355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ашот Григорьян » Механика от античности до наших дней » Текст книги (страница 23)
Механика от античности до наших дней
  • Текст добавлен: 24 сентября 2016, 07:14

Текст книги "Механика от античности до наших дней"


Автор книги: Ашот Григорьян


Жанры:

   

Культурология

,

сообщить о нарушении

Текущая страница: 23 (всего у книги 32 страниц)

ТЕОРИЯ УПРУГОСТИ И СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Связь между прикладными задачами и теоретическими обобщениями в русской механике второй половины XIX – начала XX в. получила также яркое выражение в работах по теории упругости и сопротивлению материалов.

Задачи теории упругости и сопротивления материалов решались еще в XVII—XVIII вв.; выше говорилось, в частности, о некоторых работах в этой области, выполненных Эйлером.

В России развитие теории упругости тесно связано прежде всего с именем М.В. Остроградского, который опубликовал две статьи о малых колебаниях неограниченной изотропной упругой среды при данном начальном ее возмущении. Эти работы – «Об интегрировании уравнений в частных дифференциалах, относящихся к малым колебаниям упругой среды» и «Мемуар об интегрировании уравнений в частных дифференциалах, относящихся К малым колебаниям упругих тел» – были напечатаны в 1-м и 2-м томах «Мемуаров Петербургской академии наук» в 1831—1833 гг.

После работ М.В. Остроградского большой вклад в дальнейшее развитие теории упругости и сопротивления материалов внесли его ученики Д.И. Журавский, Г.В. Паукер, а также А.В. Гадолин, X. С. Головин, В.Л. Кириичев, Ф.С. Ясинский и многие другие. Д.И. Журавский (1821 – 1891) – воспитанник Института инженеров путей сообщения – был замечательным ученым и инженером, основоположником русской школы мостостроения. В работе «О мостах раскосной системы Гау» (СПб., 1855—1856) он первый дал теорию расчета мостовых ферм и формулу для расчета изогнутых балок на изгиб при наличии скалывающих напряжений в них. Крупнейшие иностранные ученые-механики, в том числе Сен-Венан, отметили значение работ Журавского как первого ученого, пополнившего теорию изгиба новым открытием. В ряде курсов вывод, полученный Журавским, называется теоремой Журавского.

Позднее, во второй половине XIX – начале XX в., среди русских мостостроителей особо выделялись профессора Н.А. Белелюбский (1845—1922) и Л.Д. Проскуряков (1858-1926).

Белелюбский построил первую в России лабораторию по испытанию материалов и провел большие работы по определению механических характеристик цемента и бетона. Проскуряков первым в России начал применять фермы с треугольной решеткой. Кроме того, он опубликовал несколько курсов по сопротивлению материалов, получивших широкое распространение в высших технических заведениях России.

Профессор Инженерной академии и почетный член Петербургской академии наук Г.Е. Паукер (1822—1889) был создателем первоклассных военных и портовых сооружений и большого числа гражданских зданий, а также автором первого в России курса «Строительной механики» (СПб., 1891). Ему принадлежит ряд исследований по расчету сводов и глубины залегания мостовых опор. В 1849 г. Паукер опубликовал большую работу «О проверке устойчивости цилиндрических сводов».

С именем профессора Артиллерийской академии А.В. Гадолина (1828—1892) связаны многочисленные усовершенствования в артиллерии. В работе «О сопротивлении стен орудия давлению пороховых газов при выстреле» («Артиллерийский журнал», 1861) он указал на необходимость руководствоваться при проектировании орудийных стволов началами теории упругости, в частности использовать для этого задачу Ламе (1795—1870) о равновесии полого цилиндра под действием равномерного внешнего и внутреннего давления. Он получил формулу Ламе для определения сопротивления стен цилиндра, подвергающихся внутреннему давлению. Формула, как показал Гадолин, давала величину наибольшего значения истинного давления; для определения нижней границы давления дается особая формула.

Значение другого исследования Гадолина – «Теория орудий, скрепленных обручами» («Артиллерийский журнал», 1861) – заключалось в предложенном впервые методе расчета упругопрочного сопротивления орудийных стволов при скреплении их стальными кольцами. За эту работу в 1864 г. автору была присуждена Большая Михайловская премия.

Разработкой прикладных вопросов теории упругости занимался военный инженер X. С. Головин (1844—1904). В работе «Одна из задач статики упругого тела» (1880– 1881) он впервые дал расчет упругой арки методами теории упругости. В этой работе Головин рассматривает плоскую задачу об изгибе бруса, на внешнем радиусе которого приложены силы, распределенные по определенному закону, а на внутреннем радиусе внешние силы отсутствуют.

Большая заслуга в развитии механики и сопротивления материалов принадлежит В.Л. Кирпичеву (1845– 1913). Кирпичев учился в Михайловской артиллерийской академии и в ней же начал в 1868 г. преподавательскую деятельность. Позднее Кирпичев преподавал также в Петербургском технологическом институте (с 1876 г. – в качестве профессора). В 1885 г. он был поставлен во главе вновь учрежденного Харьковского технологического института, а в 1898 г. – Киевского политехнического института; в организации обоих он принял решающее участие. С 1903 г. Кирпичев работал в Петербургском политехническом институте. Здесь он создал лабораторию прикладной механики, где под его руководством проводились научные исследования, в частности изучение деформаций оптическим методом. Кирпичев читал многие курсы – механику, сопротивление материалов, графическую статику, детали машин и др. Он написал ряд учебников, среди них «Сопротивление материалов» (СПб., 1884), «Основания графической статики» (1902) и широко известные «Беседы о механике» (1907). В статье «О подобии при упругих явлениях» («Журнал Русского физико-химического общества», 1874) Кирпичев вывел условия подобия упругих тел, сделанных из одного материала: два таких тела, подобные до приложения к ним внешних сил, остаются подобными и после их действия, если силы распределены по поверхностям обоих тел подобным образом и величины соответствующих сил на единицу поверхности каждого из тел одинаковы.

Значительный вклад в развитие теории упругости, сопротивления материалов, статики сооружений внес Ф.С. Ясинский (1856—1899). По окончании Петербургского института инженеров путей сообщения Ясинский работал на железных дорогах. В 1896 г. он был избран профессором Петербургского института инженеров путей сообщения. Большая часть научных исследований Ясинского связана с его инженерной деятельностью. В 1893 г. он опубликовал большую работу «Опыт развития теории продольного изгиба». Кроме того, ему принадлежит ряд важных работ по теории устойчивости упругих стержней. В начале своей научной деятельности теорией упругости успешно занимался выдающийся математик

B. А. Стеклов, имя которого нам еще встретится далее. В 1893 г. он напечатал три работы: «Одна задача из теории упругости», «О равновесии упругих цилиндрических тел», «О равновесии упругих тел вращения», а в 1899 г. появилась его четвертая работа «К задаче о равновесии упругих изотропных цилиндров». Все они были опубликованы в «Сообщениях Харьковского математического общества».

Вопросы устойчивости упругих систем приобрели в начале XX в. огромное значение в различных областях техники, поэтому многие русские ученые весьма серьезно занимались решением связанных с этой проблемой задач.

В этой области важные результаты были получены

C. П. Тимошенко (родился в 1878 г.), который до 1919 г. преподавал в Петербургском и Киевском политехнических институтах; в 1920 г. Тимошенко выехал за границу. До отъезда из России он написал много работ по теории устойчивости упругих систем (стержней, пластин, оболочек). За работу «Об устойчивости упругих систем» («Известия Киевского политехнического института», 1910) Тимошенко был удостоен премии Д.И. Журавского. В этой работе он оригинально развил приближенный метод Дж. Рэлея и В. Ритца для определения частот колебаний в упругих системах; прием Тимошенко основан на рассмотрении энергии системы. Помимо большого числа научных исследований Тимошенко написал замечательные учебники: «Курс сопротивления материалов» (изд. 1. Киев, 1911), «Курс теории упругости» (СПб., 1914) и др. Учебниками Тимошенко до сих пор пользуются в высших учебных заведениях.

Новый приближенный метод интегрирования дифференциальных уравнений теории упругости был разработан профессором Петербургского политехнического института и Морской академии И.Г. Бубновым (1872—1919). Впервые этот метод, не связанный с вычислением энергии системы, Бубнов описал в 1911 г. в отзыве на упомянутое выше сочинение Тимошенко, представленное на премию имени Журавского. Затем Бубнов использовал этот метод для решения задач на устойчивость пластин, важных в расчетах обшивки корабельного корпуса. Задачи на расчет жестких и гибких пластин разобраны в известном курсе Бубнова «Строительная механика корабля» (СПб., 1912). Бубнову принадлежат очень большие заслуги в теории и практике кораблестроения, в частности он явился в России пионером строительства подводных лодок, первая из которых была спущена на воду в 1903 г.

Дальнейшее развитие метод Бубнова получил в трудах Б.Г. Галеркина (1871—1945), прежде всего в статье «Стержни и пластинки» («Вестник инженеров», 1915). Воспитанник Петербургского политехнического института, Галеркин начал преподавательскую и научную деятельность в 1909 г. Особенно широко развернулось его научное творчество уже после Октябрьской революции.

Метод Бубнова – Галеркина, в некоторых отношениях более общий и простой, чем метод Рэлея—Ритца—Тимошенко, получил очень широкое распространение, применяется он и теперь к ряду задач вариационного исчисления, функционального анализа и математической физики.

В связи с потребностями кораблестроения теорией упругости занимался и А.Н. Крылов. В частности, ему принадлежит подробное исследование вынужденных колебаний стержней постоянного сечения, сперва напечатанное в «Mathematische Annalen» за 1905 г. и затем включенное в упоминавшийся курс дифференциальных уравнений математической физики. Обобщенный для этой задачи метод Пуассона, примененный Пуассоном к свободным колебаниям, Крылов применил к вынужденным колебаниям груза, подвешенного к концу растяжимой нити, и к связанным с этой задачей вопросам – теории индикатора паровой машины, измерению давления газа в канале орудия и к крутильным колебаниям вала с маховиком на конце.

Целый ряд задач теории упругости – по устойчивости стержней и пластин, вибрациям стержней и дисков и пр. – решил в 1911—1913 гг. А.Н. Дынник (1876– 1950). Дынник окончил Киевский политехнический институт в 1899 г. и с 1911 г. состоял профессором Горно-металлургического института в Днепропетровске. Он продолжал успешные изыскания по теории упругости и в советский период.

К 1914 г. относится начало работ по теории упругости Л.С. Лейбензона (1879—1951) – прежде всего по устойчивости упругого равновесия длинных сжатых стержней с первоначальным кручением около прямолинейной оси стержня, а затем по устойчивости сферической и цилиндрической оболочек. Практическое значение первой задачи ясно из того, что всем известные теперь сетчатые башни системы В.Г. Шухова составлены из закрученных прямолинейных образующих.

Исследованиями в области теории упругости занимался в начале XX в. и С.А. Чаплыгин. К 1900 г. относятся его рукописи «Деформация в двух измерениях» и «Давление жесткого штампа на упругое основание», которые впервые были напечатаны лишь в 1950 г. В этих статьях Чаплыгин разработал метод решения плоской задачи теории упругости, основанный на применении теории функций комплексного переменного, и использовал его при решении задачи об эллиптическом отверстии в бесконечной плоскости и задачи о вдавливании прямоугольного штампа в упругую полуплоскость.

Аналогичный метод решения плоской задачи теории упругости был разработан Г.В. Колосовым (1867—1936). В 1909 г. Колосов опубликовал весьма важную работу «Об одном приложении теории функций комплексного переменного к плоской задаче математической теории упругости», где им были установлены формулы, выражающие компоненты тензора напряжений и вектора смещения через две функции комплексного переменного, аналитические в области, занимаемой упругой средой. В 1916 г. метод Колосова был применен к тепловым напряжениям в плоской задаче теории упругости Н.И. Мусхелишвили. Деятельность Мусхелишвили, как и некоторых других названных здесь ученых, развернулась во всей широте уже после Октябрьской революции.


ФИГУРЫ РАВНОВЕСИЯ ВРАЩАЮЩЕЙСЯ ЖИДКОСТИ

Вкратце остановимся на проблеме фигур равновесия вращающейся жидкости, в разработку которой основной вклад внес А.М. Ляпунов.

Ньютон показал, что под влиянием центробежных сил и взаимного притяжения своих частиц однородная жидкость при малой угловой скорости принимает форму сжатого эллипсоида вращения. Вопрос о форме, принимаемой равномерно вращающейся вокруг неподвижной оси жидкой массой, все частицы которой взаимно притягиваются по закону Ньютона, приобрел весьма важное значение при исследовании проблем космогонии.

В XVIII—XIX вв. при решении этой проблемы исходили из гипотезы о том, что на некоторой стадии развития небесные тела были жидкими. А. Клеро показал, что если скорость вращения жидкой массы очень мала, то за поверхности уровня с достаточной степенью точности могут быть приняты поверхности эллипсоидов вращения. Но этот результат справедлив лишь в первом приближении, а теория Клеро не позволяла найти более высокие приближения. Затем А. Лежандр и П. Лаплас предложили методы, которые позволяли находить последовательные приближения.

В 1829 г. Пуассон отметил, что результаты Лежандра и Лапласа также оставляют желать много лучшего, поскольку не был исследован вопрос, будут ли сходящимися ряды, к которым приводят их методы. Создавшаяся ситуация и побудила Ляпунова продолжить исследования. Ляпунов в отличие от Лежандра, Лапласа и Пуассона не пользовался разложением в ряд, а рассмотрел уравнения задачи (из которых первое является уравнением Клеро) при весьма общих предположениях о законе распределения плотности вращающейся жидкой массы.

Ляпунов поставил вопрос в общей форме и, основываясь на положении Лагранжа о минимуме потенциала, дал строгое решение задачи.

В магистерской диссертации «Об устойчивости эллипсоидальных форм равновесия вращающейся жидкости» (1884) Ляпунов впервые дал точное определение понятия устойчивости вращающейся жидкости. Он доказал, что признак устойчивости системы, обладающей конечным числом степеней свободы, не может быть перенесен на случай движения жидкости, имеющей бесконечное число степеней свободы. Далее Ляпунов установил достаточный критерий устойчивости фигур равновесия и показал, что эллипсоид вращения является устойчивой фигурой равновесия, если его эксцентриситет не превышает некоторой, определенной Ляпуновым величины.

В 1901 г. Ляпунов, преодолев огромные математические трудности и разработав ряд новых аналитических методов, выполнил строгое исследование вопроса о существовании новых фигур равновесия жидкости, равномерно вращающейся вокруг некоторой оси, если частицы жидкости взаимно притягиваются по закону Ньютона.

«Даже с внешней стороны серия мемуаров и отдельно изданных книг [Ляпунова] по вопросу о фигурах равновесия вращающейся жидкости поражает своей грандиозностью», – отмечал Стеклов{225}.

Основной результат исследования Ляпунова таков: при наложении определенных требований на плотность жидкости для всех значений угловой скорости вращения, не превосходящих некоторого определенного предела, существует фигура равновесия вращающейся массы неоднородной жидкости, находящейся в поле своего собственного тяготения.

Работы Ляпунова по фигурам равновесия вращающейся жидкости вызвали длительную дискуссию Ляпунова с английским ученым Дж. Дарвином (1845—1912).

Дж. Дарвин исследовал вопрос об устойчивости форм равновесия вращающейся жидкости, которым А. Пуанкаре (1854—1912) дал название грушевидных (для случая вязкой жидкости). По формулам Пуанкаре, которыми пользовался английский ученый, устойчивость или неустойчивость зависит от знака некоторой величины А.

Пользуясь методом приближенных вычислений, Дарвин после весьма сложных расчетов нашел А < 0, откуда следовало, что эти формы устойчивы. На этом Дж. Дарвин построил свою космогоническую гипотезу развития двойных звезд.

Однако грушевидные фигуры равновесия получаются как частный случай из бесчисленного множества других фигур равновесия, строго выведенных Ляпуновым, причем для А получается точное выражение в виде алгебраической функции двух аргументов. Это позволило Ляпунову в результате довольно сложных вычислений, проверенных несколькими способами, показать, что А > 0, т. е. грушевидные формы неустойчивы. Иными словами, воспользовавшись без достаточной математической осторожности приближенными формулами, Дж. Дарвин получил ошибочный результат.

Об этом разногласии Ляпунов писал в работе «Об одной задаче Чебышева» (1905) и в серии мемуаров «О фигурах равновесия вращающейся и однородной жидкой массы, мало отличных от эллипсоидов», печатавшейся в «Записках Академии наук» в 1906—1914 гг. В третьей части этой работы, вышедшей в 1912 г., он подробно изложил выводы своих точных формул и все вычисления.

Пуанкаре утверждал в 1911 г., что «грушевидная форма, может быть, устойчива, но нет уверенности, что это действительно так». Дж. Дарвин считал эту фигуру устойчивой; Ляпунов же пришел к противоположному результату. Чтобы окончательно доказать правильность своей точки зрения, Ляпунов опубликовал ряд фундаментальных работ, в которых дал безукоризненное математическое доказательство своего утверждения. Таким образом, возникшая между А.М. Ляпуновым и Дж. Дарвином полемика закончилась полной победой русского ученого. Впрочем, на Западе отдельные ученые продолжали сомневаться, на чьей стороне истина. Только в 1917 г., после опубликования работы Дж. Джинса (1877—1946), зарубежные ученые окончательно признали полную правоту Ляпунова. Джине обнаружил ошибку в вычислениях Дж. Дарвина, приведшую к неверному выводу об устойчивости грушевидных фигур.

Труды Ляпунова по фигурам равновесия вращающейся жидкости до сих пор остаются непревзойденными. Все работы отечественных и зарубежных ученых, выполненные после смерти Ляпунова, в той или иной степени основаны на его идеях и методах.


ГИДРОДИНАМИКА И ГИДРАВЛИКА

Важнейшим результатом развития механико-математической мысли в России в конце XIX и в начале XX в. было появление классических работ по гидродинамике и гидравлике, принадлежащих Н.Е. Жуковскому.

Николай Егорович Жуковский (1847—1921), сын инженера, окончил физико-математический факультет Московского университета в 1868 г. С 1872 г. он преподавал в Московском техническом училище сначала математику, а затем – с 1874 по 1919 г. – механику. В 1886 г. Жуковский возглавил кафедру механики в Московском университете и в течение многих лет руководил Московским математическим обществам, с 1903 г. как его вице-президент и с 1905 г. – как президент.

Преподавательская работа в двух крупнейших учебных заведениях России отражала в некоторой мере основное направление научной деятельности Жуковского, его стремление увязать развитие научных и технических идей и на основе общих теоретических построений получать решения задач, выдвигаемых практикой.

Жуковского особенно привлекал своей наглядностью геометрический метод изложения механики. В своей магистерской диссертации «Кинематика жидкого тела» (1876) он наряду с аналитическим методом широко использует геометрический метод исследования, что дало ему возможность представить ясную картину законов движения частицы жидкости в потоке. Эта работа открыла ряд его исследований в области гидродинамики.

НИКОЛАЙ ЕГОРОВИЧ ЖУКОВСКИЙ (1847—1921)

Русский ученый, основоположник современной гидродинамики и аэродинамики. Под его руководством в 1918 г. был создан Центральный аэрогидродинамический институт (ЦАГИ)

Уже в первые годы научной деятельности Н.Е. Жуковский исследует широкий круг вопросов в области общей механики, механики твердого тела, гидродинамики, астрономии. Он изучает вопрос об ударе твердых тел (1878—1885), о гироскопических приборах и маятниках (1881—1895), дает геометрическую интерпретацию общего случая движения твердого тела вокруг неподвижной точки (1892). Особое место среди его работ по общей механике занимает докторская диссертация «О прочности движения», которую Жуковский защитил в 1882 г. В этом исследовании, посвященном одной из кардинальных проблем механики, Жуковский впервые ввел понятие о мере устойчивости движения, разработал метод оценки устойчивости движения.

В этом разделе мы рассмотрим работы Жуковского в области гидродинамики и гидравлики. В 1885 г. он опубликовал капитальный труд «О движении твердого тела, имеющего полости, наполненные однородной капельной жидкостью». Во введении он отмечает, что в первой и второй части работы рассмотрена общая теория движения тела и заключенных в нем твердых и жидких масс при условии отсутствия трения и в предположении, что скорости жидкостей имеют потенциал. Жуковский указывал, что в этом случае поступательное движение твердого тела с полостями, наполненными жидкостями, не будет отличаться от движения сплошного твердого тела, так как оно не вызывает движения частиц относительно тела. Вращательное же движение тела вызывает и полностью определяет относительное движение жидкости в полостях. В этой работе, получившей в Московском университете премию имени Брашмана, проявились основные черты научного творчества Жуковского.

В 1887 г. были изданы лекции Жуковского по гидродинамике, которые он читал в Московском университете. Во введении к лекциям он отметил, что гидродинамика является одной из блестящих глав механики, дал анализ ее развития, начиная с работ Даниила Бернулли, Даламбера, Эйлера.

В этой работе Жуковский, по-прежнему используя геометрический метод исследования, дал картину движения с образованием струй. Метод Жуковского можно было применить к исследованию турбин, удара бесконечного потока о тела, ограниченные кривыми контурами, истечения жидкости из сосудов с кривыми стенками.

При решении вопроса о течениях с отрывом струй Жуковский использовал математический аппарат теории функций комплексного переменного, который впоследствии нашел широкое развитие и применение в работах русских механиков. Жуковский развил также и фрикционную теорию сопротивления среды движущимся в ней телам. В 1887—1890 гг. он распространяет эту теорию на случай определения сопротивления судов и в работе «О форме судов», опубликованной в 1890 г., четко формулирует понятие о пограничном слое. Таким образом, в 70—80-е годы XIX в. Н.Е. Жуковский исследует задачи классической теоретической механики и гидродинамики и создает новые методы исследования в этой области.

В конце 80-х годов XIX в. характер и направление работ Жуковского несколько изменяются: появляются исследования, непосредственно связанные с требованиями техники, и они начинают занимать все большее место. Следует отметить, что на работах Жуковского сказалось развитие не столько старых, «классических», отраслей промышленности, но преимущественно новых тенденций в развитии техники. Вернее, в творчестве Жуковского мы видим переход от проблем, навеянных старыми отраслями техники (водопровод, железнодорожный транспорт и др.), к проблемам, связанным с новыми отраслями (авиация).

В области гидравлики Жуковский выполнил крупные исследования, связанные с течением грунтовых вод; непосредственным поводом здесь послужили задачи, возникшие при реконструкции московского водопровода. В работах «Теоретическое исследование о движении подпочвенных вод» (1888) и «О влиянии давления на насыщенные водою пески» (1888) Жуковский установил связь между изменением уровня подпочвенных вод и изменением барометрического давления. Он показал, что величина колебания уровня подпочвенных вод зависит от толщины водоносного слоя, и вывел формулы для определения запаса воды, имеющегося под землей. При решении этих вопросов Жуковский широко пользовался экспериментальными данными.

Эти исследования Жуковского были подытожены в 1898 г. опубликованием капитального труда «О гидравлическом ударе в водопроводных трубах». В то время никак не могли решить весьма сложный вопрос о причинах аварий магистральных труб Рублевского водопровода. Жуковский установил, что причиной этих аварий является гидравлический удар, т. е. явление резкого повышения давления в трубах при быстром закрытии задвижки в трубе. На основании многих опытов он выявил физическую сущность явления гидравлического удара и дал формулы для определения времени, необходимого для безопасного закрытия водопроводных труб (без появления гидравлического удара), а также способ предохранения водопровода от повреждений вследствие гидравлического удара. Теория гидравлического удара, уже в первые годы своего появления ставшая известной за рубежом, принесла Жуковскому мировую славу; до настоящего времени она является основой решения задач, связанных с явлениями гидравлического удара.

Исследованиями по гидравлическому удару Жуковский показал, какие широкие возможности открывает эксперимент. Сочетание теоретических и экспериментальных исследований и в дальнейшем является характерной чертой научного творчества Жуковского. Н.Е. Жуковский возвращался к тому же кругу вопросов и позднее, в статьям «К вопросу о величине диаметра водонапорной колонны, соединенной длинной трубой с открытым резервуаром» (1902) и «О повреждении водопроводных труб, случившемся 7 февраля 1914 г.».

Несколько работ Жуковского посвящено изучению вопросов речной гидравлики. Таковы статьи «О движении воды на повороте реки» (1914), которая имеет существенное значение для изучения основных процессов формирования речного русла, и «К вопросу о выборе на реке мест забора и выпуска воды для охлаждения машин больших силовых станций» (1915).

Коротко остановимся еще на одном отделе гидродинамики, созданном в связи с новыми потребностями промышленного производства. Мы имеем в виду гидродинамическую теорию смазки, разработанную Н.П. Петровым (1836-1920).

В Инженерной академии занятиями Николая Павловича Петрова по прикладной механике руководил Вышнеградский, а по математике – Остроградский. Работал Петров главным образом в области железнодорожного транспорта, занимая ответственные должности в Министерстве путей сообщения. Он был также профессором Инженерной академии и Петербургского политехнического института.

Определяющими в творчестве Петрова были задачи техники, которые он подвергал глубокой научной трактовке. Таковы, например, его важные исследования, посвященные прочности рельсов, давлению колес на них, устойчивости железнодорожных путей, тормозным системам и пр. Таковы были и его исследования по гидродинамической теории смазки, доставившие ему мировую известность. Петров сам указывал, что они были вызваны нуждами современной промышленности, переходившей от применения органических смазывающих веществ к минеральным. Последние начала производить возникшая тогда в России нефтяная промышленность. Минеральные вещества были значительно дешевле, чем органические, однако первоначально вследствие неумелого применения использование их давало плохие результаты.

Первая печатная работа Петрова по гидродинамической теории смазки вышла в 1883 г. в «Инженерном журнале» под заглавием «Трение в машинах и влияние на него смазывающей жидкости» и была удостоена Ломоносовской премии Академии наук. За ней последовала работа «О трении хорошо смазанных твердых тел и о главных результатах опытов над внутренним и внешним трением некоторых смазывающих жидкостей» (1884).

Для проверки предложенной теории Петров произвел разнообразные опыты.

Основные законы сухого трения были установлены французским ученым Ш. Кулоном (1736—1806) еще в конце XVIII в., но действие смазывающих веществ оставалось непонятным, несмотря на то, что предпринималось много попыток разрешить этот вопрос экспериментально. Оказалось, что при различных условиях смазки сила трения могла сильно меняться. Величина же силы трения при наличии смазки зависит от закона движения смазывающей вязкой жидкости (например, машинного масла). Поскольку в 80-х годах XIX в. гидродинамика вязкой жидкости была разработана очень слабо, причина возникновения трения и обусловливающие его величину физико-механические факторы оставались неясными. Именно Петров сформулировал законы изучаемых явлений, могущие лечь в основу расчета элементарных сил трения.

Как указывает известный немецкий ученый А. Зоммерфельд, « Н.П. Петров первый поднял вопрос о том, что явление трения в подшипнике подчиняется закону внутреннего трения смазочного материала, и подкрепил свою точку зрения теорией и опытом»{226}. Почти одновременно (1884—1886) и независимо от него основы гидродинамической теории смазки разработал также английский ученый О. Рейнольдс (1842—1912). В 1900 г. Петров в работе «Трение в машинах» значительно продвинул исследования в этой области. Н.Е. Жуковский также занимался изучением теории смазки и посвятил ей несколько работ. В первой из них, «О гидродинамической теории трения хорошо смазанных твердых тел» (1886), он ставит вопрос: «Откуда же берется сила, уравновешивающая давление шипа на подшипник?»{227} Он решает эту задачу, считая, что возрастание давления в слое… «могло бы быть получено при рассматривании движения весьма тонкого жидкого слоя, заключенного между двумя неконцентрическими цилиндрическими поверхностями»{228}. Таким образом, Рейнольдс и Жуковский почти одновременно и независимо друг от друга установили главную причину несущей способности вращающегося шипа в подшипнике.

В статье «О трении смазочного слоя между шипом и подшипником» (1906), написанной Жуковским совместно с Чаплыгиным, дано точное решение задачи о движении смазочного слоя. Эта классическая работа Жуковского и Чаплыгина имеет большое практическое значение; она вызвала ряд теоретических и экспериментальных исследований.

В рассматриваемый период большой вклад в развитие гидродинамики внес В.А. Стеклов. Скажем несколько слов о жизненном пути этого выдающегося ученого. Владимир Андреевич Стеклов (1864—1926) родился в Нижнем Новгороде. В 1883 г. он поступил на физико-математический факультет Харьковского университета. Два года спустя научным руководителем его здесь стал Ляпунов, оказавший сильное влияние на интересы молодого Стеклова. Под влиянием Ляпунова Стеклов занялся вопросами гидромеханики и математической физики, а также связанными с ними проблемами математики. В 1894 г. Стеклов защитил диссертацию «О движении твердого тела в жидкости» па степень магистра прикладной математики, а в 1902 г. – диссертацию «Общие методы решения задач математической физики» на степень доктора прикладной математики. С 1906 г. он возглавил кафедру математики в Петербургском университете, где воспитал целую плеяду последователей. В 1910 г. он был избран академиком (членом-корреспондентом Академии наук он состоял с 1903 г.). После Октябрьской революции Стеклов в числе других представителей русской интеллигенции стал на сторону Советской власти. В качестве вице-президента Академии наук он вел большую и чрезвычайно плодотворную научно-организационную работу.


    Ваша оценка произведения:

Популярные книги за неделю