355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ашот Григорьян » Механика от античности до наших дней » Текст книги (страница 5)
Механика от античности до наших дней
  • Текст добавлен: 24 сентября 2016, 07:14

Текст книги "Механика от античности до наших дней"


Автор книги: Ашот Григорьян


Жанры:

   

Культурология

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 32 страниц)

Некоторые исследователи считают, что в самом предположении Герарда о равенстве средней скорости движения радиуса и скорости движения его средней точки (при вращении) уже содержится доказательство теоремы о средней скорости, которая впоследствии представителями Оксфордской школы была сформулирована следующим образом.

«Равномерно ускоряющееся или замедляющееся движение эквивалентно равномерному движению, происходящему со средней скоростью».

Герард говорит и о неравномерном движении в пространстве. Скорости (круговые пути, описываемые точками вращающегося радиуса) меняются от нулевой (начало радиуса) до максимальной (его конец).

Кинематическое исследование Герарда Брюссельского явилось спустя столетие отправным пунктом для исследований, принадлежащих ученым Мертон-колледжа в Оксфорде. Наибольшая активность мертонцев относится к 1328-1350 гг.

Родоначальником Оксфордской школы был Томас Брадвардин. В «Трактате о пропорциях или о пропорциях скоростей при движении» («Tractatus proportiomim sen proportionibus velocitatum in notibus») Брадвардин критикует мнение Аристотеля, согласно которому скорость v пропорциональна отношению P/R (v ∞ P/R). При P = R скорость равна единице, в то время как она должна равняться нулю, ибо движение прекращается. По Аристотелю, при постоянном R справедлива пропорция V1/V2 = P1/P2, а при постоянном Р – пропорция V1/V2 = R1/R2. Не учитывая указанную выше оговорку Аристотеля, Брадвардин возражает ему, отмечая, что в этом случае при убывании Р до нуля (или возрастании R до бесконечности) скорость также убывает до нуля. Следовательно, любая сколь угодно малая сила P может двигать любое сколь угодно большое тело R, но со скоростью, меньшей в соответствующее число раз. Кроме того, опыт показывает, что два человека могут двигать тело со скоростью, значительно большей, чем двойная скорость, сообщаемая одним человеком.

Брадвардин следующим образом формулирует свой основной закон скоростей: «Отношение скоростей при движениях меняется соответственно отношению движущих сил к силам сопротивления»{57}.

Закон Брадвардина можно записать в виде

По Аристотелю, скорость удвоится, утроится и т. д. при удвоении, утроении и т. д. отношения P/R.

Брадвардин же считал, что закономерность состоит не в простом удвоении, утроении и т. д., а в образовании составного – двойного, тройного и т. д. – отношения P/R, т. е. (P/R)2, (P/R)3 …. Иными словами, скорость изменяется

пропорционально не отношению P/R, а его логарифму. Брадвардин показывает, что при этом устраняется ограничение Аристотеля P > R на возможность возникновения движения. Согласно закону Брадвардина, случай P = R имеет смысл, так как логарифм единицы равен нулю. В «Трактате о континууме», написанном между 1328 и 1335 гг., Брадвардин обращается к понятиям времени и движения. Время он рассматривает как бесконечный, последовательный континуум, который измеряет следование и может быть делим до бесконечности. Движение есть прохождение пространственного континуума во временном: линия может быть проходима с разной скоростью. В то же время, предвидя возможные возражения, Брадвардин проводит различие между «качеством движения», т. е. скоростью, и «количеством движения», т. е. его продолжительностью. Движения могут не различаться по «качеству», но различаться по «количеству» (т. е. по продолжительности или кратковременности).

Закон Брадвардина был с одобрением принят многими, хотя и не всеми учеными XIV в. Подчеркнем, что этот закон содействовал укреплению представления о скорости как об отвлеченном отношении, в определение которого не входит ни понятие времени, ни понятие пути.

Фундаментальные понятия кинематики, такие, как мгновенная скорость и ускорение, появляются в XIV в. в связи с исследованием неравномерного движения. Развитие этих идей связано с новым направлением в науке – учением о «широтах форм» или «конфигурации качеств» (оно называлось также учением «о равномерности и неравномерности интенсивностей» или «об интенсификации и ремиссии качеств»). Истоки этого нового направления были связаны со спорами о логико-философском понятии «формы», восходящими к Аристотелю. Учение о «широтах форм» развивалось и в богословии, где обсуждались вопросы об «интенсификации и ремиссии» благодати, и в математике и механике, в применении к которым это учение содержало прообразы идей функциональной зависимости и ее графического изображения.

Математизация учения «об интенсивности качеств» происходила как в арифметико-алгебраической форме – в том виде, как это делалось учеными Оксфордской школы и в Мертон-колледже XIV в., так и в геометрической форме, как это делали представители Парижской школы. Итальянские ученые XV—XVI вв. сочетали оба эти пути.

Направление Оксфордской школы получило в 30-х годах XIV в. название «учения о калькуляциях», а его авторы – «калькуляторов». «Учение о калькуляциях» разрабатывалось в труде Уильяма Хейтесбери «Правила решения софизмов», в трактате Ричарда Суисета (Суайнсхеда) «О калькуляциях», в работе Джона Дамблтона «Сумма логики и физики».

Представители этого направления движение подразделяли на униформное (равномерное) и дифформное (неравномерное). Униформное движение понималось как такое, при котором в равные времена проходятся равные пути; все остальные движения относятся к дифформным. Понятие «интенсивности качества» применялось к скорости, которая рассматривалась как «интенсивность движения».

Ученые Мертон-колледжа определяли скорость через понятие равного промежутка времени. Существенным моментом здесь является то, что в отличие от Герарда Брюссельского и Брадвардина они ввели в это определение понятие «любой». Так, Суисет приводит следующее определение равномерного движения: «Униформное локальное движение (т. е. движение в пространстве) таково, что в любые равные промежутки времени описываются равные пути».

Хейтесбери дает определение равномерно ускоренного движения как такового, которое, «в любую из равных частей времени приобретает равные приращения скорости».

Мгновенной, или «точечной», скоростью в случае дифформного (неравномерного) движения мертонцы называли скорость, определяемую в любое мгновение по линии, которую прочертила бы наиболее быстро движущаяся точка, если на протяжении времени она стала бы двигаться униформно (равномерно), с тем же градусом скорости, с которым она движется в это мгновение, – какое бы мгновение ни взять.

Ускорение и замедление движения Хейтесбери называл соответственно «интенсивностью» и «ремиссией» «местного движения». Различение ускорения и замедления было связано с тем, что в XIV в. в Европе не располагали понятием отрицательных величин. Общее определение ускорения отсутствовало, но его умели должным образом охарактеризовать в конкретных случаях.

Так, специально рассматривалось униформно-дифформное движение, под которым понималось движение с постоянным ускорением. Согласно Хейтесбери, при униформно ускоренном или замедлендом движении скорость нарастает или уменьшается за равные промежутки времени на равную величину.

Одним из наиболее важных результатов механики была теорема об эквивалентности равномерно ускоренного движения (и вообще изменения) равномерному движению (изменению) со средней скоростью.

Формулировка этой «мертонской теоремы» такова: «Всякое униформно-дифформное изменение, начинающееся с не градуса (нуля), эквивалентно униформному изменению со средним градусом», т. е. в ускоренном движении, начинающемся из состояния покоя, пройденное расстояние s равно vt/2, где v – скорость в рассматриваемый момент времени.

Различные доказательства этой теоремы содержатся в упомянутых трактатах Хейтесбери, Суисета, Дамблтона и относятся к 1330—1340 гг.

Доказательство Хейтесбери начинается следующим утверждением: «Каждое приращение скорости, униформно приобретаемое или теряемое, отвечает средней скорости. Это предполагает, что движущееся тело униформно приобретает или теряет такие приращения, что за данное время проходит расстояния, в точности равные тем, которые оно прошло бы, двигаясь в то же время со средней скоростью». Это утверждение доказывается с помощью рассмотрения симметричных приращений и «потерь» скорости над ее «средним градусом». В своем доказательстве Хейтесбери исходит из свойства непрерывной пропорции a : b = b : c = (a – b) : (b –c) и применяет его к делению на «пропорциональные части» в отношении 2:1; так как первая «пропорциональная часть» равна сумме всех последующих, то разность между первым и вторым членами равна сумме всех последующих разностей. Поэтому, если взять в униформно-дифформной широте «градусы», убывающие в пропорции 2:1, то разность между высшим и средним (вдвое меньшим) «градусами» будет равна сумме разностей («широт») менаду средним «градусом» и «не градусом», т. е. 1/2 = 1/4 + 1/8 + 1/16 + … Далее Хейтесбери замечает, что аналогично можно доказать эквивалентность униформно возрастающей «широты» движения среднему «градусу». Таким образом он приходит к следствию, что тело, двигаясь равномерно замедленно со скоростью, убывающей до нуля, проходит в первую половину времени втрое большее расстояние, чем во вторую, т. е. что при униформном убывании «градусов движения» (т. е. скоростей) на первую половину времени приходится расстояние, втрое большее, чем на вторую.

Суисет приводит четыре различных доказательства этой теоремы, которую он формулирует следующим образом: «Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу… так что столько же в точности будет пройдено благодаря этой так приобретаемой широте, сколько и благодаря ее среднему градусу, если бы тело двигалось все время с этим средним градусом».

Наиболее интересное из них – третье доказательство, которое проводится с помощью суммирования двух бесконечных рядов. Суисет исходит из деления интервала времени на «пропорциональные части» t, t/2r t/4, t/8, …, t/2n-1. В любой момент первой «пропорциональной части» времени тело будет двигаться вдвое быстрее, чем в соответствующий момент второй «пропорциональной части», и т. д. Поскольку первая «пропорциональная часть» времени вдвое больше, чем вторая, то тело пройдет за первую часть вчетверо большее расстояние, чем за вторую, за вторую – вчетверо большее, чем за третью, и т. д.

К задаче суммирования ряда Суисет сводит и примеры движений, в которых скорость меняется скачкообразно.

Представителю геометрического направления в науке XIV в. – Н. Орему (1323—1382) – принадлежит сохранившийся в многочисленных списках (и под различными заголовками) трактат «О конфигурации качеств», написанный в 1371 г.

Орем представлял «интенсивность качества», сосредоточенного в одной точке, в виде отрезка прямой линии. «Качества» могут быть линейными, когда они распределены по различным точкам математического объекта в одном измерении, плоскостными (два измерения) и объемными (три измерения). «Интенсивности» он предлагал изображать линиями, проведенными из точек прямой, характеризующей «экстенсивность». В современной терминологии «экстенсивность качества» соответствует абсциссе, «интенсивность» – ординате. Отрезки линий «интенсивности» Орем называл «широтами» (latitudo) «качеств» или «форм», а отрезки, в концах которых «широты» прилагаются, – «долготами» (longitudo). Длины «широт» пропорциональны «интенсивностям». Таким образом, зависимость между «интенсивностью» и «экстенсивностью» изображалась в виде плоской фигуры, ограниченной сверху некоторой кривой.

Постоянная «интенсивность» соответствует «униформному качеству», которое изображается четырехугольником. «Униформно-дифформному качеству» соответствует треугольник (если это «качество» в начальной или конечной точке равно «не градусу», т. е. нулю) или четырехугольник с двумя непараллельными сторонами. Эту геометрическую интерпретацию Орем применяет для разъяснения кинематических понятий. В этом случае время рассматривается как «экстенсивность», а скорость – как «интенсивность» движения. Понятие ускорения (velocitatio) Орем вводит как «интенсивность» скорости, а затем переходит к рассмотрению различных случаев как постоянного, так и переменного ускорения. Орем пользовался и понятием мгновенной скорости, которую называл точечной (velocitas punctualis).

Доказательство мертонской теоремы у Орема начинается со следующего утверждения: «О скорости следует сказать то же, что о линейном качестве, с той разницей, что вместо средней точки берут среднее мгновение времени, измеряющего скорость движения».

Однако Орем еще не дает самого определения средней, или, как он называл, «суммарной скорости» (velocitas totalis) и нигде прямо не говорит, что площадь рассматриваемой фигуры соответствует пройденному расстоянию, хотя такое понимание лежит в основе его рассуждений. Более четкое установление связи между пройденным расстоянием и площадью фигуры, ординаты которой соответствуют мгновенным скоростям, требовало аппарата бесконечно малых.

Стремление к полной геометризации проблемы помогло Орему в значительной мере избавиться от схоластического стиля Мертонской школы, но вынудило его оставить в стороне ряд тонких вопросов, которые эта школа разрабатывала. Возможно, поэтому в XV—XVI вв. произведения оксфордцев в странах Западной Европы (особенно в Италии) привлекали больше внимания, чем сочинения Орема.

Проникновение теории «широт форм» в Италию началось еще в середине XIV в. Трактат Джованни Казале (около 1355 г.), содержащий доказательство теоремы о средней скорости, – одно из наиболее ранних свидетельств влияния оремовской трактовки этой теории. «Униформно-дифформное качество» он представлял в виде прямоугольного треугольника, эквивалентного «прямолинейному качеству» (т. е. «униформному»). В то же время в основных вопросах он опирался на труды представителей Оксфордской школы, в частности Суисета.

В последнем десятилетии XIV в. появились два трактата о «широтах форм» Биаджо из Пармы: «О движении» и «Об интенсификации и ремиссии форм», написанные под влиянием сочинений «калькуляторов» (например, в доказательстве теоремы о средней скорости рассматривается симметричное возрастание и убывание скорости). В третьем его сочинении – «Вопросы к трактату о широте форм» – заметно влияние Парижской школы.

Казале и Биаджо не единственные проводники влияния Оксфордской и Парижской школ в Италии. Это влияние сказалось на направлении научной деятельности представителей Падуанской школы. В этой связи следует упомянуть сочинения Паоло Венецианского и комментарий Анджело да Фассамбруно к одному из трактатов Хейтесбери.

В середине XV в. (1460) Джованни Марлиани написал комментарий к «Калькулятору» Суисета, а также специальный трактат, в котором дает собственное доказательство основной мертонской теоремы и соображений Суисета о расстояниях, проходимых за «пропорциональные части» в униформно-дифформном движении. Этот результат никто в то время не ставил в связь с проблемой падения тяжелых тел, хотя во второй половине XIV в. учение о «широтах форм» преподавалось в разных странах Европы. Так, для нужд преподавания был составлен трактат «О широтах форм», который иногда неправильно приписывается самому Орему.

До конца XV в. в Италии печатались произведения «калькуляторов», но уже к началу XV в. учение о «широтах форм» перестало развиваться. Причиной этому было, с одной стороны, отсутствие непосредственного контакта с технической традицией естествознания, а с другой – недостаточность математического аппарата. Учение о «широтах форм» осталось не давшим плодов достижением вполне средневековой по своему духу, методам и стремлениям науки, несмотря на то, что содержало ряд моментов, получивших развитие в математике переменных величин и на начальных этапах развития классической механики. «Калькуляторы» были на подступах и к механике Галилея, и к геометрии Декарта и Ферма, и к теории неделимых Кавальери. Учение о «широтах форм» было известно до XVI —начала XVII в., но нет никаких определенных данных о его влиянии в эту эпоху. Можно подметить сходство некоторых положений Галилея и Декарта с положениями авторов XIV в. Однако, с другой стороны, Галилей, например, никогда не упоминает своих «предшественников». Это говорит о том, что, несмотря на знакомство со средневековой литературой, творцы новой механики исходили в своих исследованиях из конкретных запросов бурно развивающихся естествознания и техники, опираясь главным образом на классиков древности, особенно Архимеда, как об этом упоминает и сам Галилей.

Как попытка ответа на вопрос о механизме передачи движения в средневековой Европе появилась теория «импетуса» («импетус» нельзя отождествлять с каким-либо современным термином, но в некоторых случаях его можно считать эквивалентным импульсу).

К XIII в. относится начало формирования понятий, на основе которых впоследствии была создана эта теория. У многих авторов этого периода встречаются соображения об «импульсе», движущей силе и даже само выражение «импетус». Так, Фома Аквинский говорит о силе движущегося, которая сохраняется в брошенном теле, об «импульсе», который передается от бросающего к брошенному телу и позволяет ему сохранять определенное направление на пути к цели. В конце XIII в. Петр Иоанн Оливи представлял механизм передачи движения таким образом, что движущее тело сообщает движущемуся телу «запечатляющуюся в нем силу» как некое качество, которое он определял как «устремление к конечной цели движения».

В начале XIV в. проблемой движения брошенных тел занимался Франческо ди Маркиа, который, комментируя Аристотеля, считал, что некая «сила», или «способность», сообщается как среде, так и самому брошенному телу и сохраняется в нем некоторое время в зависимости от «меры» этой силы.

Однако впервые строго сформулирована теория «импетуса» была парижским номиналистом Жаном Буриданом (ум. в 1358 г.) в «Вопросах к физике Аристотеля», написанных после 1328 г., и в «Вопросах к сочинению Аристотеля «О небе», написанных около 1340 г.

В Париже теорию Буридана развивали Никола Орем, Альберт Саксонский и Марсилиус ван Инген. Благодаря двум последним она позже получила распространение в Германии и Австрии. В Италии ее разрабатывали Биаджо из Пармы и Паоло Венецианский, который отмечал, что эта теория поддерживалась большинством современных ему ученых. Наибольшее применение она имела для изучения движения брошенного тела и свободного падения тела.

Импетусом Буридан называет некую силу, которая исходит от движущегося и запечатлевается в движимом теле. Величина импетуса определяется как скоростью, сообщенной движимому телу, так и его «количеством материи» (т. е. массой). «Количество материи» является «мерой импетуса» в теле. В этом состоит причина того, что «труднее остановить большое быстро движущееся колесо мастера, чем маленькое»{58}. Исчезновению импетуса способствует, во-первых, сопротивление среды, а во-вторых, его «устремление к другому месту», если тело брошено не по вертикали вниз. Буридан утверждал, что «импетус продолжался бы до бесконечности, если бы не уменьшался и не разрушался от противоположности, оказывающей сопротивление, или еще от чего-либо, склоняющего к противоположному движению»{59}. «Движущее, приводя в движение движимое, запечатлевает некий импетус, – говорит Буридан, – т. е. некоторую силу, способную двигать это тело в ту сторону, в которую движущее его двигало: вверх, вниз, в сторону или по кругу»{60}.

Таким образом, он говорит об импетусе и как о «движущей силе», и как о причине продолжения движения. Буридан считал импетус постоянным качеством движущегося тела. Он запечатлен в этом теле таким образом, как магнитные свойства запечатлены в железе. Как постоянное качество импетус растрачивается не сам по себе, а только вследствие сопротивления среды или «противоположного сопротивления» тела.

Почти все сторонники теории импетуса приводили в пример движение точильного камня и волчка, которое нельзя было объяснить с помощью аристотелевской концепции промежуточной среды.

Буридан объяснял отскакивание шарика от земли по аналогии с отражением света, говоря, что начальный импетус сжимает его, когда он стукается об землю, а затем возникает новый импетус, благодаря которому он подпрыгивает вверх. Объясняя сохранение движения наличием некоторого запечатленного в теле качества, Буридан и сторонники его теории фактически не выходили за пределы концепции Аристотеля, которая гласит, что всякое движение нуждается в «движущей силе». Поэтому вряд ли правы те, кто считает теорию «импетуса» предвосхищением закона инерции, имея в виду некоторое сходство между количественным определением импетуса у Буридана и определением импетуса, или момента, у Галилея. Если Буридан и говорит о сохранении импетуса и сохранении движения неизменным, он относит это как к прямолинейному, так и к вращательному движению. Сторонники теории импетуса не проводили никакого различия между прямолинейным и круговым импетусом. Они считали одинаково возможным в любых случаях вводить и тот и другой.

Исторически теория импетуса скорее была заключительным этапом развития теоретических построений, связанных с критикой аристотелизма, чем началом новой линии развития, связанной со становлением классической механики. Она не привела, да и не могла привести, к установлению понятия инерции движения, хотя и содержала некоторые зачатки идеи самодвижения.

Значение теории импетуса состояло, во-первых, в ее приложении к движению небесных тел. При объяснении движения небесных тел с помощью этой теории отпадала необходимость во введении нематериальных так называемых «интеллигенции», или «ангелов», постоянно его поддерживающих. Нематериальному, божественному вмешательству предоставлялась только скромная роль сообщения первоначального импетуса; дальнейшее движение не требовало его участия.

«Бог в момент творения, – говорит Буридан, – сообщил небесам столько же и такие движения, какие существуют и сейчас, и, приводя их в движение, запечатлел в них импетусы, благодаря которым они затем двигаются равномерно, поскольку эти импетусы, не встречая сопротивления, никогда не уничтожаются и не уменьшаются». Согласно Орему, бог, создавая небеса, «наделил их качествами и движущими силами так же, как земные тела наделил тяжестью; и наделил их сопротивлениями этим движущим силам… Бог предоставил небесам двигаться непрерывно и в соответствии с пропорциями между движущими силами и сопротивлениями, в соответствии с установленным порядком»{61}.

Николай Кузанский сравнивает движение небесной сферы с движением шара. «Ведь эта сфера не движется богом-создателем и пе духом божиим, так же как и шар не движется тобою, когда ты видишь его катящимся, и не твоим духом, хотя ты и привел его в движение, совершая бросок рукой, своей волей сообщая ему импетус, и пока сохраняется этот импетус, движется и шар»{62}.

Теория импетуса, таким образом, объединяла движения земных и небесных тел в единую систему, подчиняющуюся общим законам механики. Кроме того, теория импетуса до известной степени освобождала учение о движении от понятия цели, так как в некоторых случаях при рассмотрении «насильственного» движения она не нуждалась в представлении о стремлении к «естественному месту». Но самое главное то, что, отрицая необходимость посредствующей материальной среды при «насильственном движении», она позволяла ставить вопрос о возможности отвергаемого Аристотелем движения в пустоте.

Буридану была хорошо известна теория Авемпаса, который (употребляя вместо скорости и плотности обратные им понятия «медленности» и «тонкости») пришел к выводу о том, что движение в пустоте происходит не мгновенно, а в течение некоторого времени. Сторонники теории импетуса, возражая Аристотелю и следуя за Филопоном, считали, что движение в пустоте возможно и происходит с различной скоростью. Они различали два вида скоростей: существенную и акцидентальную. Первая характеризует движение самого тела, а вторая обусловлена сопротивлением среды. Первая сохраняется при движении тела в пустоте, вторая исчезает. В пустоте тела падают с различной скоростью, сохраняя силу «тяжести» и силу импетуса. Вместо сопротивления среды сторонники теории импетуса вводили сопротивление, возникающее вследствие наличия расстояния между начальной и конечной точками движения, которое является причиной ограничения скорости. Буридан считал, что конечная величина скорости определяется конечной величиной «движущей силы».

Но хотя сторонники теории «импетуса» не смогли подойти к понятию об одинаковой скорости падения тел в пустоте, значительный интерес представляет количественный подход к исследованию этого явления и попытки его формального описания в их сочинениях.

Обращаясь к изучению падения тел, средневековые ученые Западной Европы ставили перед собой два вопроса: какова причина ускорения тел при падении? каким образом описать это ускорение кинематически?

Выше мы рассмотрели приемы кинематического описания равномерно ускоренного движения, однако это не распространялось на изучение свободного падения тела. Филопон, говоря о падении тел в воздухе, критиковал положение Аристотеля об обратной пропорциональности скоростей падения л «тяжестей». Если с одной и той же высоты падают две «тяжести», значительно отличающиеся друг от друга, то отношение между скоростями будет меньше, чем отношение между «тяжестями».

Эта проблема была предметом обсуждения предшественников западных номиналистов – ученых средневекового Востока, в частности упомянутых выше Ибн-Сины и ал-Богдади. Под влиянием учения Филопона они разработали теорию «запечатленной силы» и «устремления». Согласно их представлениям, когда тело начинает падать, оно получает некое «насильственное устремление». Это постоянное «насильственное устремление» противопоставлялось «естественному устремлению», которое управляет движением тела вниз. Хотя «насильственное устремление» постепенно ослабляется, оно в процессе движения тела, в особенности в начальный момент, замедляет свободное падение.

Но существует постоянная причина ускорения. Как только тело выведено из своего «естественного места», его «тяжесть» начинает «запечатлевать» в нем «естественное устремление». В течение всего времени движения это «естественное устремление» все больше и больше проникает в падающее тело, а по мере возрастания «устремления» возрастает его скорость. Аналогичное представление о двух силах, с которыми связано свободное падение тела, мы встречаем в XIII в. у Роджера Бэкона. Одна из этих сил определяется «естественной тяжестью», в то время как другая становится все более и более эффективной по мере приближения тяжелого тела к своему «естественному месту», т. е. тело движется тем быстрее и скорость падения его тем больше, чем ближе оно к «естественному месту» (это утверждение восходит еще к Аристотелю).

Бэкон ставил далее вопрос о характере этой второй силы. Не может ли «естественное место» действовать на тяжелое тело подобно тому, как действует магнит на железо? Но, возражал Бэкон, железо будет притягиваться магнитом, если находится от него на определенном расстоянии, в то время как тяжелое тело стремится к центру Земли «по собственной природе» с любого расстояния.

Существовала и Другая точка зрения: чем дальше тяжелое тело от «естественного места», тем быстрее оно движется. Этой точки зрения придерживался Буридан. Применяя понятие импетуса к изучению падения тел, Буридан объяснял его следующим образом: «Отсюда также становится ясной причина, почему естественное движение тела непрерывно ускоряется. Ведь сначала двигала одна лишь тяжесть, а потому двигала медленно, но в процессе движения она запечатлевала в этом тяжелом теле импетус, каковой импетус уже движет вместе с самой тяжестью, а потому движение становится более быстрым, и чем быстрее это движение становится, тем интенсивнее становится импетус, и таким образом оказывается, что движение становится более быстрым».

Буридан ссылается на пример, использованный Ричардом Мидлтоном еще в конце XIII в. Если некоторое тело A, падая с большой высоты, проходит мимо другого тела B, которое в свою очередь начинает падать именно тогда, когда первое тело находилось на одной высоте с ним, то тело А достигает земли раньше, чем тело B, тогда как по отвергаемой теории они должны были упасть одновременно. По Буридану, скорость падения тем больше, чем дальше от своего «естественного места», т. е. центра Земли, находилось тело в начале падения, ибо оно приобретает больший импетус. Присущая самому телу сила тяжести постоянна. Под действием ее одной тело падало бы с постоянной скоростью. Ускорение связано с действием импетуса, который возрастает по мере движения тела и величина которого зависит от веса последнего. Итак, тело аккумулирует импетус в процессе движения. Таким образом, кроме постоянной «тяжести», которая (согласно Аристотелю) является причиной движения с постоянной скоростью, Буридан ввел переменную «силу импетуса» (так называемую «акцидентальную тяжесть»), которую считал причиной ускорения движения тела. Аналогичную точку зрения высказывал Н. Орем в латинском комментарии к сочинению Аристотеля «О небе». Обращаясь к разъяснению термина «акцидентальная тяжесть», Орем говорил, что это означает «нечто, меняющееся в зависимости от ускорения движения, благодаря чему появляется некая способность – «импетус» и некая укрепляющая сила, позволяющая двигаться быстрее».

Альберт Саксонский в сочинении «О небе» дал систематический обзор различных попыток объяснить причину ускорения падающих тел. Изложив и отвергнув шесть относящихся к этому теорий, он излагает теорию импетуса, которую разделяет сам. «Чем дольше движется… тело, тем больший приобретает импетус. Подобно тому, как импетус приобретается соответственно движению, так соответственно он уменьшается или убывает при уменьшении или убывании движения»{63}.

Траекторию брошенного тела Альберт Саксонский рассматривает как состоящую из трех частей: первая часть– чисто «насильственное» движение, в течение которого «запечатленный» в брошенном теле импетус нейтрализует действие «естественной тяжести»; вторая часть – промежуточная, когда действует «составной» импетус и движение является комбинацией «насильственного» и «естественного»; третья часть – чисто «естественное» движение вертикально вниз под действием «естественной тяжести» и сопротивления воздуха, которые преодолевают действие импетуса. Первая часть траектории имеет вид горизонтальной прямой линии, вторая – криволинейный отрезок, переходящий в вертикальную прямую – третью часть. Эту теорию развивали Биаджо из Пармы, Николай Кузанский, а впоследствии и Леонардо да Винчи. В XVI в. встречаем ее видоизменение у Тартальи.


    Ваша оценка произведения:

Популярные книги за неделю