Текст книги "Дарвинизм в XX веке"
Автор книги: Борис Медников
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 19 страниц)
Отрицание деления организма на генотип и фенотип неизбежно приводит к ламаркизму, так как при этом не проводится граница между наследственными изменениями генотипа и ненаследственными – фенотипа.
Подчеркнем, что генотип богаче фенотипа. Наследственные задатки организма в данных условиях среды каждый раз реализуются не полностью (хотя бы потому, что рецессивные аллели подавляются доминантными). К этому положению мы будем неоднократно возвращаться. Пока же отметим, что наличие в генотипе организма какого-нибудь гена отнюдь не свидетельствует, что определяемый им признак непременно возникнет в фенотипе.
Советский генетик Н. В. Тимофеев-Ресовский предложил оценивать фенотипическое проявление гена двумя параметрами. Их называют пенетрантностью и экспрессивностью. Пенетрантность – это процент особей – носителей данного гена, у которых он проявился в фенотипе, а экспрессивность – степень выражения этого признака. Например, у дрозофилы описан ген vestigial, изменяющий форму и размер крыльев. Действие его сильно зависит от температуры. Мушки с одинаковым генным набором, но выросшие при 24° и при 30°, имеют совершенно разные крылья. И экспрессивность и пенетрантность поддерживаются естественным отбором и отражают реакции сходных генотипов на среду.
Одна из разновидностей китайской примулы, если ее выращивать в оранжерее при температуре 30°, имеет белые цветы, а выращенная при 20°, она зацветет красными цветами. Есть такая порода кроликов – гималайские. При 30° шерсть у них совершенно белая. Если же они растут при 25°, на наиболее охлаждающихся частях тела – ушах, лапах, кончике носа – вырастает черная шерсть. Такая же шерсть отрастает на любом участке кожи, если прежнюю сбрить и на бритое место прикладывать, например, пузырь со льдом.
Два поросенка из одного помета, выращенные в разных условиях. Различия между ними свидетельствуют о том, что задатки, заложенные в генотипе, могут проявиться лишь в конкретных условиях.
У новозеландских овец известен рецессивный ген, вызывающий у гомозигот (то есть особей, унаследовавших его от отца и от матери) болезнь печени. Печень при этом наследственном заболевании не может перерабатывать продукты распада хлорофилла, в результате они, накапливаясь в коже, повышают ее чувствительность к солнечным лучам. Итог печальный – ягненок слепнет, а затем гибнет от экземы и воспаления кожи. Однако при желании такого ягненка можно спасти – нужно только не держать его на солнце или же не кормить зеленой травой. Ген тогда никак не проявится, и обнаружить его будет невозможно. Среда как бы включает один ген, подавляя другой. Все явления подобного рода именуются наследственной нормой реакции (то есть реакции гена на среду). Это понятие весьма важно в практическом отношении. Какими бы отличными генами ни обладал, например, поросенок, при плохом кормлении из него хорошей свиньи не получишь. Самый прославленный сорт пшеницы не дает высокого урожая без удобрений. Но зато в благоприятных условиях лучшие задатки генотипа развернутся в фенотипе полностью. А низкопродуктивные сорта и породы, какие бы райские условия им ни создавали, ничего хорошего не принесут.
Это, казалось бы, банальные истины. Увы, многие еще полагают, что дело не в наследственности, а в заботливом содержании. Такое смешение генотипа с фенотипом столь же наивно, как и вера в то, что, если дворняжку кормить до отвала мясом, она вырастет до размеров дога. При развитии организма среда действует лишь как проявитель – при любых концентрациях метола и гидрохинона незасвеченный негатив останется прозрачным.
Генетики после Иоганнсена хорошо усвоили разницу между геном и признаком. Не лишне отметить, что еще Мендель не ставил знака равенства между признаком и фактором, его определяющим. Забвение этой истины, периодически наступающее у некоторых исследователей, неизбежно приводило к возрождению ламаркизма в самых худших, вульгарных вариантах.
Поэтому надо различать генетику – науку о наследственности и феногенетику – науку о способах и путях, которыми наследственность реализуется в признаках организма. Один из животрепещущих вопросов феногенетики мы рассмотрим в следующем разделе.
Как слуга становится господином
Эта проблема весьма важна для эволюционной теории, но до конца еще не разработана. Почему, в силу каких особенностей одни гены доминантны, а другие рецессивны?
Пока ясно одно: доминантность – не абсолютное, а относительное свойство аллеля. Напомним, что само понятие «доминантный» («доминус» – господин) говорит о том, что доминантным ген может быть лишь по отношению к другому гену. В свою очередь для третьего гена он может сам оказаться рецессивным. Степень доминантности может быть различной, иногда доминантность бывает неполная – в проявлении признака участвуют порой оба гена (тогда их называют кодоминантными). Например, хорошо известное садовое растение ночная красавица имеет две формы – красноцветковую и белоцветковую. Цветы гибридов розовые, но во втором поколении вновь происходит расщепление на белую и красную форму. Один и тот же признак может наследоваться как доминантно, так и рецессивно. Так складка во внутреннем углу глаза (эпикантус) у монгольской расы – признак доминантный, а у южноафриканских бушменов и готтентотов – рецессивный. Быть может, это свидетельствует о том, что эпикантус в том и в другом случае возник независимо. Но возможно и другое объяснение – эволюция доминантности в том и другом случае происходила по-разному.
Что же такое эволюция доминантности?
Вернемся более чем на 80 лет назад, когда И. В. Мичурин скрестил владимирскую вишню (дающую розовые плоды) с белоплодной черешней сорта Винклер белая. Гибридный сеянец дал белые плоды «с едва заметным розовым оттенком на световом бочку», – иными словами, белоплодность доминировала. Трудно сказать, как пошло бы дело дальше, оставайся гибрид на собственных корнях. Ведь и мы в детстве часто бываем светловолосыми, а потом нередко значительно темнеем. Маточное дерево гибрида, названного Красой Севера, замерзло в суровую зиму, но почки от него были привиты на обычную красную вишню. Результатом было появление розовоплодных гибридов. Заметьте, что это было все еще первое поколение гибридов, но в результате прививки розово– и белоплодность обменялись доминантностью. Так возник мичуринский метод ментора (Ментор – наставник сына Одиссея), основа которого заключалась в управлении доминантностью.
Обычно в таких случаях гибриды первого поколения прививались на растение-ментор. Подбор ментора – в высшей степени сложное дело, во многом зависящее от интуиции; если ментор оказывался удачным, пластические вещества подвоя, поступающие в привой, подавляли в последнем проявление нежелательных доминантных генов, и в фенотипе проявлялись рецессивные. После того как все качества привоя проявлялись и сорт оказывался пригодным, он размножался вегетативно.
Подчеркнем, что метод ментора ничего общего не имеет с так называемой «вегетативной гибридизацией» – здесь нет передачи признаков подвоя на привой, а лишь управление доминантностью генов привоя.
Ментор – не единственный и отнюдь не главный способ, при помощи которого Мичурин управлял доминантностью гибридов первого поколения. Главными способами были внешние условия – температура и влажность, свет и почва. Мичурин понимал, что возникновение доминантности – сложный и длительный исторический процесс, в котором первостепенную роль играет искусственный и естественный отбор, – недаром он указывал, что в гибридах доминируют прежде всего признаки диких видов («дичков»), затем старых, устоявшихся культурных сортов и, наконец, – молодых.
Уже в 30-х годах нашего века эволюция доминантности была переоткрыта английским генетиком Р. Фишером и другими учеными на иных объектах. Было выдвинуто сразу несколько гипотез, объяснявших механизм этого явления. Не вдаваясь в подробности, скажем лишь, что ни одна из них, взятая в отдельности, не объясняет эволюцию доминантности до конца. Вероятнее всего, в природе существует несколько механизмов, управляющих проявлением гена в признаке. Отбор, как и полагал Мичурин, играет в этом важную роль, что показали опыты английского генетика Э. Форда на бабочке – смородинной пяденице. Эта бабочка в норме имеет крылья с пятнами на белом фоне. Известна, однако, мутация с желтым фоном крыльев. У гетерозигот (гибридных форм с обеими аллелями в геноме) цвет фона крыльев промежуточный. Форд разделил экспериментальную популяцию на две части: в одной отбирались гетерозиготы наиболее светлые, а в другой – наиболее желтые. Через несколько поколений в первой части ген «желтого фона» стал полностью рецессивным, а во второй – полностью доминантным.
Значение подобных опытов станет ясным, если мы вспомним, что возникающие заново аллели обычно бывают рецессивными (признаки «дичков» доминируют над культурными). Жесткий отбор на выживание рецессивов должен привести – и приводит – к тому, что они становятся доминантными.
Начинает постепенно проясняться вопрос о том, что за вещества «включают» или «выключают» тот или иной аллель. А. Кюн и его сотрудники работали с гусеницами мелкой бабочки – амбарной огневки, а Г. Бидл и Б. Эфрусси – с личинками дрозофилы. Они осуществляли прививки на животном материале, пересаживая из одной гусеницы в другую скопления клеток – имагинальные диски, из которых развиваются части тела взрослого насекомого. Удалось выделить вещество, названное геногормоном, которое вызывало четкие изменения окраски глаз. Впоследствии геногормоны – производные каротиноидов – были получены для многих насекомых. Действие их сравнительно малоспецифично: и у мухи-дроэофилы и у бабочки-огневки, например, цвет глаз управляется одним геногормоном. Когда мы узнаем во всех тонкостях, какие вещества управляют доминантностью генов, мы сможем подавлять действие нежелательных генов у гибридов с небывалой до сего точностью и в буквальном смысле слова лепить новые растительные и животные формы…
Итак, классическая генетика, развивавшаяся бурными темпами с начала XX столетия, заложила прочный фундамент изучения одного из трех «китов» эволюции по Дарвину – наследственности. Параллельно шло интенсивное исследование антитезы наследственности – изменчивости.
Ген изменяется
Изменение не наследственное для нас не существенно.
Ч. Дарвин
Вначале был термин
С первых лет нашего века, в пору возникновения классической генетики, исследователей интересовали вопросы: насколько стабильны гены? Какими факторами можно их изменять и можно ли это делать направленно? Иными словами, речь шла о разгадке тайны изменчивости – второго фактора эволюции из указанных Дарвином.
Остановимся на крайней точке зрения, впервые высказанной еще А. Вейсманом и вслед за ним Дж. Лотси. Согласно этой концепции, изменчивость определяется в основном генетическими рекомбинациями – перетасовками весьма стабильных, практически неизменяемых наследственных задатков.
Сторонников этой концепции у нас порой огулом зачисляли в идеалисты и реакционеры, причем обвинения были скорее эмоциональными, чем убедительными; никто из них не считал ген сверхстабильным образованием, наподобие кусочка платины (ведь тогда уже было известно о распаде самих атомов!). Дело в другом: первые генетики часто полагали, что условия, при которых ген изменяется, настолько жесткие, что не могут быть совместимы с жизнью. Поэтому эволюция использует старые гены в новых комбинациях, а астрономические цифры возможных комбинаций позволяют надеяться, что в ближайшие миллиард миллиардов лет процесс эволюции не кончится.
Парадоксально, но сторонники стабильности гена были не так уж неправы, хотя ген оказался изменяющимся.
Да, Вейсман прав: эволюция гораздо чаще использует старые гены, чем создает новые. Исключение составляют лишь микроорганизмы с гаплоидным, то есть одинарным, набором генов. И все-таки новые аллели возникают непрерывно. Стабильность гена отнюдь не абсолютна.
В этом можно убедиться, наблюдая возникновение форм с наследственно измененными признаками. Такие изменения издавна называли мутациями.
Сейчас уже трудно установить, кто был автором этого термина, возникшего в XVII–XVIII веках. То ли гейдельбергский аптекарь Шпренгер, описавший появление странного растения чистотела с разрезными листьями, то ли французский садовод Дюшен, нашедший землянику с простыми, а не тройчатыми листьями, то ли ботаник М. Адансон, описавший ряд изменений у льнянки, ячменя, пролески. Впрочем, латынь тогда была у ученых в большой чести (ботаники и по сие время дают описания – диагнозы новых видов на языке Вергилия и Цицерона). А мутация (mutation) по-латыни и будет просто – изменение, так что первые ученые, употреблявшие это слово, по-видимому, и не собирались придумывать новый термин, а лишь констатировали факт появления новых признаков. Воскресил слово «мутация» и наполнил его новым содержанием голландский ученый Гуго Де Фриз, один из переоткрывателей менделизма.
Началось с того, что Де Фриз задался целью проверить Дарвина – воспроизвести процесс видообразования в эксперименте. Сначала он высевал семена, собранные с растений больных, уродливых, выросших в неблагоприятных условиях существования, но не добился успеха. Лишь в 1886 году он открыл объект, позволивший сделать важные выводы.
Есть такое растение – ламаркова энотера, или ослинник. Это близкий родственник всем известного иван-чая из семейства кипрейных, завезенный из Америки сорняк (хотя окультуренную крупноцветную форму его иногда разводят в палисадниках). Я не видел энотеры до недавнего времени, но встретив ее в одичавшем парке под Киевом, мгновенно узнал по многочисленным изображениям. Еще бы – трудно найти растение, из-за которого в научных спорах было бы сломано больше копий! Ведь из-за него пытались опровергать дарвинизм.
Энотера (она же ночная свечка и ослинник) – самое знаменитое растение в генетике.
Проходя мимо заросшего энотерой картофельного поля близ деревни Гилверсум, Де Фриз заметил, что в массу обычных растений вкраплены резко отличающиеся от них экземпляры. Собрав семена, он посеял их в опытном саду и делал это на протяжении семнадцати лет, исследовав более пятнадцати тысяч растений! Вначале были обнаружены три резко отличающиеся формы; потом Де Фриз стал описывать их десятками. Многие из них были весьма стабильными. Мутация изменяла не один признак, а все растение и стойко наследовалась без расщепления: комплекс признаков переходил по наследству как единое целое.
К каким же выводам пришел Де Фриз? Прежде всего, он заключил, что Дарвин неправ. Видообразование – не постепенный процесс приспособления к условиям внешней среды, а скачкообразное порождение одним видом другого. Иными словами, в процессе эволюции скачком изменяются не гены, а сами виды. Новый вид является из недр другого, как Афина-Паллада из головы Зевса, вооруженный против всех превратностей внешней среды. Роль естественного отбора при этом сводится к уничтожению неудачных мутантов.
Де Фриз не знал, что до него сходные идеи развивал талантливый русский ботаник и убежденный антидарвинист С. И. Коржинский. Собрав много фактов спонтанной (внезапной, скачкообразной) изменчивости, Коржинский построил теорию гетерогенезиса (рождения разнообразия), во всех деталях аналогичную мутационной теории Де Фриза. Разумеется, оба – и Де Фриз и Коржинский – были неправы. Нет таких мутаций, которые бы сразу порождали вид, а отрицание роли отбора в возникновении целесообразности сразу отбрасывает нас к Ламарку и Фоме Аквинскому. И все же основные положения Де Фриза оказались совершенно правильными:
1. Мутации возникают скачкообразно, без переходов.
2. Раз возникшая мутация устойчива, в отличие от фенотипических изменений.
3. Мутации возникают ненаправленно; одна и та же мутация может возникать повторно.
Эти выводы Де Фриза положили начало исследованиям изменчивости генотипов; ошибки же были исправлены временем. Сам термин «мутация» оказался чересчур широким, описывающим целую группу явлений. Теперь генетики различают в наследственной изменчивости следующие категории:
1. Геномные мутации, когда изменяется число хромосом в наборе.
2. Хромосомные перестройки, в процессе которых или изменяется последовательность генов внутри одной хромосомы, или негомологичные хромосомы обмениваются частями. В ту же категорию относят случаи, когда кусок хромосомы удваивается или, наоборот, теряется.
3. Точковые, или генные, мутации, изменяющие структуру отдельных генов и невидимые в микроскоп.
О каждой из этих категорий и роли их в эволюции следует поговорить подробнее.
Число хромосом – паспорт вида
Итак, в настоящее время мутациями называют изменения свойств и признаков организма, вызванные изменением структуры генома – совокупности хромосом клетки. Эти изменения иногда можно наблюдать в клетке в оптический микроскоп. В первую очередь наблюдаются так называемые геномные мутации, при которых умножается набор хромосом, свойственный виду. Такое явление называют автополиплоидией.
Число хромосом, на которые разделяется генный материал ядра при делении клеток, весьма варьирует у разных видов – от 2 хромосом у лошадиной аскариды до 1260 у тропического папоротника ужовника из Индии. Есть данные, что у одноклеточных организмов – радиолярий число хромосом достигает 1600. Дальнейшее умножение генного материала приводит к потере митоза и возникновению амитоза – простого деления ядра без скрупулезно точного механизма расхождения хромосом.
Наиболее широко полиплоидия представлена у растений. Она встречается у низших растений – водорослей, у грибов. Хорошо изучен процесс полиплоидизации у высших, цветковых растений. Многие роды и виды растений представляют полиплоидные ряды с числом хромосом n[7]7
Буквой n обозначают число хромосом в половой клетке (гаплоидный набор).
[Закрыть], 2n, 3n, 4n – до 308n у некоторых форм шелковицы и 265n – у мятлика.
С полиплоидными рядами связан один парадокс эволюции. Так, если гаплоидное число хромосом у растения n, а диплоидное, соответственно, 2n, то тетраплоидная форма (4n), возникнув в течение одного поколения, сразу поведет себя как новый вид, генетически изолированный от материнской формы. Это вполне понятно: при скрещивании образуется стерильный триплоид, так как одна гамета имеет хромосомный набор n, вторая 2n, а оплодотворенная яйцеклетка 3n. Три, как известно, на два не делится. Поэтому процесс редукционного деления ядра у триплоидов (мейоз, см. стр. 19) приведет к неравномерному расхождению генного материала по гаметам и бесплодию. Многие специалисты так и полагают, что в данном случае скачком возникает новый вид. Вряд ли это правильно – генетическая информация у полиплоидных форм та же, изменяется только ее количество. Генетическая изоляция, неспособность скрещиваться, – мы будем это неоднократно подчеркивать – необходимый, но еще недостаточный критерий вида.
Однако фенотип полиплоидов нередко изменяется. Полиплоиды – часто крупные, а то и гигантские формы с увеличенными ядрами и клетками. Жизнеспособность и продуктивность их может быть гораздо выше, чем у обычных диплоидов, что нередко используется в селекции культурных растений. Известны высокопродуктивные полиплоиды картофеля и хлопчатника, льна и гречихи, пшеницы и овса, земляники и сахарного тростника – список этот можно многократно увеличить. Главный поставщик натурального каучука – гевея у себя на родине, в Бразилии, имела 36 хромосом (здесь и далее без оговорок приводятся числа для диплоидных наборов – 2n). В юго-восточной Азии культивируются 72-хромосомные формы гевеи.
Даже не образующие семян триплоиды высоко ценятся в хозяйстве – упомянем только гигантскую триплоидную осину, культурный бессемянный банан и ряд других форм, размножающихся вегетативно.
Было бы, однако, ошибкой утверждать, что полиплоидия всегда связана с увеличением мощности растения. По-видимому, есть некий оптимальный уровень полиплоидности, разный у разных видов, за которым начинается как бы разлад взаимоотношений ядра и цитоплазмы и, как следствие этого, – карликовость, снижение жизнеспособности и продуктивности.
В эволюции растений полиплоидия проявляется двояко – как тормоз и как стимулятор прогресса. Многие древние растения (такие как древовидные папоротники, магнолия, гигантская секвойя или необычайный ботанический монстр из пустыни Калахари – вельвичия удивительная) – полиплоиды. В данном случае избыточность генетической информации в полиплоидном наборе тормозит эволюцию. В других случаях полиплоиды более изменчивы, легче приспосабливаются к новым условиям, нередко заселяют места на границе ареала с крайними условиями существования. Больше всего полиплоидов в Арктике, в высокогорных районах и пустынях (на Шпицбергене, например, 80 % видов – полиплоиды).
Не менее широко распространена у растений аллополиплоидия – удвоение генного материала у межвидовых или межродовых гибридов. Обычно такие гибриды бесплодны, так как хромосомы одного вида не находят себе парных хромосом-гомологов при мейозе. Иное дело, если хромосомный набор гибрида удваивается (возникает амфидиплоид). Здесь нельзя не вспомнить пионерские работы замечательного советского генетика Г. Д. Карпеченко, получившего впервые межродовой гибрид капусты и редьки. Такие гибриды обычно не давали потомства, потому что образовывали гаметы с нарушенным числом хромосом. Полученный Карпеченко гибридный тетраплоид был вполне плодовитым и не скрещивался ни с кем из родителей – ни с редькой, ни с капустой. Формально он заслуживал выделения в новый род – редькокапуста – рафанобрассика.
По проложенному Карпеченко пути устремилось немало исследователей. При этом не только создавались новые виды (вернее, гибриды, могущие стать новыми видами после «пришлифовки» отбором к условиям внешней среды), но и ресинтезировались старые. Из скрещивания алычи с терном удалось, например, заново сконструировать сливу. Таким же путем был ресинтезирован табак и рапс, пикульник и разные виды пшениц.
Возникают ли в настоящее время подобные гибридные формы в природе?
Такие случаи были описаны. На юге Якутии, по опушкам хвойных лесов на протяжении более 300 км обнаружена популяция оригинального кустарника – рябинокизильника, возникшего в результате естественного скрещивания сибирской рябины с кизильником. Это уже, пожалуй, настоящий гибридный вид, захвативший немалую территорию и успешно отвоевывающий себе место под солнцем. Сходным путем в США возник гибридный вид из двух видов диких подсолнечников.
А встречается ли авто– и аллоплоидия в царстве животных, и если да, то какое значение она имеет для их эволюции? На этот вопрос ответить нелегко.
Возникновение полиплоидов у раздельнополых животных (как и двудомных растений) затрудняется существованием хромосомного механизма определения пола.
Вспомним, что, например, у человека 46 хромосом. Из них 22 пары (их называют аутосомами) одинаковы у обоих полов. Но, помимо 44 аутосом, женщины имеют 2 одинаковые х-хромосомы, а мужчины – 1х и 1у хромосому. В половых клетках число хромосом уменьшается вдвое. Нетрудно сообразить, что яйцеклетки всегда будут иметь, помимо 22 аутосом, одну х-хромосому, а спермии – или х– или (y-хромосому. Спермий, несущий х-хромосому, сливаясь с яйцеклеткой, всегда дает зиготу женского пола (восстанавливается набор хх). Спермий с у-хромосомой, напротив, обусловит мужской пол (набор ху). Представим теперь полиплоид с набором ххуу. Такой набор приводит к возникновению гамет: 25 % хх, 50 % ху и 25 % уу. Зиготы же будут иметь набор 25 % хххх, 50 % ххху и 25 % ххуу. Половина потомства, таким образом, окажется аномальной в половом отношении, почти наверняка бесплодной. Возникновение таких организмов приведет к снижению плодовитости полиплоида и вытеснению его с жизненной арены.
Этого мало: ведь даже для того, чтобы описанный процесс произошел, нужно, чтобы оба родителя оказались одинаковыми полиплоидами. Вероятность такого события – величина чудовищно маленькая. Скрещивание же, например, тетраплоида с обычной, диплоидной, особью другого пола приводит к образованию триплоидов, генетически стерильных. Полиплоид, как и вообще любой организм с достаточно существенной хромосомной перестройкой, оказывается в положении библейского Каина. Если верить библии, у первых людей на Земле – Адама и Евы, было два сына – Каин и Авель. Каин убил Авеля, чем поставил под угрозу дальнейшее существование рода человеческого, но взял себе в жены «женщину из страны Нод», предки которой остались неизвестными, и род человеческий продолжился. Парадокс Каина неизбежно встает на пути всех теоретиков, которые, не удовлетворяясь дарвиновской теорией, ищут материал для эволюции в крупных, революционных перестройках генома. На ком женился Каин? Где найдет пару полиплоид?
Разумеется, хромосомный механизм определения пола может существенно отличаться в деталях от описанного нами. Половая хромосома может быть лишь одна (тогда самки имеют набор хх, а самцы хо); у птиц и ряда насекомых одинаковые половые хромосомы присущи самцам, а не самкам; наконец, половые хромосомы могут быть не самостоятельными, а прикрепляться к аутосомам. Однако во всех этих случаях объяснение редкости полиплоидии у животных, данное выдающимся американским генетиком Германом Меллером, остается в силе.
Наиболее убедительное его доказательство – это то, что у гермафродитных животных (например, дождевых червей) и у тех видов и рас двуполых животных, которые размножаются партеногенетически, без оплодотворения яйцеклетки, существуют полиплоидные ряды (n, 2n, Зn и т. д.), во всем аналогичные полиплоидным рядам растений.
Небольшой рачок артемия, обитающий в водах соленых озер, часто теряет способность к двуполому размножению, и у него отмечены партеногенетические полиплоидные расы. Такие же расы обнаружены у многих насекомых – жуков-долгоносиков, бабочек, прямокрылых, тлей.
Еще более интересны случаи так называемого гиногенеза – оригинальной модификации партеногенеза. Уже давно было подмечено, что в популяциях серебряного карася во многих наших прудах самцы встречаются крайне редко, а то и совсем отсутствуют. Оказалось, что икра карасей из таких однополых популяций развивается партеногенетически, без оплодотворения, но развитие икринки должно быть активировано спермием самца другого вида (вьюна, карпа). Спермий, дав толчок развитию, рассасывается в цитоплазме икринки. В потомстве, естественно, возникают одни самки. Однополая форма карася оказалась триплоидной, с тремя наборами хромосом (у двуполой формы 2n = 94, у однополой 141).
Караси-амазонки, исследованные советскими генетиками К. А. Головинской, Д. Д. Ромашовым и Н. Б. Черфас, не представляют собой исключения. Такой механизм известен у живородящей рыбки молинезии из мелких водоемов Центральной Америки. Гиногенетичными оказались многие насекомые, некоторые черви и амфибии. Часть описанных случаев отличается поразительной сложностью.
Один из видов американской саламандры – амбистома латерале (близкий вид – тигровая хорошо известен любителям живой природы под названием аксолотля) в одних и тех же водоемах может быть представлен диплоидной и триплоидной расой. Триплоидные амазонки, более крупные и сильные, чем обычная диплоидная форма, могли бы ее вытеснить и вымереть вслед за ней сами, так как их икринки стимулируются к развитию диплоидными самцами. Однако баланс между формами поддерживается тем, что у триплоидов плодовитость значительно меньше, да и развитие икринки затягивается на более длительный срок.
В последнее время снова возник спор о роли полиплоидизации в эволюции животных, особенно тех, у которых пол не однозначно определяется хромосомным набором, а зависит от соотношения в организме женских и мужских половых гормонов. Особенно стремятся доказать ее широкую распространенность в природе сторонники так называемого «мгновенного видообразования», когда в течение одного поколения возникает новый вид, не смешивающийся с материнской формой. Но на пути подобных построений неизбежно встает парадокс Каина. Растения обходят его, так как способны к самоопылению и вегетативному размножению. Но как быть с животными?
И все же есть факты, свидетельствующие о возможном удвоении генома у двуполых животных. Рыжий таракан-пруссак имеет 24 хромосомы, а крупный черный – 48. У карпа 104 хромосомы, а у большинства других карповых – 52. Лососевые рыбы, как это установлено достаточно твердо, – тетраплоиды. Однако многие подобные случаи оказались проявлением так называемой ложной полиплоидии, обусловленной расщеплением и слиянием хромосом и рядом других факторов. В опыте полиплоидия животных возможна. Непрямым путем – через партеногенез и межвидовую гибридизацию Б. Л. Астаурову и его сотрудникам удалось сконструировать аллотетраплоид – гибрид домашнего и дикого тутового шелкопряда. Я умышленно говорю – сконструировать, потому что, когда читаешь описание этого замечательного опыта, именно это слово приходит на ум. Аллотетраплоид Астаурова, как и рафанобрассика Карпеченко – форма, генетически изолированная от обоих родительских видов. Для того чтобы ее получить, потребовалось:
1) научиться получать партеногенетическое потомство с диплоидным набором хромосом (здесь индуктором развития яйцеклетки выступает не сперма другого вида, а нагрев до 48 °C в течение 18 минут);
2) получить тетраплоидных самок, размножающихся партеногенетически (число хромосом 4n = 112);
3) скрещиванием тетраплоидных самок с обычными диплоидными самцами получить триплоидные формы шелкопряда;
4) из триплоидных форм получить гексаплоидные, с шестью хромосомными наборами;
5) гексаплоидных самок домашнего шелкопряда скрестить с диплоидными самцами дикого. Потомство будет иметь соответственно – три набора хромосом от домашнего и один – от дикого шелкопряда, то есть будет аллотетраплоидным;
6) путем отбора из поколения в поколение повысить плодовитость гибридов.
Значение подобных опытов трудно переоценить, ибо они закладывают фундамент новой отрасли селекции и генетики – получению плодовитых гибридов между разными видами животных. Однако вряд ли виды часто возникали в природе подобным путем, так как арсенал средств природы несравненно беднее, чем у современного экспериментатора. У природы другой козырь – время, в течение которого самые радикальные перестройки генома могут стать в принципе не невозможными…
Теперь остановимся коротко на менее решительных перестройках генома – частичном удвоении числа хромосом, соединении двух хромосом в одну или, наоборот, разделении их. Такие случаи встречаются гораздо чаще, чем авто– и аллополиплоидия.