Текст книги "По ту сторону кванта"
Автор книги: Леонид Пономарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 22 страниц)
Обратите внимание: в случае с солнечным ожогом излучение отдавало тем бо́льшую энергию, чем больше его частота. А в данном случае? Чем бо́льшую энергию мы затратили на нагревание тела, тем больше частота излучаемых волн. Значит, существует какая-то зависимость между частотой и энергией излучения.
КВАНТЫВ конце прошлого века Макс Планк искал универсальную формулу для спектра абсолютно чёрного тела. Как он должен был при этом рассуждать? Тепловое излучение не только порождается движением атомов, но и само воздействует на них, так как несёт с собой энергию. В результате такого взаимовлияния внутри абсолютно чёрного тела устанавливается тепловое равновесие: сколько тепла атомы получают извне, столько же энергии от них уносит излучение. Из кинетической теории материи он знал, что средняя энергия колебаний атомов Eкол пропорциональна абсолютной температуре T: Eкол=k∙T, где k=1,38∙10−16 эрг/град – множитель пропорциональности, который называется постоянной Больцмана.
Теперь вспомните: энергия излучения растёт с его частотой. Знал это, конечно, и Планк. Но как растёт? Он предположил простейшее: энергия излучения Eизл пропорциональна его частоте: Eизл=h∙ν, где h – другой множитель пропорциональности. (Мысль эта настолько проста, что её нельзя доказывать и объяснять через более простые понятия. Однако гениальные мысли отмечает именно такая классическая простота.) Предположив это, Макс Планк угадал формулу для спектральной функции U=U(ν, T). Да, угадал. Но не надо думать, что всё было так уж просто, над своей формулой Планк бился два года.
19 октября 1900 года происходило очередное заседание Немецкого физического общества, на котором экспериментаторы Рубенс и Курлбаум докладывали о новых, более точных измерениях спектра абсолютно чёрного тела. После доклада состоялась дискуссия, в ходе которой экспериментаторы сетовали, что ни одна из теорий не может объяснить их результаты. Планк предложил им воспользоваться своей формулой. В ту же ночь Рубенс сравнил свои измерения с формулой Планка и убедился, что она правильно, до мельчайших подробностей описывает спектр абсолютно чёрного тела. Наутро он сообщил об этом своему коллеге и близкому другу Планку и поздравил его с успехом.
Однако Планк был теоретик и потому ценил не только окончательные результаты теорий, но и внутреннее их совершенство. К тому же он не знал ещё, что открыл новый закон природы, и считал, что его можно вывести из ранее известных. Поэтому он стремился теоретически обосновать закон излучения, исходя из простых посылок кинетической теории материи и термодинамики. Последовало два месяца непрерывной работы и предельного напряжения сил. Ему это удалось. Но какой ценой!
В процессе вычислений он вынужден был предположить, что излучение испускается порциями (или квантами), величина которых определяется как раз той же формулой E=h∙ν, которую он незадолго перед этим угадал. В этом – и только в этом – случае удавалось получить правильную формулу для спектра излучения.
Соотношение E=h∙ν нельзя доказать логически, как нельзя обосновать закон всемирного тяготения. Они есть – так устроен мир. Более того, только приняв их и с помощью их можно объяснить другие явления природы. И спектр абсолютно чёрного тела – тоже.
Формально предположение Планка было предельно ясным и простым но, по существу, противоречило всему прежнему опыту физики и годами воспитанной интуиции. Вспомните, мы много раз подчёркивали, что излучение – это волновой процесс. А если так, то энергия в этом процессе должна передаваться непрерывно, а не порциями – квантами. Это неустранимое противоречие Планк сознавал как никто другой. Когда он вывел свою знаменитую формулу, ему было 42 года, но почти всю остальную жизнь он страдал от логического несовершенства им же созданной теории. У последующих поколений физиков это чувство притупилось: они уже знали готовый результат и научились мыслить по-новому.
Но Планк был воспитан на традициях классической физики и целиком принадлежал её строгому неторопливому миру. А вышло так: разрешив многолетнюю загадку в теории излучения, он тем самым нарушил логическую стройность всей классической физики. «Не слишком ли дорогой ценой достигнуто решение этой, в сущности, очень частной проблемы?» Для Макса Планка это было большим потрясением. Впоследствии, в докладе, который Планк произнёс по случаю вручения ему Нобелевской премии, он вспоминал, что для него признание реальности квантов было равносильно «…нарушению непрерывности всех причинных связей».
Кванты
Только значительно позже, в 1927 году, новая наука – квантовая механика – объяснила, что противоречия здесь нет. Но до этого времени ещё далеко.
14 декабря 1900 года в зале заседаний Немецкого физического общества родилась новая наука – учение о квантах. Сухо и обстоятельно ординарный профессор физики Макс Карл Эрнст Людвиг Планк прочёл перед небольшой аудиторией сугубо специальный доклад: «К теории закона распределения энергии в нормальном спектре».
В тот день мало было людей, которые поняли величие момента: плохая погода или логические противоречия теории, вероятно, занимали аудиторию больше. Признание пришло потом. И позже осмыслили значение постоянной Планка h для всего атомного мира. Она оказалась очень маленькой: h=6,62∙10−27 эрг∙сек, но она открыла дверь в мир атомных явлений. И всегда, когда мы из мира привычного и классического хотим перейти в мир необычный и квантовый, мы должны пройти через эту узкую дверь.
ВОКРУГ КВАНТАМы пока очень мало знаем об атомах, но даже этих знаний достаточно, чтобы решить задачу Демокрита: как долго придётся последовательно делить яблоко, чтобы добраться до его «атома»?
Предположим, что у Демокрита в руке было большое яблоко – сантиметров десять в диаметре. Тогда объём его равен примерно V=103 см3 и при каждом делении уменьшается вдвое, так что после n-го деления его объём Vn равен{2}:
Vn=V/2n= 103/10(0,3∙n) = 10(3−0,3∙n)
Согласно оценке Лошмидта объём атома равен примерно (10−8 см)3 = 10−24 см3. Деление закончится, когда объём Vn станет равным объёму атома, то есть при условии: 10(3−0,3∙n) = 10−24.
Отсюда легко найти, что n=90, то есть уже на 90 шагу Демокрит достиг бы своей цели. Не так уж много, не правда ли?
Если даже учесть, что он при этом размышлял и потому делил яблоко не торопясь, то и тогда, ему хватило бы получаса.
«Мне кажется вероятным, что бог вначале создал материю в виде сплошных, массивных, твёрдых, непроницаемых, движущихся частиц таких размеров и форм и с такими другими свойствами и в таких пропорциях к пространству, которые наилучшим образом служат той цели, для которой он их создал, и что эти простейшие частицы, будучи твёрдыми, несравненно прочнее, чем любые другие тела, составленные из них; даже настолько прочны, что никогда не изнашиваются и не разбиваются на куски; никакие обычные силы не в состоянии разделить то, что бог создал сам в первый день творения…»
«Мне кажется очевидным, что эти частицы имеют не только свойство инерции вместе с такими пассивными законами движения, которые естественно следуют из этих сил, но что они движутся согласно определённым действующим принципам, подобным гравитации, и которые являются причиной возбуждения и сцепления тел. Эти принципы я рассматриваю не как оккультные качества, предположенные для того, чтобы вывести результаты, исходя из специфических форм вещей, но как общие законы природы, которым обязано само существование этих вещей; их достоверность очевидна нам через явления, хотя их причины пока что не открыты. Явны только качества, а их причины неизвестны».
В Шведской академии наук в Стокгольме Макс Планк при вручении ему Нобелевской премии 2 июня 1920 года произнёс речь «Возникновение и постепенное развитие теории квантов». Приведём несколько выдержек из неё.
«Крушение всех попыток перебросить мост через возникшую пропасть вскоре уничтожило все сомнения: или квант действия был фиктивной величиной – тогда весь вывод закона излучения был принципиально иллюзорным и представлял просто лишённую содержания игру в формулы, или при выводе этого закона в основу была положена правильная физическая мысль – тогда квант действия должен был играть в физике фундаментальную роль, тогда появление его возвещало нечто совершенно новое, дотоле неслыханное, что, казалось, требовало преобразования самой основы нашего физического мышления, покоившегося со времён обоснования анализа бесконечно малых Ньютоном и Лейбницем на предположении о непрерывности всех причинных связей…»
«…То, что сегодня кажется нам непонятным, когда-нибудь будет казаться, с более высокой точки зрения, особенно простым и гармоничным. Но прежде чем эта цель будет достигнута, проблема кванта действия не перестанет побуждать и оплодотворять мысль исследователей, и чем большие трудности представятся в её решении, тем важнее она окажется для расширения и углубления всего нашего физического знания».
Планк прекрасно сознавал значение своего открытия (он говорил сыну: «Сегодня я сделал открытие такое же важное, как Ньютон»), но никогда этого не афишировал. Вероятно, поэтому укоренилось заблуждение, что Планк, «очевидно, не знал, что он делает, когда делал это».
Приведённые отрывки из нобелевской речи лишний раз опровергают это заблуждение.
ГЛАВА ВТОРАЯ
Лучи – Атомы – Электроны – Атомы, электроны, лучи
В истории человечества нам интересны не имена государей и не даты их правления – хотя без этого история не существует вообще, а рождение, расцвет и упадок цивилизаций, эволюция и существо идей, которые столетиями направляют волю людей и определяют характер их взаимоотношений; в истории мы хотим понять причины обновления идей и обстоятельства их угасания.
Глава вторая
Точно так же история физики – это не просто набор фактов, а связная картина возникновения и развития физических идей, без которых наука может показаться произвольным набором формул и понятий.
Истины плодотворны только тогда, когда между ними есть внутренняя связь, а связь эту можно проследить только в развитии.
Даже дикари на низшей ступени развития имеют свою историю. С утратой истории исчезнет связь времён, и люди перестанут быть людьми, точно так же, как отдельный человек, утратив память, необратимо деградирует.
Для физика история его науки – необходимый элемент образования, без которого он всегда останется ремесленником. Для всех остальных – это большей частью история человеческих судеб, которые подчас настолько же необычны, как и судьбы царей или полководцев.
Чтобы понять законченность и красоту понятий современной физики, необходимо проследить их истоки и путь развития. Только после этого они смогут стать вам близкими и понятными – точно так же, как близка вам родина, историю и культуру которой вы впитали с молоком матери.
Знаменитый математик Феликс Клейн говорил как-то, что самый быстрый и надёжный путь овладеть любой наукой – пройти самому весь путь её развития. Это не самый простой путь, но он самый интересный, и мы избрали именно его.
В дальнейшем нам особенно важно проследить эволюцию понятий: лучи, атомы, электроны, чтобы в конце пути почувствовать красоту их синтеза.
ЛУЧИСолнечный луч, если внимательно за ним проследить, может привести к порогу квантовой физики. Весьма вероятно, что вам этот переход не кажется пока убедительным. Но ощущение произвола, которое испытывает человек при первом знакомстве с теорией Планка, на самом деле обманчиво. Формула Планка не результат умозрения, она появилась лишь после длительного анализа точных опытов. Конечно, чтобы придумать её, одного анализа мало: необходима ещё и сила мысли, и взлёт фантазии, и смелость перед лицом неожиданных следствий теории.
Учёные Релей, Джинс, Вин и до Планка предлагали различные формулы для описания спектра абсолютно чёрного тела. Но каждый раз экспериментаторы Отто Люммер (1860–1925) и Эрнст Принсгейм (1859–1917) после тщательного измерения этого спектра решительно отвергали их, как несовершенные. Только формула Планка удовлетворила их: она поразительно совпала с результатами их опытов, хотя и не становилась от этого более понятной.
Последуем примеру этих физиков и рассмотрим строение солнечного луча ещё внимательнее, чем мы это делали до сих пор. В дальнейшем мы увидим, как много информации он с собой несёт, и надо только научиться её читать.
Если пропустить луч солнца через призму, то на экране позади неё возникает спектр – явление обычное, и за двести лет к нему привыкли. На первый взгляд между отдельными частями спектра нет резких границ: красный непрерывно переходит в оранжевый, оранжевый в жёлтый и т. д.
Так и думали до тех пор, пока в 1802 году английский врач и химик Уильям Хайд Волластон (1766–1828) не рассмотрел этот спектр более пристально. Он обнаружил при этом несколько резких тёмных линий, которые без видимого порядка пересекали спектр Солнца в разных местах. Он не придал им особого значения, полагая, что их появление зависит либо от качества призмы, либо от источника света, либо от других побочных причин. Да и сами линии он считал интересными только потому, что они отделяют друг от друга цветные полосы спектра. Впоследствии эти тёмные линии назвали фраунгоферовыми – по имени их настоящего исследователя, а не первооткрывателя.
Иосиф Фраунгофер (1787–1826) прожил недолго, но у него была удивительная судьба. В 11 лет, после смерти родителей, он пошёл в ученье к шлифовальных дел мастеру. Работать приходилось так много, что на школу уже не оставалось времени, и потому до 14 лет он не умел ни читать, ни писать. Но однажды дом хозяина рухнул; и случилось так, что пока Фраунгофера извлекали из-под обломков, мимо проезжал наследный принц. Он пожалел юношу и вручил ему значительную сумму денег. Их оказалось достаточно, чтобы Иосиф смог купить себе шлифовальный станок и даже начать учиться.
То было время наполеоновских войн и больших перемен в Европе. А Фраунгофер между тем в заштатном городке Бенедиктбейрене учился, шлифовал оптические стёкла и тщательно исследовал тёмные линии в спектре Солнца. Он насчитал их там 574, дал главным названия и указал их точное местоположение в спектре. Положение это было строго неизменным, в частности, всегда в одном и том же месте жёлтой части спектра появлялась резкая двойная линия, которую Фраунгофер назвал линией D.
И ещё один важный факт установил Фраунгофер: в спектре пламени спиртовки на том же самом месте, где и тёмная линия D в спектре Солнца, всегда присутствует яркая двойная жёлтая линия. Значение этого факта оценили только много лет спустя.
В 1819 году Фраунгофер переехал в Мюнхен и стал там профессором, членом Академии наук и хранителем физического кабинета. Продолжая свои исследования тёмных линий в спектре Солнца, он убедился, что их причина не оптический обман, а сама природа солнечного света. Побуждаемый странной природой этих линий к дальнейшим наблюдениям, он открыл их затем в спектре Венеры и Сириуса.
Иосиф Фраунгофер умер и похоронен в Мюнхене в 1826 году. На его могиле надпись: «Approximavit sidera – Приблизил звёзды». Но лучший памятник ему – его открытия.
Среди открытий Фраунгофера для нас особенно важно сейчас его наблюдение над двойной D-линией. Тогда, в 1814 году, когда он опубликовал свои исследования, на это наблюдение особого внимания не обратили. Однако труды его не пропали: прошло 43 года, и Вильям Сван (1828–1914) установил, что двойная жёлтая линия D в спектре пламени спиртовки возникает в присутствии металла натрия. (Его следы в составе поваренной соли почти всегда можно найти в различных веществах, и в спиртовке – тоже.) Как и многие до него, Сван не понял значения своего открытия и потому не сказал решающих слов: «Эта линия принадлежит металлу натрию».
К этой простой и важной мысли пришли только два года спустя (в 1859 году) два профессора: Густав Роберт Кирхгоф (1824–1887) и Роберт Вильгельм Бунзен (1811–1899). В Гейдельберге, в старой университетской лаборатории, они поставили несложный опыт. До них через призму пропускали либо только луч Солнца, либо только свет от спиртовки. Кирхгоф и Бунзен пропустили и то и другое сразу и обнаружили явление, о котором стоит рассказать подробно.
Если на призму падал только луч Солнца, то на шкале спектроскопа они видели спектр Солнца с тёмной линией D на своём обычном месте. Тёмная линия по-прежнему оставалась на месте и в том случае, когда исследователи ставили на пути луча горящую спиртовку. Но когда на пути солнечного луча они ставили экран и освещали призму только светом спиртовки, то на месте тёмной линии D чётко проявлялась яркая жёлтая линия D натрия. Кирхгоф и Бунзен убирали экран – линия D вновь становилась тёмной.
Опыт
Потом они луч Солнца заменяли светом от раскалённого тела – результат был всегда тот же: на месте ярко-жёлтой линии возникала тёмная. То есть всегда пламя спиртовки поглощало те лучи, которые оно само испускало.
Чтобы понять, почему это событие взволновало двух профессоров, проследим за их рассуждениями.
Ярко-жёлтая линия D в спектре пламени спиртовки возникает в присутствии натрия.
В спектре Солнца на этом же месте находится тёмная линия неизвестной природы.
Спектр луча от любого раскалённого тела – сплошной, и в нём нет тёмных линий. Однако если пропустите такой луч через пламя спиртовки, то его спектр ничем не отличается от спектра Солнца – в нём также присутствует тёмная линия и на том же самом месте. Но природу этой тёмной линии мы уже почти знаем во всяком случае, мы можем догадываться, что она принадлежит натрию.
Следовательно, в зависимости от условий наблюдения линия D натрия может быть либо ярко-жёлтой, либо тёмной на жёлтом фоне. Но в обоих случаях присутствие этой линии (всё равно какой – жёлтой или тёмной!) означает, что в пламени спиртовки есть натрий.
А поскольку такая линия спектра пламени спиртовки в проходящем свете совпадает с тёмной линией D в спектре Солнца, то, значит, и на Солнце есть натрий. Причём он находится в газовом внешнем облаке, которое освещено изнутри раскалённым ядром Солнца.
Короткая заметка (всего две страницы), которую написал Кирхгоф в 1859 году, содержала сразу четыре открытия:
1) у каждого элемента есть свой линейчатый спектр, то есть строго определённый набор линий;
2) эти линии можно использовать для анализа состава веществ не только на Земле, но и на звёздах;
3) Солнце состоит из горячего ядра и сравнительно холодной атмосферы раскалённых газов;
4) на Солнце есть натрий.
Первые три открытия были вскоре подтверждены, в том числе и гипотеза о строении Солнца: экспедиция, которую Французская академия наук в 1868 году во главе с астрономом Жансеном послала в Индию, обнаружила, что при полном солнечном затмении – в тот момент, когда его раскалённое ядро закрыто тенью Луны и светит только корона, – все тёмные линии в спектре Солнца вспыхивают ярким светом.
Вторую гипотезу сами Киргхоф и Бунзен уже в следующем году не только подтвердили, но и воспользовались ею для открытия двух новых элементов: рубидия и цезия.
В дальнейшем из этого скромного наблюдения над жёлтой двойной D-линией натрия родился спектральный анализ, с помощью которого мы теперь можем узнавать химический состав далёких галактик, измерять температуру и скорость вращения звёзд и многое другое.
Наблюдение
Всё это действительно интересно, но сейчас нам важно понять главное: что дали открытия Кирхгофа и Бунзена для науки об атоме и какова их связь с нашими прежними знаниями о нём?
Мы знаем теперь два вида спектров: сплошной (или тепловой) и линейчатый.
Тепловой спектр содержит все длины волн, излучается он при нагревании твёрдых тел и не зависит от их природы.
Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паро́в (когда малы взаимодействия между атомами), и – что особенно важно – этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов.
То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все: но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году благодаря работам знаменитого английского астрофизика Нормана Локьера (1836–1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!