Текст книги "Механика от античности до наших дней"
Автор книги: Ашот Григорьян
Жанры:
Культурология
,сообщить о нарушении
Текущая страница: 26 (всего у книги 32 страниц)
ПЕРЕСТРОЙКА СИСТЕМЫ ПОДГОТОВКИ КАДРОВ И ФОРМ НАУЧНОЙ РАБОТЫ
Для механики, как и для всей советской науки, первостепенное значение имела та кардинальная перестройка системы образования и организации научных исследований, которая была непосредственным следствием победы Великой Октябрьской социалистической революции и утверждения нового социалистического общественного строя. Впервые в истории образование всех ступеней стало доступным для народных масс. Уже в начале 20-х годов значительное большинство студентов были детьми рабочих и крестьян. Они принесли в стены старых вузов энтузиазм молодых строителей нового общества, сознание ответственности перед народом, стремление к практическому применению теоретических методов.
Изучение марксистской диалектики и вся воспитательная работа партийных и комсомольских организаций формировали специалиста нового типа. Не могло быть места игнорированию идеологических вопросов, нельзя было остаться в стороне от борьбы с буржуазной идеологией, необходимо было осознать смысл и значение огромных задач, стоящих перед страной.
Развитие науки приобретало особое значение: построение социалистического общества немыслимо без самого широкого использования достижений науки, освоение этих достижений должно было ускорить технический прогресс Советской страны, утверждение новой идеологии должно было основываться на критическом освоении и дальнейшем развитии научного наследия прошлого. Наука впервые в истории стала приобретать общенародный характер, на ее развитие ускоряющим образом начало действовать общегосударственное планирование, становившееся все более важным фактором научного прогресса.
Все эти процессы находили свое выражение и в ходе развития советской механики. Как упоминалось выше, уже в 1918 г. был создан Центральный аэрогидродинамический институт (ЦАГИ) в Москве. Дореволюционная Россия не знала научных учреждений такого типа. Впервые в стране был создан исследовательский институт с большим коллективом сотрудников, в котором велись как экспериментальные, так и теоретические работы, который должен был решать как чисто научные, так и технические проблемы в обширной отрасли знаний. Успех этой новой формы организации научной работы был несомненен. Благодаря сочетанию усилий специалистов различного профиля, что обеспечивалось высоким качеством научного руководства, благодаря тому, что систематически расширялся коллектив и укреплялась материальная база, ЦАГИ неизменно давал важные для науки и практики результаты и воспитывал новые кадры ученых. Уже к концу 20-х годов ЦАГИ занимал передовые позиции в мировой науке, а к 1968 г. число выпусков его трудов составило около тысячи – они охватывали не только все актуальные проблемы теоретической и прикладной гидро– и аэромеханики, но и многие вопросы теории упругости, сопротивления материалов и других разделов механики. Формы организации работы ЦАГИ и во многом сходного с ним Физико-технического института, открытого в Петрограде, служили образцом при создании многих советских научно-исследовательских учреждений. Конечно, ограниченность материальных средств и немногочисленность кадров в первые годы после Октябрьской революции не давали возможности сразу начать широкое развертывание сети научно-исследовательских учреждений. В высших учебных заведениях перестройка учебных планов и увеличение объема лабораторных и вообще практических занятий, введение производственной практики требовали больших усилий профессорско-преподавательского состава. Привлечение молодежи к научной работе во все более широких размерах стало осуществляться через семинары при кафедрах – форма работы, мало распространенная в дореволюционное время, затем через аспирантуру (причем число аспирантов сразу превысило число тех, кого оставляли до 1917 г. «для приготовления к профессорскому званию»). На кафедрах преобладали индивидуальные формы работы, к тому же должно было пройти несколько лет, чтобы молодежь стала в науке на «собственные ноги». Поэтому меры, которые принимались в общегосударственном масштабе, чтобы сделать вузовскую кафедру научно-исследовательским коллективом, могли дать определенные результаты не сразу, и их воздействие стало ощутимым примерно к середине 20-х годов.
Дореволюционная Академия наук объединяла небольшое число ученых и располагала очень скромными средствами. Сразу организовать коллективную исследовательскую работу в области механики в Академии наук не было возможности. Здесь тоже надо было потратить несколько лет для воспитания новых кадров. При Академии наук была создана аспирантура, постепенно учреждались научные комиссии, в том числе по механике; в 30-е годы приток новых сил уже позволил организовать в системе Академии наук Институт механики. До середины 30-х годов ЦАГИ оставался единственным научным учреждением большого масштаба в области механики, но постепенно в Академии наук СССР, на кафедрах механики в крупных вузах, в академиях наук союзных республик формировались научные коллективы в области механики, их количество и средняя численность неизменно росли. Благодаря национальной политике советского государства эти коллективы возникали не только в старых научных центрах, но и в новых, на периферии. Один из примеров – Тбилисская школа механиков и математиков, возглавляемая Н.И. Мусхелишвили.
Примерно к 20-летию Октябрьской революции советская механика была внушительным образом представлена во всех достаточно многочисленных областях этой науки. Советские механики работали над наиболее злободневными и фундаментальными проблемами (вне их внимания оставались, пожалуй, только вопросы аксиоматизации механики, имевшие чисто теоретический интерес). Это показывает следующая краткая характеристика основных направлений развития механики.
АНАЛИТИЧЕСКАЯ МЕХАНИКА СИСТЕМ ТОЧЕК И ТВЕРДЫХ ТЕЛ В ДОВОЕННЫЙ ПЕРИОД
Более интенсивно, чем где бы то ни было за рубежом, в Советском Союзе развивались вариационные методы, велась работа по построению аналитической механики в новых переменных (групповых, неголономных). В этих исследованиях сказывалось влияние геометрических традиций, идущих от Лобачевского. Они складывались в новое своеобразное направление, возникшее первоначально в Казани, затем в Москве (школа Н.Г. Четаева).
Остановимся сначала на некоторых направлениях исследований в области неголономной механики.
На основе разработанной дифференциальной геометрии неголономных многообразий можно получить уравнения движения механической системы. Эти уравнения были выведены советским ученым В.В. Вагнером в локальных координатах. Следующим этапом было решение двух вопросов: о допустимых траекториях неголономной механической системы и о методах интеграции ее уравнений движения. Ответ на первый вопрос таков: всегда существует такая траектория в неголономном многообразии, которая соединяет любые две его точки. В порядке ответа на второй вопрос было показано, что всегда возможен такой выбор локальных координат, который принципиально упрощает интеграцию уравнений движения. Например, в случае инерциального движения система локальных координат может быть выбрана так, что все первые интегралы задачи получаются из условия постоянства компонентов скорости в этой системе.
Эти результаты не остались без применения к традиционным задачам механики. В.В. Вагнер успешно исследовал такими методами задачу С.А. Чаплыгина о плоском неголономном движении, изучал свойства фазового пространства в эйлеровом случае движения твердого тела вокруг неподвижной точки, рассмотрел и новые задачи неголономной механики. В.В. Добронравов подробно рассмотрел вопрос о применении неголономных координат и последовательно провел все построение аналитической механики в этих координатах. Ряд основных результатов прежней теории остался в силе, некоторые из них оказались верными только с известными ограничениями. Такие ограничения выделяют классы механических систем, имеющие определенный интерес.
К рассматриваемому направлению относятся многочисленные работы, в которых либо исследуются возможности обобщения результатов и методов голономной механики на неголономные системы, либо методы неголономной механики применяются для углубленного исследования голономных систем. Значительное внимание было уделено анализу понятия виртуального перемещения и вопросу об условиях перестановочности операций виртуального и действительного перемещений.
В значительной мере смыкаются с неголономной механикой важные исследования Н.Г. Четаева (1902—1959), связанные с применением и обобщением вариационного принципа Гаусса.
В 1932—1933 гг. в небольшой статье «О принципе Гаусса» Четаев обобщил понятие о возможных перемещениях, что позволило устранить противоречие между принципом Гаусса и принципом Даламбера—Лагранжа, возникшее в аналитической механике при переходе от исследований линейных неголономных систем к нелинейным неголономным системам.
Четаев обобщил также понятие освобождение материальных систем от связей, лежащее в основе принципа Гаусса. Четаев высказал новую точку зрения на освобождение материальных систем, понимая под освобождением системы всякое ее преобразование, подчиняющееся определенному математическому алгоритму. В дальнейших работах Н.Г. Четаева и его школы с этой точки зрения был рассмотрен широкий круг вопросов. Укажем в качестве примера работы Н.Г. Четаева и Т.Н. Пожарицкого о механических системах с неидеальными связями. Эти исследования находят применение в теории автоматического регулирования.
Основополагающими работами в области аналитической механики являются исследования советских ученых по уравнениям динамики в групповых переменных. В 1927– 1928 гг. Четаев вывел уравнения Пуанкаре в новой, канонической форме и обобщил их на случай нестационарных связей. Эти результаты были им развиты в 1941 г. Было показано, писал Четаев, что «весьма интересная мысль Пуанкаре о применении групп Ли в динамике может быть развита на случай зависимых переменных, когда группа возможных перемещений интранзитивна».
К исследованиям Четаева примыкают интересные работы советских ученых М. Ш. Аминова и А.А. Богоявленского.
Еще одно направление, в котором развивались исследования по аналитической механике, – применение понятия теоретически устойчивых движений к исследованию действительных движений механики. Основные работы и здесь принадлежат Н.Г. Четаеву, который высказал и развил идею о возможности создания аналитической механики на основе отбора истинных состояний движения из всех возможных движений, обладающих устойчивостью того или иного характера. Эта идея была развита Четаевым в работах 1931—1945 гг. Сформулировав задачу об устойчивости механических систем, Четаев дает строгое доказательство того, что для невозмущенных движений в случае их устойчивости в первом приближении уравнения Пуанкаре в вариациях будут иметь лишь нулевые характеристические числа. Если невозмущенное движение устойчиво, то соответствующие уравнения в вариациях приводятся к системе уравнений с постоянными коэффициентами.
В механике твердого тела в мировой науке на первый план выдвигались вопросы, связанные с гироскопией. Советская механика была представлена в этой области
A. Н. Крыловым и большой группой ученых, сформиро-вавшихся уже в советское время ( Е.Л. Николаи,
B. В. Булгаков, А.Ю. Ишлинский и др.) Принимая во внимание достижения в годы Великой Отечественной вой-ны и блестящие успехи в мирное время в освоении космического пространства, можно считать неоспоримым, что как советская гироскопическая техника, так и подкреплявшая ее теория уже тогда занимали то выдающееся положение, которое они сохраняют по сей день. Это верно и для такой почти сливающейся с математикой области, как теория динамических систем. Благодаря работам Московской математической школы по качественной теории дифференциальных уравнений в СССР были быстро освоены новые топологические методы исследования, и в 30е годы советские ученые создали ряд выдающихся работ по общей теории динамических систем.
В теории устойчивости тоже тесно переплетаются разработка общих математических методов и исследование более конкретных механических проблем. Задачи, выдвигаемые различными областями техники, заставили заняться помимо статической и динамической устойчивостью не только в рамках аналитической механики неизменяемых систем, но и в теории упругости, в механике жидкостей и газов. Потребовалось применение более строгих математических методов, поэтому были широко использованы замечательные результаты Ляпунова, и началось дальнейшее развитие его методов. Оказалось целесообразным применение в различных вопросах разных характеристик устойчивости. Формируется новая научная школа, разрабатывающая этот обширный цикл вопросов; в нее входят и специалисты по небесной механике, для которых устойчивость по Ляпунову, т. е. по отношению к возмущениям начальных данных, имеет особо важное значение (Московская школа – Н.Д. Моисеев, Г.Н. Дубошин, Н.Ф. Рейн и др.), и ученые, занимавшиеся общими методами аналитической механики и теории дифференциальных уравнений (Казанская школа – Н.Г. Четаев, Г.В. Каменков, И.Г. Малкин, К.П. Персидский и др.).
Особенно бурно и широко развивалась теория колебаний, в которой методы Ляпунова тоже нашли плодотворное применение. Нелинейные колебания, изучение которых стало первоочередной задачей к началу 20-х годов, стали в сущности предметом новой научной дисциплины, получившей название (пожалуй, не совсем точное) нелинейной механики. Уже к началу 30-х годов советская механика занимает в этой области ведущее положение благодаря трудам школы Л.И. Мандельштама (1879– 1944), Н.Д. Папалекси (1880—1947), А.А. Андронова (1901—1952), широко применявшей методы Ляпунова и Пуанкаре, и трудам Н.М. Крылова (1879—1955) и Н.Н. Боголюбова, использовавших главным образом асимптотические методы, родственные методам небесной механики. Развитие современной теории нелинейных колебаний в ряде других стран, например в США, началось с изучения переводных трудов советских ученых.
МЕХАНИКА СПЛОШНОЙ СРЕДЫ В ДОВОЕННЫЙ ПЕРИОД
В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но и они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости и таких прикладных дисциплин, как строительная механика и сопротивление материалов.
Впервые полноправным разделом механики стала теория пластичности. Наряду с определенными результатами, полученными на основе ранее разрабатывавшихся статических теорий, были начаты обширные исследования новых моделей пластического и вязкопластического состояний. Это сочеталось с интенсивной работой в таких практически важных и специфических областях, как механика сыпучей массы и механика грунтов.
В гидро– и аэромеханике больше всего усилий потребовала теория крыла и винта самолета в связи с переходом к исследованию неустановившихся движений и к учету сжимаемости. Приближение скоростей в авиации к звуковым, а также задачи баллистики выдвинули столько новых вопросов, что в особую дисциплину выделилась газовая динамика. Многочисленные работы были посвящены теории пограничного слоя. Широко разрабатывалась теория волн (ранее представленная только работами Остроградского и Жуковского), включая теорию волнового сопротивления. Возникли новые имеющие фундаментальное значение исследования по теории турбулентности с применением вероятностных методов. Теория фильтрации именно в трудах советских механиков этого периода из инженерной дисциплины, представляющей одну из глав гидравлики, превратилась в отдел гидродинамики. Также новаторскими были исследования по динамике смесей жидкостей и газов – здесь мы переходим в область неньютоновых жидкостей.
Сравнительно мало разрабатывались специфические проблемы теории вязкой жидкости, но и тут были получены заметные результаты. Выдающиеся результаты были достигнуты при исследовании существования и единственности решений общих уравнений гидродинамики идеальной жидкости.
Таким образом, к исходу 30-х годов советская наука была представлена во всех областях механики того периода, притом не единичными исследователями, а коллективами, целыми научными школами и направлениями. Полнокровными стали новые институты и лаборатории Академии наук СССР, в том числе Институт механики, Сейсмологический институт, Математический институт им. В.А. Стеклова (его отдел механики) и др. Механика заняла уже заметное место и в республиканских академиях.
Убедительным доказательством того, насколько многочисленны стали кадры механиков и как выросла потребность в них, является выделение во многих университетах механико-математических факультетов и организация при них научно-исследовательских институтов (например, в МГУ). О том же свидетельствует и факт систематического проведения совещаний и конференций, например Всесоюзной конференции по колебаниям (1931), всесоюзных конференций по аэродинамике (1931, 1933), конференции по волновому сопротивлению (1937), Всесоюзного совещания по строительной механике и теории упругости (1939). На конец 1941 г. были запланированы Второе всесоюзное совещание по строительной механике и теории упругости и Первое всесоюзное совещание по аэродинамике и общей механике. Оба они не состоялись из-за начавшейся войны, но интересна намеченная программа их работы, выявляющая преобладавшие в то время направления.
На совещании по строительной механике и теории упругости должны были работать такие секции: а) пластинки, оболочки и тонкостенные конструкции; устойчивость конструкций; динамические задачи строительной механики; нелинейные задачи теории упругости; стержневые системы и несущая способность сооружений; б) пластичность, ползучесть и прочность; механика грунтов и сыпучих тел; в) экспериментальные методы измерения напряжений.
На совещании по аэродинамике и общей механике должны были быть поставлены и обсуждены обзорные доклады по таким темам: проблема гидродинамического сопротивления; проблема больших скоростей в сжимаемом газе; современные проблемы теории крыла; фильтрация жидкостей и газов через пористые среды; проблемы внешней баллистики; проблемы гироскопии; устойчивость движения; проблемы теории регулирования и др.
Созыв таких конференций и совещаний не только отвечал потребностям научного общения, но и служил в известной мере целям планирования. Планирование в довоенный период осуществлялось в масштабах кафедры, вуза, института с учетом тех заявок и предложений, которые поступали преимущественно от отдельных предприятий, заводских лабораторий и т. п. Координация научных работ в масштабе республики и всего Союза систематически еще не проводилась, и в этом отношении научные конференции и совещания имели большое значение.
Наряду с гораздо более многочисленными и регулярнее издававшимися, чем в предреволюционную эпоху, «Трудами», «Записками» вузов и научно-исследовательских институтов было начато издание журнала «Прикладная математика и механика» (с 1937 г.). Работы по механике систематически печатались в «Известиях Отделения технических наук» Академии наук СССР и в журналах республиканских академий. Литература по механике публиковалась в масштабах, совершенно несравнимых с прошлым. Это были и специальные монографии, и комментированные издания классиков науки, и учебники разного назначения и объема. Советскими механиками были созданы учебные курсы, получившие мировое признание и переведенные на многие языки. Этой важной для дальнейшего развития науки работе отдали немало сил крупные советские механики, продолжая традицию Остроградского и Жуковского. В этот период впервые было издано полное собрание сочинений Жуковского, в которое вошли многие ранее не публиковавшиеся работы. Это издание стало событием в истории советской механики и явилось первым в ряду последовавших за ним изданий трудов выдающихся механиков нашей страны.