355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Леонид Пономарев » По ту сторону кванта » Текст книги (страница 7)
По ту сторону кванта
  • Текст добавлен: 7 октября 2016, 00:27

Текст книги "По ту сторону кванта"


Автор книги: Леонид Пономарев


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 7 (всего у книги 22 страниц)

ФОРМАЛЬНАЯ МОДЕЛЬ АТОМА

Популяризация (как и всякая наука) имеет свои границы. Как правило, они определяются тем, что с некоторого момента становится невозможным использовать понятия и образы повседневной жизни. Для того чтобы эту границу преодолеть, нужно перейти на язык формальных понятий науки (для начала хотя бы примитивный). При всех попытках уйти от этого шага неизбежно возникает неосознанное глухое недовольство, а самая суть науки остаётся скрытой. Наоборот, преодолев минимальные затруднения, вы можете почувствовать силу логических построений науки и оценить красоту их следствий. Как правило, возникающие технические затруднения ничуть не больше тех, с которыми сталкивается любой школьник при изучении химии: довольно быстро он убеждается, что проще (а главное – понятнее) написать формулу H2O, чем каждый раз говорить: «Молекула, которая состоит из двух атомов водорода и одного атома кислорода».

Молекулы

Нечто похожее на химические формулы принято и в теории спектров, где главное квантовое число n обозначают цифрами: 1, 2, 3…, а орбитальный момент l – буквами, причём ряду чисел 0, 1, 2, 3,… соответствует ряд букв s, p, d, f, …

Поэтому символ 3s, например, соответствует уровню энергии с квантовыми числами n = 3, l = 0, а символ 3p – уровню с n = 3, l = 1.

Натрий

В невозбуждённом атоме натрия излучающий электрон находится в состоянии 3s. А тёмная линия D возникает в том случае, если при возбуждении атома электрон переходит в состояние 3p. При обратном переходе 3p→3s он излучает энергию и возникает ярко-жёлтая линия D.

А что произойдёт, если излучающий натрий поместить в магнитное поле? Вначале, следуя Зоммерфельду, предполагали, что при этом верхний уровень 3p должен расщепиться на 3 компоненты 2l + 1 = 2∙1 + 1 = 3, а нижний останется без изменения. В итоге каждая из линий D1 и D2 должна расщепиться на 3 компоненты.

Опыт противоречит такому заключению. Из рисунка видно, что линия D1 расщепляется на 4 компоненты, а линия D2 – на 6. Это явление – частный случай так называемого аномального эффекта Зеемана. Чтобы понять его причину, необходимо немного возвратиться назад и уяснить себе вопрос, которого мы раньше сознательно избегали: почему даже в отсутствие магнитного поля D-линия натрия состоит из двух тесно расположенных компонент D1 и D2?

Мучительно размышляя над этим вопросом, ученик Зоммерфельда Вольфганг Паули (1900–1958) пришёл в 1924 году к открытию спи́на электрона (от английского слова spin – веретено). Он рассуждал примерно так: обе линии D1 и D2 соответствуют одному и тому же переходу с уровня n = 3, l = 1 на уровень n = 3, l = 0. Но их всё-таки две! Значит, существует не один, а два верхних уровня 3p и ещё какое-то дополнительное квантовое число, которое их различает: Свойство, которому соответствует это четвёртое квантовое число S, он назвал «неклассической двузначностью электрона» и предположил, что оно может принимать только два значения: +½ и −½. Паули считал, что наглядное представление этого свойства невозможно.

Открытие спина

Но уже в следующем году Джордж Уленбек (род. 1900) и Сэмюэл Гаудсмит (род. 1902) нашли наглядную модель для объяснения этого свойства электрона, допустив, что он вращается вокруг своей оси. Такая модель прямо следовала из аналогии между атомом и солнечной системой: ведь Земля вращается не только по эллипсу вокруг Солнца, но ещё и вокруг своей оси (эту аналогию отмечал и Комптон в 1921, а Крониг – в 1923 году, но Паули резко против неё восстал).

Свойство электрона

Уленбек и Гаудсмит предположили, что, кроме орбитального момента l, значения которого – целые числа и который возникает при движении по эллипсу, электрону присущ внутренний момент вращения, или спин S, равный по величине S = ½. Складываясь с орбитальным моментом l, этот внутренний момент S может его увеличить или уменьшить. В результате возникает полный момент j, равный либо j1= l − ½, либо j2= l + ½, в зависимости от взаимной ориентации векторов l и S. Если же l = 0, то полный момент и спин совпадают (j = S = ½).

Теперь всё встало на свои места: уровень 3s в атоме натрия останется без изменения, так как соответствует моменту l = 0, но уровень 3p расщепится на два: 3p½ и 3p3/2, энергии которых немного различны.

В магнитном поле каждый из уровней с полным моментом j (как и в случае момента l) расщепляется ещё на (2j + 1) компонент, которые различаются значением магнитного квантового числа m. Таким образом, каждый из уровней 3s½ и 3p½ расщепится ещё на два подуровня, а уровень 3p3/2 – на четыре. В результате возникает та схема уровней и переходов между ними, которая изображена на рисунке (стр. 94) и которая полностью объясняет структуру линий.

Из рисунка видно, как усложнялась первоначальная модель Бора, в которой существовал только один уровень с n = 3. Когда приняли во внимание теорию относительности, он расщепился на два – 3p (n = 3, l = 1) и 3s (n = 3, l = 0). С учётом спина электрона уровень 3p расщепляется ещё на два подуровня – 3p½ (n = 3, l = 1, j = ½) и 3p3/2 (n = 3, l = 1, j = 3/2). И наконец, в магнитном поле мы получим систему уровней, изображённую на нашем рисунке, которая приводит к картине спектральных линий, наблюдаемых на опыте.

Модель Бора

Гипотеза о спине электрона – одна из самых глубоких в физике. Вполне осмыслить её значение, не удалось до сих пор. И Паули был, конечно, прав, предостерегая от прямолинейных попыток представлять электрон как вращающийся волчок.

Влияние спина на физические процессы в атоме и на его строение проявляется иногда самым неожиданным образом. Одна из таких особенностей спина составляет содержание знаменитого принципа запрета Паули: в атоме не может быть двух электронов, квантовые числа которых n, l, m, S одинаковы. В дальнейшем мы видим, что только этот принцип позволил найти рациональное объяснение периодической системы элементов Дмитрия Ивановича Менделеева.

Даже по стилю изложения вы, наверное, сейчас заметили, насколько формальная модель атома беднее образами по сравнению с моделью Бора, насколько труднее рассказать о ней привычными словами и представить наглядно. И тем не менее вы, вероятно, ощутили её силу: на её основе можно объяснить и предсказать самые тонкие особенности спектров. Устрашающее количество спектральных линий удалось привести в порядок. Теперь, чтобы однозначно определить любую линию в спектре атома, достаточно было задать восемь квантовых чисел: четыре для исходного уровня излучающего электрона (ni, li, mi, Si) и четыре для конечного (nk, lk, mk, Sk).

К 1925 году эта героическая работа была закончена. Иероглифы были расшифрованы, что позволило нарисовать первую и пока грубую картину внутреннего строения атома.

Конечно, расшифровать спектр какого-либо элемента – задача даже сегодня не особенно лёгкая, и вполне квалифицированно сделать это могут только специалисты. В конце концов научиться читать даже расшифрованные иероглифы не так уж просто, и к тому же не обязательно уметь это делать всем. Но поскольку ключ к шифру известен, то научиться с ним работать может любой.

И теперь уж никого не угнетают длинные таблицы спектральных линий, как не пугают зоологов миллионы видов растений и животных: после трудов Линнея, Ламарка и Дарвина все они подчинены строгой систематике.

Со спектральными линиями произошло то же самое, что и с настоящими египетскими иероглифами: пока их не прочли, они были интересны только египтологам, остальные интересовались ими лишь абстрактно. Но когда иероглифы и спектры расшифровали, одним удалось прочесть историю целого народа, другим – узнать устройство атома. А это уже интересно всем.

Несмотря на успехи формальной модели атома, она уже не удовлетворяла тому критерию логической простоты, которая производит впечатление очевидности (и которая так выгодно отличала модель Бора). Постепенно она стала настолько сложной, что вызвала недоверие к себе и некоторое чувство усталости, очень похожее на то, какое владело физиками до схемы Бора. К тому же все попытки распространить модель Бора на более сложные атомы кончались неудачей. В состоянии некой растерянности физики стали подвергать сомнению всё: справедливость закона Кулона, применимость электродинамики и механики в атомных системах и даже закон сохранения энергии. Все примерно понимали, что кризис этот возник от столкновения эмпирических данных, принципов теории квантов и остатков классических представлений, отказаться от которых пока было нельзя, поскольку взамен их не было предложено ничего определённого.

При изучении квантовых явлений исследователи пользовались по-прежнему классическими понятиями. Но у атомных объектов не было свойств, которые бы этим понятиям соответствовали, и потому природе задавали, в сущности, незаконные вопросы. Или, точнее, вопросы на языке, которого она не понимала. Тогда начались поиски общего принципа, из которого бы логически следовали и формальная модель атома, и другие особенности атомных объектов. «Пусть вначале этот единый принцип будет непонятным, но пусть он будет один» – таково было общее желание.

В ответ на это стремление в том же 1925 году возникла квантовая механика – наука о движении электронов в атоме. Её создало новое поколение физиков. По игре случая все они родились почти одновременно: Вернер Гейзенберг – в 1901, Поль Адриен Морис Дирак – в 1902, Вольфганг Паули – в 1900 году. Лишь немного старше их были Луи де Бройль и Эрвин Шрёдингер. Им выпало счастье записать образы и понятия атомной механики на языке формул. Как им это удалось – мы узнаем немного позже.

НИЛЬС ХЕНРИК ДЭВИД БОР (1885–1962)

По рисункам можно проследить эволюцию понятия «атом» от Демокрита до Бора. Эго очень поучительная история, которая всегда вызывает не только чувство уважения к известным и безвестным учёным, но главным образом – чувство удивления, что такое познание вообще оказалось возможным, причём в такой совершенной и гармоничной форме.

Как и всякое истинно великое открытие, открытие Бора трудно сделать, но легко понять. Сила идей Бора в их недоказуемой простоте и доступности. В главной своей сути они понятны любому грамотному человеку. Бор дал образ, который позволял ориентироваться среди необычных понятий квантовой механики, образ, который стал символом нашего века. Если учесть к тому же, что при всей своей простоте образ этот верно отражает основные свойства атомов, то сразу станет ясна его исключительность.

Идеи Бора

Из ста физиков, взятых наугад, сегодня, пожалуй, только один или два читали знаменитые статьи Бора, напечатанные в 1913 году. Однако любой из них подробно объяснит идеи, которые в них изложены. А это означает, что сейчас идеи Бора уже не предмет науки, а необходимый элемент культуры – самое высшее, чего может достичь любая теория.

На склоне лет Нильс Бор приехал в нашу страну и посетил Грузию. В один из дней в долине Алазани он отдыхал с группой грузинских физиков. Неподалёку от них расположились крестьяне и по старинному обычаю во главе с тамадой пели песни и пили вино. Нильс Бор – человек не только великий, но и любознательный подошёл к ним и был принят с традиционным радушием. «Это знаменитый учёный Нильс Бор…» – начали объяснять физики. Но тамада жестом остановил их и, обращаясь к сотрапезникам, произнёс тост: «Друзья! К нам в гости приехал самый большой учёный мира профессор Нильс Бор. Он создал современную атомную физику. Его труды изучают школьники всех стран. Он приехал к нам из Дании, пожелаем же ему и его спутникам долгих лет жизни, счастья, крепкого здоровья. Пожелаем его стране мира и благополучия». Речь тамады тихо переводили Бору, и когда он кончил говорить, с земли поднялся старик, взял обеими руками руку Бора и бережно её поцеловал. Следом за ним поднялся другой горец, наполнил рог вином и, поклонившись Бору, осушил рог.

Нильс Бор всю жизнь провёл среди парадоксов квантовой механики, но даже его поразила реальность происходящего: он заплакал от удивления и благодарности.

ВОКРУГ КВАНТАОПЫТНОЕ ДОКАЗАТЕЛЬСТВО ПОСТУЛАТОВ БОРА

Опыт Франка и Герца, по существу, очень похож на опыт Кирхгофа и Бунзена, только атомы натрия в нём они заменили атомами ртути, а вместо луча направили на них пучок электронов, энергию которых они могли менять. При этом Франк и Герц наблюдали интересное явление: пока энергия электронов была произвольной – число электронов, прошедших через атомы ртути, было равно числу электронов исходного пучка. Когда же энергия их достигала определённой величины (в опытах она равнялась 4,9 электрон-вольта, или 7,84∙10−12 эрг), число электронов, прошедших ртуть, резко падало – они поглощались атомами ртути. Одновременно с этим в спектре паро́в ртути вспыхивала яркая фиолетовая линия с длиной волны λ = 2536 Å, то есть с частотой ν = 1,18∙1015 сек−1. Энергию кванта с такой частотой легко вычислить – она равна E = hν = 6,62∙10−27∙1,2∙1015 = 7,82∙10−12 эрг, то есть почти точно равна затраченной энергии электрона. Очевидно, это излучение возникает при обратном переходе атома ртути из возбуждённого состояния в основное.

Легко видеть, что наблюдаемая картина – прямое опытное доказательство обоих постулатов Бора: в атоме реально существуют стационарные состояния, и поэтому он не способен поглощать произвольные порции энергии. Переходы электрона между уровнями в атоме возможны только скачками, а частота излучаемых квантов определяется разностью энергии уровней и вычисляется по формуле Эйнштейна ΔE = hν. Конечно, «легко видеть» это только сейчас, а в 1913 году даже сами Франк и Герц объяснили свой опыт совсем по-другому.

Ртуть
«КВАНТОВАНИЕ» СОЛНЕЧНОЙ СИСТЕМЫ

Мы много раз сравнивали атом с солнечной системой, хотя и не придавали глубокого смысла этой аналогии. Тем более неожиданно, что солнечная система, как и атом, тоже подчиняется некоему «правилу квантования». Это правило не имеет ничего общего с квантовой механикой, но тем не менее любопытно, что расстояния планет от Солнца (как и радиусы орбит в атоме) меняются не беспорядочно, а подчиняются довольно строгому закону.

Факт этот был известен Иоганну Кеплеру, и ещё в молодости, много размышляя о «гармонии сфер», он пришёл к выводу, что в промежутках между сферами, построенными на орбитах планет, можно вписать пять правильных многогранников.

Профессор Даниэль Тициус в 1772 году выпустил в Бонне книгу «Созерцание природы», в которой привёл табличку расстояний от Солнца до планет в условных единицах (расстояние до ближайшей к Солнцу планеты Меркурий принято за 4).

Меркурий: 4 = 4;

Венера: 7 = 4 + 1∙3;

Земля: 10 = 4 + 2∙3;

Марс: 16 = 4 + 4∙3;

Юпитер: 52 = 4 + 16∙3;

Сатурн: 100 = 4 + 32∙3.

Позднее прибавился

Уран: 196 = 4 + 64∙3.

Впоследствии Боде уточнил закон Тициуса, приняв расстояние до Меркурия за 8 условных единиц и записав общую формулу для планетных расстояний в виде:

R = 8 + 3∙2n

где n = 0, 1, 2, 3, 4, 6, 7, 8

Замечательно, что в приведённой схеме нет планеты с номером n = 5, которая должна была бы помещаться между Марсом и Юпитером. Но как раз в этом месте расположен пояс астероидов – малых планет. По мнению астрономов, это осколки некогда существовавшей большой планеты Фаэтон.

Закон Тициуса и Боде ещё до конца не понят, хотя существует несколько его доказательств (одно из них принадлежит советскому учёному Отто Юльевичу Шмидту). По-видимому, полное объяснение закону будет найдено вместе с разгадкой происхождения нашей солнечной системы.

ГЛАВА ПЯТАЯ
Учения древних – Первые попытки – Элементы и атомы – Таблица элементов – Объяснение таблицы

Представьте, что вы решили изучить жизнь клетки. Вы ставите над нею всевозможные опыты: нагреваете, облучаете, разрушаете и тщательно рассматриваете в микроскоп. Однако все ваши знания о ней будут неполны, пока вы не вспомните, что клетка – это часть живого организма и только в нём проявляет всю полноту своих свойств.


Глава пятая

Нечто похожее произошло и в науке об атоме. До сих пор мы намеренно пытались изолировать атом и отбирали только те опыты, которые могут прояснить свойства отдельного атома. Однако задолго до всех этих опытов, которые доказали сложную структуру атома, Дмитрий Иванович Менделеев (1834–1907) установил, что атомы различных элементов образуют единый организм – естественную систему элементов.

Через год после создания периодической системы элементов он писал:

«Легко предположить, но ныне пока ещё нет возможности доказать, что атомы простых тел суть сложные вещества, образованные сложением некоторых ещё меньших частей (ультиматов), что называемое нами неделимым (атом) – неделимо только обычными химическими силами… однако, несмотря на шаткость и произвольность такого предположения, к нему невольно склоняется ум при знакомстве с химией. Оттого такое учение повторяется в разных формах уже давно, и выставленная мной периодическая зависимость между свойствами и весом, по-видимому, подтверждает такое предчувствие, если можно так выразиться, столь свойственное химикам».

Надо сказать, что химиков никогда не могла удовлетворить мысль о независимом множестве качественно различных элементов. Поэтому они всегда стремились свести их качественное многообразие к простой и ясной идее; атомы различных элементов представляют собой различные скопления частиц одного и того же рода.

Такие попытки начались уже в древности и в дальнейшем развивались по двум различным путям.

Демокрит верил, что все вещества в природе построены из атомов, а свойства веществ зависят от различных сочетаний атомов.

Аристотель утверждал, что всё сущее состоит из элементов, которые сами являются носителями определённых качеств.

Отголосок этого давнего спора дошёл даже до наших дней: при слове «атом» у нас невольно возникает зрительный образ чего-то твёрдого и массивного; при словах «химический элемент» мы пытаемся представить себе некое чистое качество, безотносительно к его носителю. Быть может, поэтому учение о химических элементах вначале развивалось совершенно независимо от идеи об атомах. Впоследствии оба учения так переплелись, что их перестали различать, но, как мы только что убедились, до сих пор не удалось преодолеть психологический барьер между ними.

Пути науки неисповедимы, а истоки многочисленны. До сих пор мы подробно проследили «физические истоки» науки об атоме. Теперь пришло время отыскать её «химические истоки».

УЧЕНИЯ ДРЕВНИХ

Философы ионической школы, знаменитым представителем которой был Фалес Милетский (640–546 г. до н. э.), признавали только один элемент – воду, «на которой покоится Земля и которая дала начало всему что есть». Впоследствии Эмпедокл (490–430 г. до н. э.) добавил к воде ещё три элемента: землю, огонь и воздух. Наконец, Аристотель (384–322 г. до н. э.) к этим четырём элементам присоединил пятую сущность – quinta essentia, воспоминание о которой сохранилось до сих пор в слове «квинтэссенция».

Нечто похожее было создано и в индийской философии. Но в отличие от греков – материалистов, которые под элементами понимали вещества, воздействующие на наши органы чувств, в Индии элементы представляли себе как некие проявления всемогущего духовного начала. Этих проявлений-элементов в индийской философии было пять – по числу чувств, способных их воспринять: эфир – слух, ветер – осязание, огонь – зрение, вода – вкус и земля – обоняние. Философ Канада́, о котором мы упоминали в самом начале, добавил к ним ещё четыре элемента: время, пространство, душу (атман) и манас (средство, с помощью которого душе передаются впечатления от чувств). Кроме того, он утверждал, что четыре элемента: земля, вода, огонь и воздух – состоят из атомов.

Учения древних

В средние века учение об элементах возродили алхимики, среди которых обычно отмечают египтянина Зосима, араба Гебера (Абу-Муза-Джабер-бен-Гайян-эк-Куфи) (X век) и Альберта Великого (XII век).

Под элементами алхимики (вслед за Аристотелем) понимали не вещества, а качества, или «принципы». Ртуть служила «принципом» металлического блеска, сера – горючести, соль – растворимости. Они были убеждены, что, смешав эти «принципы» в надлежащих пропорциях, можно получить любое вещество в природе.

Как правило, со словом «алхимия» связывают сказки о превращении ртути в золото, о получении эликсира жизни и прочие чудеса. Если порыться в архивах, то там можно найти, например, сочинение Гебера, в котором он всерьёз обсуждает вопрос: «Почему, как всем известно, облако не даёт дождя, когда женщина выходит из дома голой и обращается лицом к этому облаку?»

Но, кроме этих заведомых глупостей, алхимики изобрели спирт и уже одним этим оправдали своё существование. Основная же их заслуга состоит в том, что стихийное экспериментирование, которому предавались алхимики, привело постепенно к накоплению фактов, без которых наука химия никогда бы не возникла.


    Ваша оценка произведения:

Популярные книги за неделю