355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ашот Григорьян » Механика от античности до наших дней » Текст книги (страница 10)
Механика от античности до наших дней
  • Текст добавлен: 24 сентября 2016, 07:14

Текст книги "Механика от античности до наших дней"


Автор книги: Ашот Григорьян


Жанры:

   

Культурология

,

сообщить о нарушении

Текущая страница: 10 (всего у книги 32 страниц)

Первая его часть гласит: «Если движущееся тело при встрече с другим телом обладает для продолжения движения по прямой меньшей силой, чем второе тело для сопротивления первому, то оно теряет направление, не утрачивая ничего в своем движении». В данном случае Декарт ссылается на опыт: «Твердое тело, будучи брошено и ударившись о более твердое и плотное тело, отскакивает в том направлении, откуда шло, но не теряет ничего в своем движении; наоборот, встречая на пути мягкое тело, тотчас останавливается, так как передает последнему свое движение».

Кроме того, Декарт ссылается на то, что это сопротивление второго тела есть причина, заставляющая первое тело изменить направление движения, однако нет никаких оснований, по Декарту, чтобы это сопротивление было причиной утраты движения: «Причина, заставившая его утратить направление, очевидна, именно – сопротивление тела, препятствующего ему следовать далее; отсюда, однако, для него нет необходимости терять что-либо в своем движении, тем более, что оно у него никогда не отнимается этим телом или какой-либо иной причиной и что движение движению не противоположно»{104}.

Во второй части третьего закона читаем: «Если же движущееся тело имеет большую силу, то движет за собой встречное тело и теряет в своем движении столько, сколько сообщает второму телу». Эту часть закона (т. е. сохранение количества движения при передаче его от одного тела к другому) Декарт в сущности ничем не обосновывает, кроме ссылки на «неизменность действия бога»{105}.

Обратимся теперь к более детальному разбору семи правил удара, сформулированных Декартом. Они относятся к идеальным неупругим, или, как говорит Декарт, твердым, телам, однородным по веществу, рассматриваемым вне соотношения с другими телами, а потому лишенным таких свойств, как тяжесть, порождаемая движением среды. Во внимание принимаются лишь величины тел, скорость их движения, а также сила инерции (т. е. сила, или способность «пребывать в покое и, стало быть, противостоять всему, что могло бы изменить его», и сила продолжать свое движение с той же скоростью и в том же направлении), сила, пропорциональная величине тела и скорости движения{106}.[24]24
  Далее, цитируя других авторов, мы вводим и унифицируем буквенные обозначения, обозначая как объемы, так и соответствующие массы тел через m1 и m2, скорости до удара через u1 и u2, скорости после удара через и v1 и v2.


[Закрыть]
Напоминаем, что в применяемых нами дальше обозначениях m1 и m2 у самого Декарта имеется в виду не масса (четкого понятия которой у него еще не было), а величина тела: Декарт всюду говорит о большем и меньшем теле, равных телах и т. п. Напомним также, что сохранение количества движения для Декарта – исходная аксиома, причем разница алгебраических знаков во внимание не принимается.

Следовательно, анализ семи «правил» (или различных случаев) удара основывается на требовании, чтобы до и после удара сумма количества движения оставалась постоянной:

m1u1 + m2u2 = m1v1 + m2v2.

Из возможных случаев Декарт выбирал такой, при котором перемена в состоянии столкнувшихся тел представлялась ему наименьшей.

Для уяснения всего сказанного важны соображения Декарта, возникшие уже после выхода в свет «Начал философии», а именно в 1645 г. Декарт хотел разъяснить здесь ход мысли, который привел его к ошибочному положению, будто меньшее тело неспособно сообщить движение большому, какова бы ни была скорость этого меньшего.

Декарт писал, что основание, которое заставляет его утверждать, что тело без движения никогда не может быть приведено в движение меньшим телом, с какой бы скоростью это меньшее ни двигалось, заключается в том, что таков закон природы: тело, приводящее в движение другое тело, должно иметь больше силы его двигать, чем это последнее ему сопротивляться. Но этот перевес может зависеть лишь от величины тела, ибо тело без движения имеет столько градусов сопротивления, сколько другое тело имеет градусов скорости. Причина заключается в том, что если такое тело, находящееся в покое, приводится в движение телом, обладающим вдвое большей скоростью, чем прежнее, оно должно получить вдвое больше движения, а такому вдвое большему количеству движение оно сопротивляется вдвое сильнее.

Далее Декарт утверждает в общей форме, что перемена в состоянии должна быть наименьшей: «Если два тела встречаются и их состояния несовместимы, должна произойти перемена в этих состояниях, делающая их совместимыми, и перемена эта должна быть наименьшей, иначе говоря, если определенная мера изменения этих состояний достаточна, чтобы они стали совместимыми, то не произойдет изменения в большей мере, чем она. При этом нужно принимать во внимание в движении два различных состояния: во-первых, движение само по себе, т. е. скорость, и, во-вторых, направленность этого движения в определенную сторону, каковые состояния изменяются одинаково трудно»{107}.

Уже в 1652 г., через восемь лет после выхода «Начал философии» Декарта, 23-летний Гюйгенс высказал свои первые сомнения в правильности законов Декарта, за исключением первого закона, который он признал верным (для упругих тел). Двумя годами позже в письме к ван Скоутену, который ему не советовал тягаться с Декартом, Гюйгенс сознавался, что ему самому было неприятно убедиться в ошибках Декарта. Еще двумя годами позже Гюйгенс написал свой первый трактат «Об ударе тел», не собираясь, однако, публиковать его.

В октябре 1666 г. Лондонское королевское общество объявило конкурс на решение задачи об ударе тел, на который представили свои работы Валлис, Рен и Гюйгенс.

Мемуар Валлиса был доложен 26 ноября 1668 г. Валлис разбирает случаи соударения неупругих тел. Рассматривая «силу» как пропорциональную произведению веса (т) и скорости (v), он дает для скорости и после удара соотношение

при движении обоих тел в одну сторону и

при встречном ударе.

Таким образом, в отличие от Декарта Валлис принял во внимание знаки плюс и минус, стоящие перед количествами движения (mv). При косом ударе Валлис вводит отношение радиуса к секансу угла. Сравнивая удар неупругих тел с ударом упругих, он ограничивается качественной констатацией наличия «восстанавливающей силы» в упругих телах.

Несколько позже, 17 декабря 1668 г., был представлен мемуар знаменитого архитектора Рена. Он подводил итог многочисленным экспериментам над упругими телами, которые Рен произвел совместно с математиком Гуком. Выводы Рена совпадали с выводами Гюйгенса.

Мемуар Гюйгенса был представлен позже других (в первых числах января 1669 г.) и напечатан в Англии через несколько месяцев после мемуаров Валлиса и Рена. Не дождавшись его публикации в Англии, обиженный Гюйгенс опубликовал уже в марте во Франции{108}резюме своих выводов. Мы не будем вдаваться в рассмотрение возникших приоритетных споров и в разбор мемуара 1669 г., обратившись прямо к той более полной редакции, которая увидела свет лишь после смерти Гюйгенса (1695), – в издании его посмертных трудов (1703). Этот трактат – «О движении тел под влиянием удара» – один из шедевров механики XVII в.

Гюйгенс ограничился рассмотрением центрального удара упругих тел, состоящих из одного и того же вещества. Исходной точкой при рассмотрении соударения одинаковых масс является для него следующая аксиома (1-е правило Декарта): если два равных тела (шара) сталкиваются друг с другом с одинаковыми, но противоположно направленными скоростями, направление их движения меняется на противоположное без изменения скорости.

При неодинаковых скоростях (но при равных массах) Гюйгенс, основываясь на относительности движения, прибег к остроумному приему, позволившему свести все далее рассматриваемые случаи к первому аксиоматическому. Именно: он представил себе, что удар происходит в лодке, движущейся с постоянной скоростью вдоль ровного берега. Согласно классическому принципу относительности, в явлениях удара ничего не должно меняться. Величину скорости лодки в каждом новом случае выбирают такой, чтобы для наблюдателя, находящегося на берегу, явление сводилось к первому случаю, уже ранее разобранному.

Вскоре после конкурса, проведенного Лондонским королевским обществом, Мариотт напечатал свой «Трактат об ударе или соударении тел» (1678), выдержавший три издания (1679, 1684). Отправляясь от работ Гюйгенса, Валлиса и Рена, он дополнил их исследования новыми многочисленными экспериментами, производившимися им начиная с 1674 г.

ХРИСТИАН ГЮЙГЕНС (1629—1695)

Нидерландский механик, физик и математик. Создал волновую теорию света. В сочинении «Маятниковые часы» Гюйгенс ввел понятия центробежной и центростремительной силы и моментов инерции, исследовал движение математического и физического маятника

Для изучения явлений удара Мариотт придумал прибор, состоящий из двух шаров, подвешенных на двух нитях равной длины и находящихся в соприкосновении в состоянии равновесия. Он начал с изучения удара пластичных тел, беря шарики из глины. Скорости он измерял дугами, описываемыми шариками после столкновения.

В 80-х годах XVII в., упомянув о трудах Рена, Валлиса, Гюйгенса и Мариотта, Ньютон посвятил несколько страниц своих «Начал» произведенным им самим экспериментам. Однако главное, что внес Ньютон в изучение удара, это не столько новые эксперименты, сколько та связь, которую он установил между явлениями удара и формулированным им законом равенства действия и противодействия.

Связь законов удара с законом действия и противодействия Ньютон раскрывает в следующих словах: «Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит от силы второго тела в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих же тел друг на друга постоянно равны. От таких взаимодействий всегда происходят равные изменения не скоростей, а количества движения, предполагая, конечно, что тела никаким другим усилиям не подвергаются. Изменения скоростей, происходящие также в противоположные стороны, будут обратно пропорциональны массам тел, ибо количества движения получают равные изменения»{109}.

Что касается существа собственных опытов, Ньютон изложил их в следующих словах: «Производя испытания над маятниками длиною 10 футов и над массами, равными и неравными, и пуская тела так, чтобы они встречались, пройдя большие промежутки, например 8, 12, 16 футов, я получал с ошибкою, меньшею 3 дюймов, в измерениях, что при прямом ударе между телами изменения их количеств движения были равны и направлены в стороны противоположные, откуда следует, что действие и противодействие между собой равны… То же самое происходит и при движении тел в одну сторону… Подобное соотношение имеет место и в остальных случаях: полное количество движения, рассчитываемое, взяв сумму количеств движения, когда они направлены в одну сторону, и разность, когда они направлены в стороны противоположные, никогда не изменяется от удара при встрече тел»{110}.

Отсюда отчетливо выявляется неверность декартовской формулировки закона сохранения количества движения, не принимающей во внимание алгебраические знаки.

Ньютон отмечает, что описанные им опыты относятся к неупругим телам, – они «удаются как с телами мягкими, так и с жесткими, и совершенно не зависят от степени твердости их». В случае же тел упругих «необходимо лишь уменьшить скорость отражения сообразно степени упругости тел».

Итак, к 80-м годам уже было прекрасно осознано, что закон сохранения количества движения в том виде, как формулировал его Декарт, неправилен. Более того, если принять его в этом виде, с одинаковым успехом может быть доказано и бесконечное возрастание количества движения, т. е. «вечное движение», и, наоборот, убывание его.


ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА ТЯГОТЕНИЯ

Декарт писал 12 сентября 1638 г. Мерсенну: «Невозможно сказать что-либо хорошее и прочное касательно скорости, не разъяснив на деле, что такое тяжесть и вместе с тем вся система мира»{111}. Это заявление диаметрально противоположно заявлению Сальвиати в «Беседах» Галилея: «Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения естественного движения тел, по поводу которого различными философами было высказано столько различных мнений. Будет достаточно, если мы рассмотрим, как он [Галилей] исследует и излагает свойства ускоренного движения (безотносительно к причинам последнего)»{112}.

С заявлением Галилея небезынтересно сопоставить позднейшее, столь же осторожное высказывание Роберваля, относящееся к 1669 г. Французский ученый указывал, что возможны разные точки зрения на природу тяжести: она заключена в самом тяжелом теле, она – результат взаимодействия между двумя телами, она производится третьим телом, толкающим одно к другому. Роберваль не вдавался в подобные дискуссии и заявлял: «Я всегда по возможности буду стараться подражать Архимеду, который именно в связи с тяжестью выдвигает в качестве принципа или постулата постоянный и во все минувшие до сей поры столетия засвидетельствованный факт: существуют тяжелые тела, отвечающие условиям, о которых он говорит в начале своего трактата на эту тему. На этом основании я построю, как и он, свои рассуждения о механике, не затрудняя себя вопросом, что же такое в конце концов начала и причины тяжести, и довольствуясь тем, что буду следовать истине, если она пожелает когда-либо предстать ясно и отчетливо передо мною. Вот правило, которого я всегда хочу держаться в сомнительных рассуждениях…»

Излишне повторять, как часто Ньютон говорил, что он отказывается вникать в природу тяжести. Напомним лишь некоторые наиболее выразительные высказывания.

«Под словом притяжение, — писал он в «Началах», – я разумею здесь вообще какое бы то ни было стремление тел к взаимному сближению – безразлично, происходит ли это стремление от действия самих тел, которые стараются сблизиться или приводят друг друга в движение посредством испускаемого ими эфира, либо, наконец, оно вызывается материальной или нематериальной средой (эфиром, воздухом и т. п.)»{113}. Аналогично в «Оптике»: «То, что я называю притяжением, может происходить посредством импульса или какими-нибудь другими способами, мне неизвестными. Я применяю здесь это слово для того, чтобы только вообще обозначить некоторую силу, благодаря которой тела стремятся друг к другу, какова бы ни была причина. Ибо мы должны изучить по явлениям природы, какие тела притягиваются и каковы законы и свойства притяжения, прежде чем исследовать причину, благодаря которой притяжение происходит»{114}.

Ньютон утверждал: «Причину… этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю… Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моря»{115}.

Формулировка закона тяготения и самое формирование понятия силы тяготения были результатом длительного исторического развития. Здесь незачем прослеживать хронологически все те многочисленные и разнообразные подходы к концепции, которые в конечном итоге привели к формулировке закона тяготения и его приложению к небесной механике. Достаточно отметить некоторые важнейшие вехи.

В ньютоновом законе тяготения мы выделим три наиболее характерных момента. Во-первых, в этом законе сила тяготения есть универсальный принцип. При его выводе из свойств материи принимается во внимание только одно – наличие массы. Масса, по Ньютону, – всеобщая характеристика любой материи. Поэтому закон тяготения, распространяющийся на все тела, безотносительно ко всем другим их свойствам, – это высшее, математизированное выражение идеи единства Вселенной, подготовлявшееся трудами Коперника, Кеплера, Бруно, Галилея. В законе тяготения исчезает противоположность небесного и земного, «подлунного» и «надлунного». Во-вторых, тяготение основано на взаимодействии тел, а не на одностороннем притяжении одного тела другим. И, в-третьих, понятие силы тяготения у Ньютона уточнено количественно.

Первые шаги к математизации силы притяжения были сделаны Кеплером. В своей «Новой астрономии» (1609) Кеплер опубликовал первые два закона движения планет, носящие его имя и открытые им при обработке данных, относящихся к Марсу. Десятью годами позже (1619) в «Гармонии мира» Кеплер дополнил их третьим законом: кубы средних расстояний планет от Солнца пропорциональны квадратам времен их обращения, или, как формулировал сам Кеплер на языке своего времени, – средние расстояния от Солнца стоят в «полуторном отношении» к времени обращения.

Показательно, что уже в 30—40-х годах Декарт задумывался над опытами, которые могли бы позволить определить убывание и возрастание тяжести на разных расстояниях от центра Земли, сознавая вместе с тем всю трудность подобной задачи. Обсуждая в переписке с Мерсенном вопрос о том, имеет ли тело большую или меньшую тяжесть, находясь к центру Земли ближе, чем находясь вдали от него, Декарт замечает: «Единственно, что можно сказать, что природа тяжести есть вопрос факта, т. е. люди не могут определить ее иначе, как производя опыты, а из опытов, производимых здесь, в нашем воздухе, нельзя судить о том, что происходит гораздо ниже, около центра Земли, или гораздо выше, за облаками, ибо если убывание или возрастание тяжести происходит, то маловероятно, чтобы оно происходило везде в одинаковой пропорции»{116}.

Проектируя возможный опыт, Декарт тут же отмечал его трудности. Опыт заключается в следующем: кусок свинца вместе с веревкой взвешивается на вершине башни, а затем прикрепляется одним концом к чашке весов и опускается в колодец. Разность в весе должна свидетельствовать о неравномерности земного притяжения. Декарт понимал, что опыт мог дать результаты лишь в том случае, если разница в весе весьма значительна, между тем глубина колодца и высота башни мала по сравнению с радиусом Земли.

Декарт добавил описания довольно странных для современного читателя опытов или наблюдений над птицами. «Крупным птицам, например журавлям и аистам, гораздо легче летать на высоте в воздухе, чем внизу, и это нельзя целиком отнести на счет силы воздуха, ибо то же самое бывает и в тихую погоду, а это дает основание думать, что их удаленность от Земли делает их более легкими. Подтверждают нам это и бумажные змеи, запускаемые детьми, и весь снег, находящийся в облаках»{117}.

Наконец, Декарт всерьез обсуждал версию об артиллерийских ядрах, якобы пущенных вертикально вверх и не вернувшихся на Землю. В этой же связи Декарт высказал и приведенные выше соображения о том, что планеты упали бы на Землю, если бы «большое расстояние между ними не парализовало этого их стремления», т. е. тяжесть должна убывать с увеличением расстояния.

Не удивительно, если Декарт в конечном итоге оказался вынужденным обратиться от проектируемых конкретных экспериментов к теоретическому рассуждению, произвести чисто мысленный эксперимент или, как выражался он сам, «произвести наши вычисления, подобно тому, как астрономы предполагают средние движения светил равномерными, чтобы легче рассчитывать истинные, которые неравномерны».

Через 11 лет после смерти Декарта, в 1661 г. (еще до своего официального утверждения), Лондонское королевское общество поручило особой комиссии исследовать вопрос о природе тяжести. 14 марта 1666 г. Роберт Гук сделал в Обществе сообщение, в котором писал: «Хотя тяжесть, по-видимому, есть одно из самых универсальных начал в мире, до недавнего времени пренебрегали ее изучением. И тем не менее ученая пытливость наших дней нашла в ней предмет новых размышлений; Гильберт делает из нее способность магнитного притяжения, присущую частям земного шара; благородный лорд Веруламский частично присоединится к этому мнению, а Кеплер, не без оснований, делает из тяжести свойство, присущее всем небесным телам»{118}.

Исходя из подобных же представлений, Гук предполагал, что тяжесть тел должна уменьшаться с возрастанием расстояния от центра Земли. Если Декарт только обдумывал возможности экспериментов, то Гук отважился и на экспериментирование. Он производил опыты на здании Вестминстерского аббатства и на вершине собора св. Павла. Он взвешивал тело вместе с проволокой на вершине башни и у поверхности земли. Опыты не могли дать, по признанию самого Гука, точных результатов как по причине колебаний столь длинной проволоки, так и по причине движения воздуха. Нескольких гранов на весах достаточно было, чтобы привести весы в колебательное движение.

Вслед за тем Гук столь же безуспешно произвел эксперименты в колодцах глубиной от 90 до 330 футов.

В докладе, сделанном 23 мая того же года, Гук вернулся к вопросу о силе тяжести в связи с движением планет. Криволинейность планетных орбит должна вызываться некоторой постоянно действующей силой: либо большей плотностью эфира около Солнца, либо притяжением тела, находящегося в центре. Наконец, восемь лет спустя, в 1674 г., Гук опубликовал мемуар под заглавием «Попытка доказать годовое движение Земли на основе наблюдений».

Излагаемая им здесь система мира основана на трех предположениях. Во-первых, все небесные тела производят притяжение к своим центрам, притягивая не только свои части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия. Таким образом, не только Солнце и Луна оказывают влияние на форму и движение Земли, а Земля – на Луну и Солнце, но также Меркурий, Венера, Марс, Юпитер и Сатурн влияют на движение Земли; в свою очередь притяжение Земли действует на движение каждой планеты. Второе предположение Гука – это закон инерции: «Всякое тело, получившее однажды простое прямолинейное движение, продолжает двигаться по прямой до тех пор, пока не отклонится в своем движении другой действующей силой и не будет вынуждено описывать круг, эллипс или иную сложную линию». Наконец, третье предположение заключается в том, что «притягивающие силы действуют тем больше, чем ближе тело, на которое они действуют, к центру притяжения».

«Что касается степени этой силы, – заключает Гук, – то я не мог еще определить ее на опыте; но во всяком случае, как только эта степень станет известной, она чрезвычайно облегчит астрономам задачу нахождения закона небесных движений, без нее же это невозможно… Я хотел бы указать это тем, у которых есть время и достаточная сноровка для продолжения исследования и хватит прилежания для выполнения наблюдений и расчетов»{119}.

Мы не будем останавливаться на спорах о приоритете, которые разгорелись между Гуком и Ньютоном. Можно с уверенностью сказать, что искусный экспериментатор и эмпирик, Гук не смог бы прийти к тем широким математическим обобщениям, к которым пришел Ньютон, самостоятельно размышлявший над проблемами тяготения уже с 1666 г.

Вот подлинные свидетельства самого Ньютона, в целом не вызывающие сомнений. Из письма Ньютона к Галлею (1686) явствует, что уже в 1665 или в 1666 г. Ньютон вывел из законов Кеплера обратную пропорциональность силы тяготения квадрату расстояния между притягивающимися телами. В другом письме к Галлею от того же года он сообщал: «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести к conatus recedendi (стремлению) Луны от центра Земли, хотя и не совсем точно».

В бумагах Ньютона, кроме того, имеется такая запись: «В том же году я начал думать о тяготении, простирающемся до орбиты Луны, и нашел, как оценить силу, с которой шар, вращающийся внутри сферы, давит на поверхность этой сферы. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояния от центров, вокруг коих они вращаются. Отсюда я сравнил силу, требующуюся для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и нашел, что они почти отвечают друг другу. Все это происходило в два чумных года, 1665 и 1666, ибо в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после»{120}.

Мы сказали, что нет оснований сомневаться в свидетельствах Ньютона в целом. Однако в одном существенном пункте они требуют исправления. А именно: при своих первых подсчетах Ньютон исходил из старых (грубых) измерений земного радиуса (ошибка в них достигала 15%); поэтому он мог определить, по его словам, соотношение между силой тяжести и центробежной силой Луны «не совсем точно». Такая неточность, видимо, заставила его отложить публикацию своих вычислений.

Между тем в 1672 г. Пикар произвел новое, более точное градусное измерение меридиана. В том же году соответствующее сообщение было заслушано в Королевском обществе. Находясь в уединении в Кембридже, Ньютон, по-видимому, долго не знал об измерениях Пикара, усиленные занятия оптикой в 1672—1675 гг. отвлекали его от исследования вопросов тяготения. Он вернулся к ним лишь тогда, когда эти же вопросы поднял Гук. Новое градусное измерение Пикара позволило Ньютону пересмотреть свои вычисления и получить желательный результат. Перед нами поучительный пример связи теоретических построений с эмпирическими данными: неверная величина земного радиуса затормозила на много лет правильный в своей основе ход мысли Ньютона!

Впрочем, некоторые исследователи (Ф. Кэджори и др.) предложили другое объяснение: Ньютон испытывал затруднения в вопросе, как именно измерять расстояние между падающим телом и Землей: брать ли его по отношению к поверхности или центру; только к 1685 г. он уточнил понятие о материальной точке, позволившее рассматривать массу Земли сосредоточенной в ее центре.

ИСААК НЬЮТОН (1643-1727)

Английский физик, механик, астроном и математик. В 1687 г. вышел его фундаментальный труд «Математические начала натуральной философии», в котором сформулированы основные законы классической механики. «Математические начала» явились поворотным пунктом всех работ по механике и небесной механике в течение последующих двух веков. Ньютон разработал дифференциальное и интегральное исчисление

Выводы, касающиеся тяготения, и в частности «падения Луны на Землю», тесно связаны с понятием о цептробежной силе. В этом пункте Ньютон имел предшественника в лице Альфонсо Борелли (1608—1679). Этот итальянский ученый, пытаясь в 1665 г. объяснить, почему планеты не падают на Солнце, ссылался на пример камня, вращаемого по кругу и сильно натягивающего нить, к которой он привязан: чтобы уравновесить силу, с которой планета стремится к Солнцу, эта планета противополагает ей тенденцию каждого тела удалиться от центра вращения.

Выше мы уже упоминали о вкладе Гюйгенса в механику. Кроме всего сказанного с именем Гюйгенса в механике связано много открытий и изобретений: изобретение маятниковых часов, изобретение часов с коническим маятником, устройство циклоидального маятника и т. д. В своих работах он широко пользовался механическим принципом относительности. В этом его механика глубоко отличается от механики Ньютона.

По Гюйгенсу, в механике нельзя оперировать понятиями покоя и движения, отнесенными к бесконечному пустому пространству. Даже вращение он рассматривал как относительное движение частей тела, стремящихся в различные стороны и удерживаемых связью. Но в данном случае нас интересуют не столько принципиальные различия в воззрениях Гюйгенса и Ньютона, сколько значение трудов первого в генезисе закона тяготения.

Сочинение Гюйгенса «Маятниковые часы» вышло в свет в 1673 г., когда Ньютон вновь вернулся к размышлениям о законе тяготения. В приложении к нему были напечатаны (без доказательств) «Теоремы о центробежной силе, вызванной круговым движением». Здесь были формулированы основные закономерности, связывающие центробежные силы с расстоянием и скоростями.

В год выхода в свет «Маятниковых часов» Гюйгенс послал через Ольденбурга экземпляр своего труда Ньютону. Гораздо позднее (в 1714 г.) последний писал: «Все, что с тех пор Гюйгенс опубликовал о центробежных силах, я предполагаю, он знал раньше меня». Это действительно так, ибо Гюйгенс вывел закон центробежной силы уже в 1659 г.

Однако Ньютону не нужно было дожидаться выхода в свет сочинения Гюйгенса для того, чтобы произвести свои собственные расчеты. В приложении к письму Галлею от 14 июля 1686 г. содержится рассуждение, которое Ньютон, как он сам говорит, нашел, разбирая свои старые бумаги. Оно дает основание полагать, что Ньютон уже до 1673 г. мог идти своим путем, независимо от Гюйгенса, и вывести центростремительное ускорение без гюйгенсовского понятия центробежной силы. А именно: Ньютон рассматривает многоугольник, вписанный в окружность. Тело, обладающее заданной скоростью, движется по периметру, отражаясь в каждой вершине о г окружности. Сила отражения пропорциональна скорости, а сумма сил в данное время будет пропорциональна этой скорости и числу отражений вместе. Переходя к пределу, когда длины сторон многоугольника стремятся к нулю, Ньютон определяет силу, с которой движущееся тело давит на окружность, и равное и направленное в противоположную сторону противодействие, оказываемое окружностью на движущееся тело.

В 80-х годах XVII в. над теми же вопросами задумывались и другие английские ученые. По словам Галлея, ему удалось в 1683 г. вывести из третьего закона Кеплера обратную квадратичную пропорциональность тяжести с расстоянием, но он не мог отсюда объяснить и вывести эллиптическое движение светил. Архитектор Рен развивал воззрения, похожие на взгляды Гука, предполагая, что движение планет слагается из их равномерного прямолинейного движения и падения на Солнце. Во время встречи Рена с Гуком и Галлеем Рен предложил премию тому, кто докажет, что под действием силы, убывающей обратно пропорционально квадрату расстояния, возникает движение по эллипсу.

В августе 1684 г. Галлей посетил Ньютона в Кембридже и задал ему прямой вопрос: какова будет траектория планет при предположении, что сила тяготения меняется обратно пропорционально квадрату расстояния их от Солнца? «Эллипс», – без колебания сказал Ньютон. На вопрос, почему, он ответил: «Потому, что я вычислил это». 10 декабря 1684 г. Галлей доложил Королевскому обществу, что Ньютон скоро пришлет важный мемуар «О движении». Этот мемуар был прислан в феврале 1685 г., но не был опубликован, а только зарегистрирован как заявка на приоритет.

В этом мемуаре со всей отчетливостью было формулировано положение, согласно которому сферическое тело однородной плотности во всех точках, одинаково отстоящих от центра; притягивает внешнюю частицу, как если бы вся масса была сосредоточена в центре.


    Ваша оценка произведения:

Популярные книги за неделю