355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Популярная библиотека химических элементов. Книга первая. Водород — палладий » Текст книги (страница 24)
Популярная библиотека химических элементов. Книга первая. Водород — палладий
  • Текст добавлен: 28 апреля 2017, 14:30

Текст книги "Популярная библиотека химических элементов. Книга первая. Водород — палладий"


Автор книги: авторов Коллектив


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 24 (всего у книги 47 страниц)

Титан работает

Роль титана как конструкционного материала, основы высокопрочных сплавов для авиации, судостроения и ракетной техники, быстро возрастает. Именно в сплавы идет большая часть выплавляемого в мире титана. Широко известен сплав для авиационной промышленности, состоящий из 90% титана, 6% алюминия и 4% ванадия. В 1976 г. в американской печати появились сообщения о новом сплаве того же назначения: 85% титана, 10% ванадия, 3% алюминия и 2% железа. Утверждают, что этот сплав не только лучше, но и экономичнее.

А вообще в титановые сплавы входят очень многие элементы, вплоть до платины и палладия. Последние (в количестве 0,1–0,2%) повышают и без того высокую химическую стойкость титановых сплавов.

Прочность титана повышают и такие «легирующие добавки», как азот и кислород. Но вместе с прочностью они повышают твердость и, главное, хрупкость титана, поэтому их содержание строжайше регламентируется: в сплав допускается не более 0,15% кислорода и 0,05% азота.

Несмотря на то что титан дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Вот характерный пример. Корпус химического аппарата, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава – 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый – 10 лет. Прибавьте затраты на замену стальных реакторов, вынужденные простои оборудования – и станет очевидно, что применять дорогостоящий титан бывает выгоднее, чем сталь.

Значительные количества титана использует металлургия. Существуют сотни марок сталей и других сплавов, в состав которых титан входит как легирующая добавка. Его вводят для улучшения структуры металлов, увеличения прочности и коррозийной стойкости.

Некоторые ядерные реакции должны совершаться в почти абсолютной пустоте. Ртутными насосами разрежение может быть доведено до нескольких миллиардных долей атмосферы. Но этого недостаточно, а ртутные насосы на большее неспособны. Дальнейшая откачка воздуха осуществляется уже особыми титановыми насосами. Кроме того, для достижения еще большего разрежения по внутренней поверхности камеры, где протекают реакции, распыляют мелкодисперсный титан.

Титан часто называют металлом будущего. Факты, которыми уже сейчас располагают наука и техника, убеждают, что это не совсем так – титан уже стал металлом настоящего.

ВСЕ ПОЗНАЕТСЯ В СРАВНЕНИИ… Лишь три технически важных металла – алюминий, железо и магний – распространены в природе больше, чем титан. Количество титана в земной коре в несколько раз превышает запасы меди, цинка, свинца, золота, серебра, платины, хрома, вольфрама, ртути, молибдена, впсмута, сурьмы, никеля и олова, вместе взятых.

МИНЕРАЛЫ ТИТАНА. Известно около 70 минералов титана, в которых он находится в виде двуокиси или солеи титановой кислоты. Наибольшее практическое значение имеют ильменит, рутил, перовскит и сфен.

Ильменит – метатитанат железа FeTiO3 – содержит 52,65% TiO2. Название этого минерала связано с тем, что он был найден на Урале в Ильменских горах. Крупнейшие россыпи ильменитовых песков имеются в Индии. Другой важнейший минерал – рутил представляет собой двуокись титана. Промышленное значение имеют также титаномагнетиты – природная смесь ильменита с минералами железа. Богатые месторождения титановых руд есть в СССР, США, Индии, Норвегии, Канаде, Австралии и других странах.

Не так давно геологи открыли в Северном Прибайкалье новый титансодержащий минерал, который был назван ландауитом в честь советского физика академика Л. Д. Ландау.

Всего на земном шаре известно более 150 значительных рудных и россыпных месторождений титана.

В ЖИВЫХ ОРГАНИЗМАХ. В человеческом организме содержится до 20 мг титана. Больше всего титана в селезенке, надпочечниках и щитовидной железе. В этих органах содержание элемента № 22 с возрастом не изменяется, но в легких за 65 лет жизни оно возрастает более чем в 100 раз.

Из представителей флоры богата титаном водоросль кладофора: содержание в ней этого элемента превышает 0,03%.

…И НА СОЛНЦЕ. Спектральным анализом титан обнаружен на Солнце и в составе некоторых звездных атмосфер, где он, кстати, преобладает над большинством элементов. Но если на Земле титан существует главным образом в виде двуокиси TiO2, то в космосе, очевидно, в виде моноокиси TiO.

ПЬЕЗОЭЛЕКТРИК. Титанат бария, будучи наэлектризован, проявляет высокие пьезоэлектрические свойства, т. е. может превращать механическую энергию сжатия или расширения кристалла в электрическую. Пьезокристаллы титаната бария по многим характеристикам превосходят такие распространенные пьезоэлектрики, как кварц и сегнетова соль. Подробнее о нем – в статье «Барий».

НЕОБЫЧАЙНОЕ СВОЙСТВО. Разработаны материалы, которые будучи сильно деформированными на холоде, при нагревании вновь принимают первоначальную форму. Один из таких «памятливых» материалов представляет собой интерметаллическое соединение титана и никеля, отличающееся высокой прочностью, пластичностью и коррозионной стойкостью.

Проволоке из этого материала можно придать форму радиоантенны и сжать ее в небольшой шар. После нагревания этот шар снова превратится в антенну.

ТАТАН, РАКЕТЫ И ГАЗЫ. Титан используется для производства баллонов, в которых газы могут храниться длительное время под большим давлением. В американских ракетах типа «Атлас» сферические резервуары для хранения сжатого гелия сделаны из титана.

Из титановых сплавов изготовляют баки для жидкого кислорода, применяемые в ракетных двигателях.

СВЕРХПЛАСТИЧНЫЙ ТИТАН. При температуре около 950°С металлический титан переходит в сверхпластичное состояние: если на него в это время воздействовать даже небольшим давлением, он претерпевает пластическую деформацию и точно воспроизводит очертания формы, в которую его выдавливают. Но – при двух условиях. Во-первых, форма должна иметь ту же температуру, что и металл, а во-вторых, процесс должен идти в защитной, предпочтительно аргоновой, среде. Изделия, изготовленные по этой технологии, предложенной швейцарскими инженерами, отличаются высоким качеством и не требуют доводки на металлорежущих станках. Однако необходимо строго контролировать и давление, и температуру, и состояние защитной среды.

ИЗОТОПЫ ТИТАНА. Всего сейчас известно 13 изотопов элемента № 22. Природный титан состоит из смеси пяти стабильных изотопов, наиболее широко представлен титан-48, его доля в природной смеси 73,99%. Есть в природе также изотопы с массовыми числами 46, 47, 49 и 50. Среди радиоактивных изотопов титана самый долгоживущий – титан-44 с периодом полураспада около 1000 лет.

Ванадий

В начале XIX в. в Швеции были найдены новые богатые месторождения железной руды. Одна за другой сооружались доменные печи. Но что примечательно: при одинаковых условиях некоторые из них давали железо удивительной ковкости, в то время как из других получался более хрупкий металл. После многих безуспешных попыток наладить процесс выплавки высококачественного металла в «плохих» домнах металлурги обратились за помощью к химикам, и в 1830 г. Нильсу Сефстрему удалось выделить из шлака «лучших» домен неизвестный черный порошок. Сефстрем сделал вывод, что изумительную ковкость металлу придает присутствие в руде какого-то неизвестного элемента, содержащегося в черном порошке.

Этот новый элемент Сефстрем назвал ванадием в честь легендарной Ванадис – богини красоты древних скандинавов.

Открытие нового элемента всегда было большой честью для ученого. Поэтому можно представить себе огорчение мексиканского минералога Андреса Мануэля дель Рио, который еще в 1801 г. обнаружил в свинцовой руде никогда не встречавшийся прежде элемент и назвал его эритронием. Но, усомнившись в собственных выводах, дель Рио отказался от своего открытия, решив, что встретился с недавно открытым хромом.

Еще большее разочарование постигло блестящего немецкого химика Фридриха Вёлера. В те же годы, что и Сефстрему, ему довелось исследовать железные руды, привезенные из Мексики А. Гумбольдтом. Те самые, что исследовал дель Рио. Вёлер тоже нашел в них что-то необычное, но его исследования прервала болезнь. Когда он возобновил работу, было уже поздно – Сефстрем обнародовал свое открытие. Свойства нового элемента совпадали с теми, что были занесены в один из лабораторных журналов Вёлера.

И только в 1869 г., спустя 39 лет после открытия Сефстрема, элемент № 23 впервые был выделен в относительно чистом виде. Английский химик Г. Роско, действуя водородом на хлористый ванадии, получил элементный ванадий чистотой около 96%.


Андрее Мануэль дель Рио (1764–1849) – мексиканский химик и минералог. Он первым в мире получил ванадий, но принял его за уже известный хром, и слава первооткрывателя ванадия досталась другому ученому

Фридрих Вёлер (1800–1882) – один из виднейших немецких химиков XIX в., автор первого в истории науки органического синтеза. Велер был близок к открытию ванадия в свинцовой руде, но слава этого открытия принадлежит не ему

Нильс Габриэль Сефстрем (1787–1845) – шведский химик и минералог. В 1830 г., исследил железную руду из Таберга (Швеция), он обнаружил в ней неизвестный элемент. По совету Берцелиуса, под руководством которого работал Сефстрем, он назвал элемент ванадием в честь богини Ванадис из древней скандинавской мифологии

В чистом виде ванадий – ковкий металл светло-серого цвета. Он почти и полтора раза легче железа, плавится при температуре 1900±25°С, а температура его кипения 3400°С. При комнатной температуре в сухом воздухе он довольно пассивен химически, но при высоких температурах легко соединяется с кислородом, азотом и другими элементами.

В соединениях ванадий проявляет четыре валентности. Известны соединения двух-, трех-, четырех– и пятивалентного ванадия.

Ванадий и химическая промышленность

В основную химическую промышленность ванадий пришел не сразу. Его служба человечеству началась в производстве цветного стекла, красок и керамики. Изделия из фарфора и продукцию гончарных мастеров с помощью соединений ванадия покрывали золотистой глазурью, а стекло окрашивали солями ванадия в голубой или зеленый цвет. В красильном деле ванадий появился вскоре после опубликования в 1842 г. сообщения выдающегося русского химика Н. Н. Зинина о получении им анилина из нитробензола. Реакция Зинина открывала новые возможности для развития производства синтетических красителей. Соединения ванадия нашли применение в этой отрасли химии и принесли ей значительную пользу. Ведь достаточно всего одной весовой части V2O5, чтобы перевести 200 тыс. весовых частей бесцветной соли анилина в красящее вещество – черный анилин. Столь же эффективным оказалось применение соединений ванадия в индиговом крашении. Так элемент № 23 пришел в ситцепечатание, в производство цветных хлопчатобумажных и шелковых тканей.

Промышленность нуждалась в ванадии и его соединениях, но руд, богатых этим элементом, было немного. Инженеры французской сталелитейной фирмы «Крезо», видимо, обратили внимание на то, что первые соединения ванадия Сефстрем получил не из руды, а из металлургических шлаков, и в 1882 г. наладили их производство на той же основе. На протяжении 10 лет завод «Крезо» ежегодно выбрасывал на мировой рынок по 60 т пятиокиси ванадия V2O5. Однако вскоре спрос на соединения ванадия для получения черного анилина резко упал, и производство их значительно сократилось.

Но в начале первой мировой войны химикам вновь пришлось обратиться к элементу № 23. В эти годы сражающимся странам потребовались громадные количества серной кислоты. Ведь без нее невозможно получить нитроклетчатку – основу боевых порохов. Известно, что серная кислота получается окислением сернистого ангидрида SO2 в серный ангидрид SO3 с последующим присоединением воды. Однако SO2 непосредственно с кислородом реагирует крайне медленно. Окисление сернистого ангидрида может происходить при восстановлении двуокиси азота (на этой реакции основан нитрозный способ производства серной кислоты), но более чистая и концентрированная кислота получается, если реакцию окисления SO2 в SO3 проводить в присутствии некоторых твердых катализаторов (контактный метод производства).

Первым катализатором сернокислотного контактного производства была дорогостоящая платина. Ее, естественно, не хватало, требовались заменители. Ими оказались пятиокись ванадия V2O5 и некоторые соли ванадиевых кислот, например Ag3VO4. Они почти с таким же успехом, как и платина, ускоряют окисление SO2 в SO3, но обходятся значительно дешевле, да и требуется их меньше. И главное, они не боятся контактных ядов, выводящих из строя платиновые катализаторы.

Катализаторы на основе ванадия играют большую роль и в современной химии. Их по-прежнему можно встретить в большинстве цехов по производству серной кислоты, не обходятся без них и такие важные процессы, как крекинг нефти, получение уксусной кислоты путем окисления спирта и многие другие.

Ванадий и сталь

Если химическая промышленность нуждается прежде всего в соединениях ванадия, то металлургии необходимы сам металл и его сплавы. Ванадий – один из главных легирующих элементов.

Поучительный, но в общем-то случайный опыт шведских металлургов с «плохими» и «хорошими» домнами не стал основой для широкого внедрения ванадия в металлургию. Произошло это значительно позже.

В 1905 г., на заре автомобилестроения, во время гонок в Англии одна из французских машин разбилась вдребезги. Один из обломков двигателя этой машины попал в руки Генри Форда, присутствовавшего на состязаниях. Обломок удивил будущего «автомобильного короля»: металл, из которого он был изготовлен, сочетал исключительную твердость с вязкостью и легкостью. Вскоре лаборатория Форда установила, что этот металл – сталь с добавками ванадия.

Не считаясь с затратами, Форд организовал исследования. После нескольких неудач из его лаборатории вышла ванадиевая сталь необходимого качества. Она сразу дала возможность облегчить автомобили, сделать новые машины прочнее, улучшить их ходовые качества. Снизив цены на автомобили благодаря экономии металла, Форд смог привлечь массу покупателей. Это дало ему повод сказать: «Если бы не было ванадия, то не было бы и моего автомобиля».

Однако еще за 10 лет до того, как Форд узнал о существовании ванадиевой стали, французские инженеры выплавляли ее и получали высококачественные броневые плиты. Из этой стали были сделаны и первые пушки, установленные на самолетах.

Необходимость броневой защиты для пехоты и артиллерийских расчетов стала особенно очевидной в ходе первой мировой войны, когда пришлось столкнуться с орудийным и пулеметно-ружейным огнем невиданной прежде интенсивности. Первоначально для изготовления касок и щитов орудий применяли сталь с большим содержанием кремния и никеля, но испытания на полигоне показали ее непригодность. Сталь, содержащая всего 0,2% ванадия, оказалась более прочной и вязкой. К тому же она была легче. Хромованадиевая сталь еще прочнее. Она хорошо сопротивляется удару и истиранию. Кроме того, она обладает достаточно высокой усталостной прочностью. Поэтому ее стали широко применять в военной технике: для изготовления коленчатых валов корабельных двигателей, отдельных деталей торпед, авиамоторов, бронебойных снарядов.

Стали, содержащие ванадий, не утратили своего значения и поныне. Элемент № 23 придает стали такие качества, как прочность, легкость, устойчивость к воздействию высоких температур, гибкость. Чем объяснить столь широкий диапазон полезных свойств? Ответить на этот вопрос помогает сам ванадий. Он – один из «откровенных» металлов. Как это понимать?

Редкий снимок середины прошлого века (1862 г.). Слева направо: Г. Кирхгоф, Р. Бунзен и Г. Роско, первым получивший металлический ванадий 

Известно, что наилучшую прокаливаемость стали придает молибден, наибольшую вязкость сталь приобретает от введения никеля, а ее магнитные свойства усиливаются присутствием кобальта. Далеко не всегда можно точно сказать, почему та или иная легирующая добавка придает стали определенные качества. А вот о причинах улучшения свойств стали ванадием многое известно достаточно полно и достоверно.

Давно установлено, что расплавленная сталь поглощает много газов, прежде всего кислорода и азота. Когда металл остывает, газы остаются в слитках в виде мельчайших пузырьков. При ковке пузырьки вытягиваются в нити (волосовины) и прочность слитка в разных направлениях становится неодинаковой. Ванадий, введенный в сталь, активно реагирует с кислородом и азотом, продукты этих реакций всплывают на поверхность металла жидким шлаком, который удаляется в процессе плавки. Тем самым повышается прочность отливок. Оставшийся ванадий раньше других элементов взаимодействует с растворенным в стали углеродом, образуя твердые и жаростойкие соединения – карбиды. Карбиды ванадия плохо растворяются в железе и неравномерно распределяются в нем, препятствуя образованию крупных кристаллов. Сталь получается мелкозернистой, твердой и ковкой. Структура ванадиевой стали сохраняется и при высоких температурах. Поэтому резцы из нее меньше подвержены деформациям в процессе обработки детали на больших скоростях, а штампы незаменимы для горячей штамповки. Мелкокристаллическая структура обусловливает также высокую ударную вязкость и большую усталостную прочность ванадиевой стали. Практически важно еще одно ее качество – устойчивость к истиранию. Это качество можно наглядно проиллюстрировать таким примером: за тысячу часов работы стенки цилиндров дизель-моторов, изготовленных из углеродистой стали, изнашиваются на 0,35–0,40 мм, а стенки цилиндров из ванадиевой стали, работавших в тех же условиях, – лишь на 0,1 мм.

«Вавилиом» и другие…

Но не только сталь облагораживается ванадием. Свойства других металлов также улучшаются при введении в них элемента № 23. Стоит добавить 3% ванадия в алюминий, как этот металл становится очень твердым. «Вавилиом» – так называется этот сплав – хорошо противостоит разрушающему действию влажного воздуха и соленой воды.

Из подобного же сплава (но с 2% ванадия) изготовляют духовые музыкальные инструменты. Хорошо известен сплав меди с 8% ванадия. Он используется как исходное сырье для получения сплавов меди с другими металлами. Бронзы и латуни, содержащие 0,5% ванадия, не уступают по механическим свойствам стали и поэтому идут на изготовление ответственных узлов и деталей сложного профиля. Химическая стойкость сплава никеля с 18–20% ванадия соизмерима с инертностью благородных металлов, поэтому из него делают лабораторную посуду. Добавки ванадия в золото придают последнему несвойственную ему твердость. В последнее время довольно много ванадия идет в сплавы на основе титана.

Сплавы ванадия легче растворяются в металлах, чем чистый ванадий, и плавятся при более низкой температуре. Эти две особенности используются в черной металлургии: для легирования чугуна и стали обычно применяет феррованадий – сплав ванадия с железом.

И только в расплавленном серебре ванадий не растворяется.

Добыча ванадия

В земной коре ванадия намного больше, чем хрома, никеля, свинца, цинка и даже меди. Однако минералы, богатые элементом № 23, встречаются редко. Соединения ванадия рассеиваются в земной коре водой; они более растворимы, чем природные соединения других металлов, расположенных в правой половине менделеевской таблицы, и перемещаются в горных породах на значительные расстояния. Ванадий накапливается в некоторых рудах и других металлов – свинца, меди, цинка, урана, а также в угле, нефти, сланцах. Один из немецких заводов, например, получал от сжигания венесуэльской нефти золу, которая содержала до 10% ванадия. Некоторое время зола из топок, сжигавших эту нефть, была исходным сырьем для получения ванадия.

В 1902 г. в Испании было открыто первое месторождение ванадинита Pb5(VO4)3Cl. В 1925 г. ванадинит обнаружили в Южной Африке. Он встречается также в Чили, Аргентине, Мексике, Австралии, США. Исключительны по своему значению месторождения ванадия в Перу. Они находятся в горах, на высоте 4700 метров над уровнем моря. Главное богатство перуанских месторождений – минерал натронит – простое соединение ванадия с серой V2S5. При обжиге натронита получаются концентраты с очень высоким содержанием пятиокиси ванадия – до 20–30%.

Социалистические страны располагают собственными запасами этого ценного металла и полностью обеспечивают им свою промышленность.


    Ваша оценка произведения:

Популярные книги за неделю