355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Популярная библиотека химических элементов. Книга первая. Водород — палладий » Текст книги (страница 34)
Популярная библиотека химических элементов. Книга первая. Водород — палладий
  • Текст добавлен: 28 апреля 2017, 14:30

Текст книги "Популярная библиотека химических элементов. Книга первая. Водород — палладий"


Автор книги: авторов Коллектив


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 34 (всего у книги 47 страниц)

Германий как он есть

Вероятно, подавляющему большинству читателей видеть германий не приходилось. Элемент этот достаточно редкий, дорогой, предметов ширпотреба из него не делают, а германиевая «начинка» полупроводниковых приборов имеет настолько малые размеры, что разглядеть, какой он, германий, трудно, даже если разломать корпус прибора. Поэтому расскажем об основных свойствах германия, его внешнем виде, особенностях. А вы попробуйте мысленно проделать те несложные операции, которые не раз приходилось делать автору.

Извлекаем из упаковки стандартный слиток германия. Это небольшое тело почти правильной цилиндрической формы, диаметром от 10 до 35 и длиной в несколько десятков миллиметров.

Некоторые справочники утверждают, что элемент № 32 серебристого цвета, но это не всегда верно: цвет германия зависит от обработки его поверхности. Иногда он кажется почти черным, иногда похож на сталь, но иногда бывает и серебристым.

Рассматривая германиевый слиток, не забывайте, что он стоит примерно столько же, сколько золотой, и хотя бы поэтому ронять его на пол не следует. Но есть и другая причина, намного более важная: германий почти так же хрупок, как стекло, и может соответственно себя вести. Мне приходилось видеть, как после такой неудачи небрежный экспериментатор долго ползал по полу, пытаясь собрать все осколки до единого… По внешнему виду германий нетрудно спутать с кремнием. Эти элементы не только конкуренты, претендующие на звание главного полупроводникового материала, но и аналоги. Впрочем, несмотря на сходство многих технических свойств и внешнего облика, отличить германиевый слиток от кремниевого довольно просто: германий в два с лишним раза тяжелее кремния (плотность 5,33 и 2,33 г/см3 соответственно).

Последнее утверждение нуждается в уточнении, хотя, казалось бы, цифры исключают комментарий. Дело в том, что цифра 5,33 относится к германию-1 – самой распространенной и самой важной из пяти аллотропических модификаций элемента № 32. Одна из них аморфная, четыре кристаллические. Из кристаллических германий-1 самый легкий. Его кристаллы построены так же, как кристаллы алмаза, но если для углерода такая структура определяет и максимальную плотность, то у германия есть и более плотные «упаковки». Высокое давление при умеренном нагреве (30 тыс. атм и 100ºC) преобразует Ge-I в Ge-II с кристаллической решеткой, как у белого олова.

Подобным же образом можно получить еще более плотные, чем Ge-II, Ge-III и Ge-IV.

Все «необычные» модификации кристаллического германия превосходят Ge-I и электропроводностью. Упоминание именно об этом свойстве не случайно: величина удельной электропроводности (или обратная величина – удельное сопротивление) для элемента-полупроводника особенно важна.

Но что такое полупроводник?

Главное свойство

Формально, полупроводник – это вещество с удельным сопротивлением от тысячных долей до миллионов омов на 1 см.

Рамки «от» и «до» очень широкие, но место германия в этом диапазоне совершенно определенное. Сопротивление сантиметрового кубика из чистого германия при 18°С равно 72 ом. При 19°С сопротивление того же кубика уменьшается до 68 ом. Это вообще характерно для полупроводников – значительное изменение электрического сопротивления при незначительном изменении температуры. С ростом температуры сопротивление обычно падает. Оно существенно изменяется и под влиянием облучения, и при механических деформациях.

Замечательна чувствительность германия (как, впрочем, и других полупроводников) не только к внешним воздействиям. На свойства германия сильно влияют даже ничтожные количества примесей. Не менее важна химическая природа примесей.

Добавка элемента V группы позволяет получить полупроводник с электронным типом проводимости. Так готовят ГЭС (германий электронный, легированный сурьмой). Добавив же элемент III группы, мы создадим в нем дырочный тип проводимости (чаще всего это ГДГ – германий дырочный, легированный галлием).

Напомним, что «дырки» – это места, освобожденные электронами, перешедшими на другой энергетический уровень. «Квартиру», освобожденную переселенцем, может тут же занять его сосед, но у того тоже была своя квартира. Переселения совершаются одно за другим, и дырка сдвигается.

Сочетание областей с электронной и дырочной проводимостью легло в основу самых важных полупроводниковых приборов – диодов и транзисторов.

Например, вплавляя в пластинку ГЭС индий и создавая таким образом область с дырочной проводимостью, получаем выпрямляющее устройство – диод. Он пропускает электрический ток преимущественно в одном направлении – из области с дырочной проводимостью к электронной. Вплавив индий с обеих сторон пластинки ГЭС, превращаем эту пластинку в основу транзистора.

Первый в мире германиевый транзистор создан в 1948 г., а уже через 20 лет выпускались сотни миллионов таких приборов.

Германиевые диоды и триоды нашли широкое применение в радиоприемниках и телевизорах, счетно-решающих устройствах и в разнообразной измерительной аппаратуре.

Германий применяют и в других первостепенно важных областях современной техники: для измерения низких температур, для обнаружения инфракрасного излучения и т. д.

Для всех этих областей нужен германий очень высокой чистоты – физической и химической. Химическая чистота такая, чтобы количество вредных примесей не превышало одной десятимиллионной процента (10-7%). Физическая чистота – это минимум дислокаций, нарушений в кристаллической структуре. Для достижения ее выращивают монокристаллический германий: весь слиток – один кристалл.

Ради этой немыслимой чистоты

В земной коре германия не очень мало – 7∙10-4% ее массы. Это больше, чем свинца, серебра, вольфрама. Германий обнаружен на Солнце и в метеоритах. Германий есть на территории всех стран. Но промышленными месторождениями минералов германия, по-видимому, не располагает ни одна промышленно развитая страна. Германий очень рассеян. Минералы, в которых этого элемента больше 1%, – аргиродит, германит, ультрабазит и другие, включая открытые лишь в последние десятилетия реньерит, штотит, конфильдит и плюмбогерманит – большая редкость. Они не в состоянии покрыть мировую потребность в этом важном элементе.

А основная масса земного германия рассеяна в минералах других элементов, в углях, в природных водах, в почве и живых организмах. В каменном угле, например, содержание германия может достигать десятой доли процента. Может, но достигает далеко не всегда. В антраците, например, его почти нет… Словом, германий – всюду и нигде.

Поэтому способы концентрирования германия очень сложны и разнообразны. Они зависят прежде всего от вида сырья и содержания в нем этого элемента.

Руководителем комплексного изучения и решения германиевой проблемы в СССР был академик Николай Петрович Сажин. О том, как зарождалась советская промышленность полупроводников, рассказано в его статье, опубликованной в журнале «Химия и жизнь» (1967, № 9) за полтора года до кончины этого выдающегося ученого и организатора науки.

Чистая двуокись германия впервые в нашей стране была получена в начале 1941 г. Из нее сделали германиевое стекло с очень высоким коэффициентом преломления света. Исследования элемента № 32 и способов его возможного получения возобновились после войны, в 1947 г. Теперь германий интересовал ученых именно как полупроводник.

На содержание этого элемента были обследованы многие руды – свинцовые, цинковые, железные, отходы различных химических производств, каменные угли нескольких бассейнов. Потребовались чувствительные, доступные и удобные методы анализа на германий, и вскоре они были разработаны советским ученым В. А. Назаренко.

Новые методы анализа помогли выявить новый источник германиевого сырья – надсмольные воды коксохимических заводов. Германия в них не больше 0,0003%, но с помощью дубового экстракта из них оказалось несложно осадить германий в виде таннидного комплекса.

Главная составляющая таннина – сложный эфир глюкозы

где R – радикал мета-дигалловой кислоты

Он способен связывать германий, даже если концентрация этого элемента в растворе исчезающе мала.

Из полученного осадка, разрушив органику, нетрудно получить концентрат, содержащий до 45% двуокиси германия.

Дальнейшие превращения уже мало зависят от вида сырья. Восстанавливают германий водородом (так поступал еще Винклер), но прежде нужно отделить окись германия от многочисленных примесей. Для решения этой задачи оказалось очень полезным удачное сочетание свойств одного из соединений германия.

Четыреххлористый германий GeCl4 – летучая жидкость с низкой температурой кипения (83,1°С). Следовательно, ее удобно очищать дистилляцией и ректификацией (процесс идет в кварцевых колоннах с насадкой).

Четыреххлористый германий почти нерастворим в концентрированной соляной кислоте. Следовательно, для очистки GeCl4 можно применить растворение примесей соляной кислотой.

Очищенный GeCl4 обрабатывают водой, из которой с помощью ионообменных смол предварительно изъяты практически все загрязнения. Признаком нужной чистоты служит увеличение удельного сопротивления воды до 15–20 млн. Ом∙см.

Под действием воды происходит гидролиз четыреххлористого германия: GeCl4 + 2Н2O → GeO2 + 4HCl. Заметим, что это «записанное наоборот» уравнение реакции, в которой получают четыреххлористый германий.

Затем следует восстановление GeO2 очищенным водородом: GeO2 + 2H2 → Ge +2H2O. Получается порошкообразный германий, который сплавляют, а затем дополнительно очищают методом зонной плавки. Между прочим, этот метод очистки материалов был разработан в 1952 г. именно для очистки полупроводникового германия.

Примеси, необходимые для придания германию того или иного типа проводимости (электронной или дырочной), вводят на последних стадиях производства, т. е. при зонной плавке и в процессе выращивания монокристалла.

Под натиском кремния

С тех пор как в 1942 г. было установлено, что в радиолокационных системах часть электронных ламп выгодно заменять полупроводниковыми детекторами, интерес к германию рос из года в год. Изучение этого ранее нигде не применявшегося элемента способствовало развитию науки в целом и прежде всего физики твердого тела. А значение полупроводниковых приборов – диодов, транзисторов, термисторов, тензорезисторов, фотодиодов и других – для развития радиоэлектроники и техники в целом настолько велико и настолько известно, что говорить о нем. в возвышенных тонах еще раз как-то неудобно.

До 1965 г. большая часть полупроводниковых приборов делалась на германиевой основе. Но в последующие годы стал развиваться процесс постепенного вытеснения «экасилиция» самим силициумом.

Германиевые диод и триод 

Кремниевые полупроводниковые приборы выгодно отличаются от германиевых прежде всего лучшей работоспособностью при повышенных температурах и меньшими обратными токами. Большим преимуществом кремния оказалась и устойчивость его двуокиси к внешним воздействиям. Именно она позволила создать более прогрессивную – планарную технологию производства полупроводниковых приборов, состоящую в том, что кремниевую пластинку нагревают в кислороде или смеси кислорода с водяным паром и она покрывается защитным слоем SiO2.

Вытравив затем в нужных местах «окошки», через них вводят легирующие примеси, здесь же присоединяют контакты, а прибор в целом тем временем защищен от внешних воздействии. Для германия такая технология пока невозможна: устойчивость его двуокиси недостаточна.

Под натиском кремния, арсенида галлия и других полупроводников германий утратил положение главного полупроводникового материала. В 1968 г. в США производилось уже намного больше кремниевых транзисторов, чем германиевых.

Установка для очистки германия методом зонной плавки 

Сейчас мировое производство германия, по оценкам зарубежных специалистов, составляет 90–100 т в год. Его позиции в технике достаточно прочны.

Во-первых, полупроводниковый германий заметно дешевле полупроводникового кремния.

Во-вторых, некоторые полупроводниковые приборы проще и выгоднее делать по-прежнему из германия, а не из кремния.

В-третьих, физические свойства германия делают его практически незаменимым при изготовлении приборов некоторых типов, в частности туннельных диодов.

Все это дает основание полагать, что значение германия всегда будет велико.

ЕЩЕ ОДИН ТОЧНЫЙ ПРОГНОЗ. О прозорливости Д. И. Менделеева, описавшего свойства трех еще не открытых элементов, написано много. Не желая повторяться, хотим лишь обратить внимание на точность менделеевского прогноза. Сопоставьте сведенные в таблицу данные Менделеева и Винклера.

Экасилиций

Атомный вес 72

Удельный вес 5,5

Атомный объем 13

Высший окисел EsO2

Удельный вес его 4,7

Хлористое соединение EsCl4 – жидкость с температурой кипения около 90°С

Соединение с водородом EsH4 газообразно

Металлоорганическое соединение Es(C2H5)4 с температурой кипения 160°С

Германий

Атомный вес 72,6

Удельный вес 5,469

Атомный объем 13,57

Высший окисел GeO2

Удельный вес его 4,703

Хлористое соединение GeCl4 – жидкость с температурой кипения 83°С

Соединение с водородом GeH4 газообразно

Металлоорганическое соединение Ge(C2H5)4 с температурой кипения 163,5°С

ПИСЬМО КЛЕМЕНСА ВИНКЛЕРА

«Милостивый государь!

Разрешите мне при сем передать Вам оттиск сообщения, из которого следует, что мной обнаружен новый элемент «германий». Сначала я был того мнения, что этот элемент заполняет пробел между сурьмой и висмутом в Вашей замечательно проникновенно построенной периодической системе и что этот элемент совпадает с Вашей экасурьмой, но все указывает на то, что здесь мы имеем дело с экасилицием.

Я надеюсь вскоре сообщить Вам более подробно об этом интересном веществе; сегодня я ограничиваюсь лишь тем, что уведомляю Вас о весьма вероятном триумфе Вашего гениального исследования и свидетельствую Вам свое почтение и глубокое уважение.

Преданный Клеменс Винклер
Фрейберг, Саксония
26 февраля 1886 г».

МЕНДЕЛЕЕВ ОТВЕТИЛ: «Так как открытие германия является венцом периодической системы, то Вам, как «отцу» германия, принадлежит этот венец; для меня же является ценной моя роль предшественника и то дружеское отношение, которое я встретил у Вас».

ГЕРМАНИЙ И ОРГАНИКА. Первое элементоорганическое соединение элемента № 32, тетраэтилгерманий, получено Винклером из четыреххлористого германия. Интересно, что ни одно из полученных до сих пор элементоорганических соединений германия не ядовито, в то время как большинство свинец– и оловоорганических соединений (эти элементы – аналоги германия) токсичны.

КАК ВЫРАЩИВАЮТ ГЕРМАНИЕВЫЙ МОНОКРИСТАЛЛ. На поверхность расплавленного германия помещают германиевый же кристалл – «затравку», которую постепенно поднимают автоматическим устройством; температура расплава чуть выше температуры плавления германия (937°С). Затравку вращают, чтобы монокристалл «обрастал мясом» равномерно со всех сторон. Важно, что в процессе такого роста происходит то же самое, что при зонной плавке: в «нарост» (твердую фазу) переходит почти исключительно германий, а большая часть примесей остается в расплаве.

ГЕРМАНИЙ И СВЕРХПРОВОДИМОСТЬ. Классический полупроводник германий оказался причастен к решению другой важной проблемы – созданию сверхпроводящих материалов, работающих при температуре жидкого водорода, а не жидкого гелия. Водород, как известно, переходит из газообразного в жидкое состояние при температуре – 252,6°С, или 20,5º К. В начале 70-х годов была получена пленка из сплава германия с ниобием толщиной всего в несколько тысяч атомов. Эта пленка сохраняет сверхпроводимость при температуре 24,3º К и ниже.

Мышьяк

Наш рассказ об элементе не очень распространенном, но достаточно широко известном; об элементе, свойства которого до несовместимости противоречивы. Так же трудно совместить и роли, которые играл и играет этот элемент в жизни человечества. В разное время, в разных обстоятельствах, в разном виде он выступает как яд и как целительное средство, как вредный и опасный отход производства, как компонент полезнейших, незаменимых веществ. Итак, элемент с атомным номером 33.

История в тезисах

Поскольку мышьяк относится к числу элементов, точная дата открытия которых не установлена, ограничимся констатацией лишь нескольких достоверных фактов: известен мышьяк с глубокой древности: в трудах Диоскорида (I в. н.э.) упоминается о прокаливании вещества, которое сейчас называют сернистым мышьяком;

в III–IV в. в отрывочных записях, приписываемых Зосимосу, есть упоминание о металлическом мышьяке;

у греческого писателя Олимпиодоруса (V в. н.э.) описано изготовление белого мышьяка обжигом сульфида;

в VIII в. арабский алхимик Гебер получил трехокись мышьяка;

в средние века люди начали сталкиваться с трех– окисью мышьяка при переработке мышьяксодержащих руд, и белый дым газообразного As2O3 получил название рудного дыма;

получение свободного металлического мышьяка приписывают немецкому алхимику Альберту фон Больштедту и относят примерно к 1250 г., хотя греческие и арабские алхимики бесспорно получали мышьяк (нагреванием его трехокиси с органическими веществами) раньше Больштедта;

в 1733 г. доказано, что белый мышьяк – это «земля», окись металлического мышьяка;

в 1760 г. француз Луи Клод Каде получил первое органическое соединение мышьяка, известное как жидкость Каде или окись «какодила»; формула этого вещества [(CH3)2As]2O;

в 1775 г. Карл Вильгельм Шееле получил мышьяковистую кислоту и мышьяковистый водород;

в 1789 г. Антуан Лоран Лавуазье признал мышьяк самостоятельным химическим элементом.

Рукопись Петра I с перечнем «случающихся химических значков»: в пятой сверху строке округлые символы с явственно различимой подписью: мышьяк 

Элементный мышьяк – серебристо-серое или оловянно-белое вещество, в свежем изломе обладающее металлическим блеском. Но на воздухе он быстро тускнеет. При нагревании выше 600°С мышьяк возгоняется, не плавясь, а под давлением 37 атм плавится при 818°С. Мышьяк – единственный металл, у которого температура кипения при нормальном давлении лежит ниже точки плавления.

Мышьяк – яд

В сознании многих слова «яд» и «мышьяк» идентичны. Так уж сложилось исторически. Известны рассказы о ядах Клеопатры. В Риме славились яды Локусты. Обычным орудием устранения политических и прочих противников яд был также в средневековых итальянских республиках. В Венеции, например, при дворе держали специалистов-отравителей. И главным компонентом почти всех ядов был мышьяк.

В России закон, запрещающий отпускать частным лицам «купоросное и янтарное масло, крепкую водку, мышьяк и чилибуху», был издан еще в царствование Анны Иоанновны – в январе 1733 г. Закон был чрезвычайно строг и гласил: «Кто впредь тем мышьяком и прочими вышеозначенными материалы торговать станут и с тем пойманы или на кого донесено будет, тем и учинено будет жестокое наказание и сосланы имеют в ссылку без всякия пощады, тож учинено будет и тем, которые мимо аптек и ратуш у кого покупать будут. А ежели кто, купя таковые ядовитые материалы, чинить будет повреждение людям, таковые по розыску не токмо истязаны, но и смертию казнены будут, смотря по важности дела неотменно».

На протяжении веков соединения мышьяка привлекали (да и сейчас продолжают привлекать) внимание фармацевтов, токсикологов и судебных экспертов.

Узнавать отравление мышьяком криминалисты научились безошибочно. Если в желудке отравленных находят белые фарфоровидные крупинки, то первым делом возникает подозрение на мышьяковистый ангидрид As2O3. Эти крупинки вместе с кусочками угля помещают в стеклянную трубку, запаивают ее и нагревают. Если в трубке есть As2O3, то на холодных частях трубки появляется серо-черное блестящее кольцо металлического мышьяка. После охлаждения конец трубки отламывают, уголь удаляют, а серо-черное кольцо нагревают. При этом кольцо перегоняется к свободному концу трубки, давая белый налет мышьяковистого ангидрида. Реакции здесь такие:

As2O3 + 3С → As2 + 3СО или
2As2O3 + 3С → 2As2 + 3CO2;
2As2 + 3O2 → 2As2O3.

Полученный белый налет помещают под микроскоп: уже при малом увеличении видны характерные блестящие кристаллы в виде октаэдров.

Мышьяк обладает способностью долго сохраняться в одном месте. Поэтому при судебно-химических исследованиях в лабораторию доставляют образцы земли, взятой из шести участков возле места захоронения человека, которого могли отравить, а также части его одежды, украшения, доски гроба…

Симптомы мышьяковистого отравления – металлический вкус во рту, рвота, сильные боли в животе. Позже судороги, паралич, смерть. Наиболее известное и общедоступное противоядие при отравлении мышьяком – молоко, точнее, главный белок молока казеин, образующий с мышьяком нерастворимое соединение, не всасывающееся в кровь.

Мышьяк в форме неорганических препаратов смертелен в дозах 0,05–0,1 г, и тем не менее мышьяк присутствует во всех растительных и животных организмах. (Это доказано французским ученым Орфила еще в 1838 г.) Морские растительные и животные организмы содержат в среднем стотысячные, а пресноводные и наземные – миллионные доли процента мышьяка. Микрочастицы мышьяка усваиваются и клетками человеческого организма, элемент № 33 содержится в крови, тканях и органах; особенно много его в печени – от 2 до 12 мг на 1 кг веса.

Ученые предполагают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов.


    Ваша оценка произведения:

Популярные книги за неделю