величина воздействия выросла настолько, что система готова его воспринять, это приводит, как правило, к переходу прежней системы в новое (тоже квантовое) состояние, а часто даже и к её гибели.
Процесс наблюдения в квантовой механике напоминает скорее вкус, чем зрение. «Для того чтобы узнать свойства пудинга, его необходимо съесть» – любили повторять создатели квантовой механики. И подобно тому как, съев однажды пудинг, мы не в состоянии ещё раз проверить своё впечатление о его достоинствах, точно так же мы не можем беспредельно уточнять наши сведения о квантовой системе: её разрушит, как правило, уже первое измерение. Гейзенберг не только понял впервые этот суровый факт, но и сумел записать его на языке формул.
Соотношение неопределённостей, каким бы непонятным оно ни казалось, есть простое следствие корпускулярно-волнового дуализма атомных объектов. Вместе с тем это соотношение – ключ к пониманию всей квантовой механики, ибо в нём сконцентрировались главные её особенности. После этого открытия Гейзенберга пришлось пересмотреть не только атомную физику, но и всю теорию познания.
Такой шаг оказался под силу опять-таки лишь Нильсу Бору, который счастливо сочетал в себе могучий интеллект учёного и философский склад души истинного мыслителя. В своё время он создал систему образов квантовой механики, теперь, четырнадцать лет спустя, он тщательно отрабатывал систему её понятий.
После Бора стало ясно, что и соотношение неопределённостей, и корпускулярно-волновой дуализм лишь частные проявления, более общего принципа – принципа дополнительности.
ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИПринцип, который Бор назвал дополнительностью, – одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению – им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в своё время и Бор) начать с анализа процесса измерения импульса p и координаты x атомного объекта.
Нильс Бор заметил очень простую вещь: координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. В самом деле, чтобы измерить импульс p атомной частицы и при этом не очень сильно его изменить, необходим чрезвычайно лёгкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределённо. Для измерения координаты x мы должны поэтому взять другой – очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае её импульс, мы этого даже не заметим.
Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить её положение в каждый момент времени. Эта простейшая экспериментальная установка является иллюстрацией к соотношению неопределённостей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта – координату x и импульс p. Необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.
Дополнительность – вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору. До него все были убеждены, что несовместимость двух типов приборов непременно влечёт за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.
Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата x и импульс p – это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания
явление → образ → понятие → формула
принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике её умозаключений.
Принцип дополнительности
Дело в том, что среди строгих положений формальной логики существует «правило исключённого третьего», которое гласит: из двух противоположных высказываний одно истинно, другое – ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия «волна» и «частица» действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причём для полного описания необходимо использовать их одновременно.
Люди, воспитанные на традициях классической физики, восприняли эти требования как некое насилие над здравым смыслом и поговаривали даже о нарушении законов логики в атомной физике. Бор объяснил, что дело здесь вовсе не в законах логики, а в той беспечности, с которой иногда без всяких оговорок используют классические понятия для объяснения атомных явлений. А такие оговорки необходимы, и соотношение неопределённостей Гейзенберга δx∙δp ≥ ½h точная запись этого требования на строгом языке формул.
Причина несовместимости дополнительных понятий в нашем сознании глубока, но объяснима. Дело в том, что познать атомный объект непосредственно – с помощью наших пяти чувств – мы не можем. Вместо них мы используем точные и сложные приборы, которые изобретены сравнительно недавно. Для объяснения результатов опытов нам нужны слова и понятия, а они появлялись задолго до квантовой механики и никоим образом к ней не приспособлены. Однако мы вынуждены ими пользоваться – у нас нет другого выхода: язык и все основные понятия мы усваиваем с молоком матери и, во всяком случае, задолго до того, как узнаем о существовании физики.
Принцип дополнительности Бора – удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.
Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже – при попытках распространить его на другие области науки – выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далёких от физики.
Сам Бор любил приводить пример из биологии, связанный с жизнью клетки, роль которой вполне подобна значению атома в физике. Если атом – последний представитель вещества, который ещё сохраняет его свойства, то клетка – это самая малая часть любого организма, которая всё ещё представляет жизнь в её сложности и неповторимости. Изучить жизнь клетки – значит узнать все элементарные процессы, которые в ней происходят, и при этом понять, как их взаимодействие приводит к совершенно особому состоянию материи – к жизни.
При попытке выполнить эту программу оказывается, что одновременное сочетание такого анализа и синтеза неосуществимо. В самом деле, чтобы проникнуть в детали механизмов клетки, мы рассматриваем её в микроскоп – сначала обычный, затем электронный – нагреваем клетку, пропускаем через неё электрический ток, облучаем, разлагаем на составные части… Но чем пристальнее мы станем изучать жизнь клетки, тем сильнее мы будем вмешиваться в её функции и в ход естественных процессов, в ней протекающих. В конце концов, мы её разрушим и поэтому ничего не узнаем о ней как о целостном живом организме.
И всё же ответ на вопрос «Что такое жизнь?» требует анализа и синтеза одновременно. Процессы эти несовместимы, но не противоречивы, а лишь дополнительны – в смысле Бора. И необходимость учитывать их одновременно – лишь одна из причин, по которой до сих пор не существует полного ответа на вопрос о сущности жизни.
Как и в живом организме, в атоме важна целостность его свойств «волна – частица». Конечная делимость материи породила не только конечную делимость атомных явлений – она привела также к пределу делимости понятий, с помощью которых мы эти явления описываем.
Часто говорят, что правильно поставленный вопрос – уже половина ответа. Это не просто красивые слова.
Правильно поставленный вопрос – это вопрос о тех свойствах явления, которые у него действительно есть. Поэтому такой вопрос уже содержат в себе все понятия, которые необходимо использовать в ответе. На идеально поставленный вопрос можно ответить коротко: «да» или «нет». Бор показал, что вопрос «Волна или частица?» в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа «да» или «нет». Точно так же, как нет ответа у вопроса: «Что больше: метр или килограмм?», и у всяких иных вопросов подобного типа.
Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом. В мифологии такие случаи хорошо известны: нельзя разрезать на две части кентавра, сохранив при этом в живых и коня и человека.
Неделимость
Атомный объект – это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект – это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать её и без этого. В конце концов (надо признать правоту Борна),
«…теперь атомный физик далеко ушёл от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».
Когда Гейзенберг отбросил идеализацию классической физики – понятие «состояние физической системы, независимое от наблюдения», – он тем самым предвосхитил одно из следствий принципа дополнительности, поскольку понятия «состояние» и «наблюдение» – дополнительные в смысле Бора. Взятые в отдельности, они неполны и поэтому могут быть определены только совместно, друг через друга. Говоря строго, эти понятия вообще не существуют порознь: мы всегда наблюдаем не вообще нечто, а непременно какое-то состояние. И наоборот: всякое «состояние» – это вещь в себе до тех пор, пока мы не найдём способ его «наблюдения».
Взятые по отдельности понятия: волна, частица, состояние системы, наблюдение системы – это некие абстракции, не имеющие отношения к атомному миру, но необходимые для его понимания. Простые, классические картины дополнительны в том смысле, что для полного описания природы необходимо гармоничное слияние этих двух крайностей, но в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если область их применимости взаимно ограничена.
Много размышляя над этими и другими похожими проблемами, Бор пришёл к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но тогда неполны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «атомный объект», «физическая система» и даже само понятие «познание природы».
Взаимоисключающие понятия
С давних пор известно, что наука – это лишь один из способов изучить окружающий мир. Другой, дополнительный, способ воплощён в искусстве. Само совместное существование искусства и науки – хорошая иллюстрация принципа дополнительности. Можно полностью уйти в науку или всецело жить искусством – оба эти подхода к жизни одинаково правомерны, хотя взятые по отдельности и неполны. Стержень науки – логика и опыт. Основа искусства – интуиция и прозрение. Но искусство балета требует математической точности, а «…вдохновение в геометрии столь же необходимо, как и в поэзии» Они не противоречат, а дополняют друг друга: истинная наука сродни искусству – точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства «волна – частица» в атоме. Они отражают разные, дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Неизвестно, к сожалению, только «соотношение неопределённостей» для сопряжённой пары понятий «наука – искусство», а потому и степень ущерба, который мы терпим при одностороннем восприятии жизни.
Конечно, приведённая аналогия, как и всякая аналогия, и неполна и нестрога. Она лишь помогает нам почувствовать единство и противоречивость всей системы человеческих знаний.