Текст книги "Механика от античности до наших дней"
Автор книги: Ашот Григорьян
Жанры:
Культурология
,сообщить о нарушении
Текущая страница: 16 (всего у книги 32 страниц)
VII.
МЕХАНИКА В XIX ВЕКЕ
РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ
Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В четырехлетнем возрасте он неплохо знал географию и свободно читал литературу на английском языке, а восьми лет овладел итальянским и французским языками, изучал арабский, санскрит и латынь. Особенно большую склонность проявлял юноша к математике.
В 1824 г. Гамильтон поступил в Тринити-колледж Дублинского университета, где успешно изучал математические науки и разрабатывал геометрическую оптику, или теорию лучей. В возрасте 22 лет молодой ученый был назначен профессором астрономии колледжа св. Андрея Дублинского университета и королевским астрономом Ирландии. В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лекции по астрономии.
В 1837 г. Гамильтон был избран президентом Ирландской академии наук. Научные заслуги его нашли широкое признание во всем мире. В частности, в 1838 г. он был избран членом-корреспондентом Петербургской академии наук.
В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знаменитых работ – «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практических запросов их применения в оптических приборах. В третьем добавлении к этому труду ученый на основании сложных математических вычислений предсказал существование нового, до тех пор неизвестного явления – внешней и внутренней конической рефракции в двухосных кристаллах. Открытие Гамильтона вызвало огромный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.
Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый принцип наименьшего действия. Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и названная им «действием», должна иметь некоторое минимальное значение. Несколько позже Гамильтона и независимо от него принцип наименьшего действия был разработан русским ученым М.В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона – Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.
Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики (функция Гамильтона Н) оказалась при довольно широких условиях совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности – системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.
Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями, но последнее достаточно полно раскрылось лишь через столетие.
Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и законченном виде: он вел свои исследования, переходя к механике, преимущественно в предположении, что имеет дело с системой свободных материальных точек, взаимодействующих с силами, зависящими только от взаимных расстояний. Обобщение результатов и методов Гамильтона, устранение излишних ограничений, тщательная разработка математических методов является заслугой К. Якоби и М.В. Остроградского. Поэтому часто можно встретить в литературе термин «теория Гамильтона – Якоби», но исторически более справедливо говорить о теории Гамильтона – Якоби – Остроградского.
Эта теория является основным достижением аналитической механики XIX в. Поначалу казалось, что ее главное значение в развитии аналитических методов. Но более глубокое выявление связи механики с оптикой и раскрытие возможности нового геометрического истолкования механических проблем имели принципиальное значение. Во второй половине XIX в. накопление новых фактов и разработка новых методов в аналитической механике шло главным образом по линии геометризации. В начале XX столетия, когда это направление сочеталось с новыми течениями в физике, именно на созданной им основе были пересмотрены основные понятия классической механики.
УИЛЬЯМ РОУАН ГАМИЛЬТОН (1805—1865)
Английский математик и механик. Гамильтон внес большой вклад в развитие вариационных принципов механики. Построил систему комплексных чисел, так называемых кватернионов
Труды Гамильтона по механике получили высокую оценку. В 1842 г. па ежегодном собрании Британской ассоциации в Манчестере К. Якоби сказал: «Гамильтон – это Лагранж вашей страны». В 1866 г. Тэт охарактеризовал работу Гамильтона по динамике как «крупнейшее дополнение, полученное теоретической динамикой с тех пор, как были достигнуты великие успехи Ньютоном и Лагранжем». В 1835 г. Гамильтон был награжден золотой медалью Английского королевского общества.
Гамильтона всегда привлекала проблема мнимых величин, значение и геометрическая природа которых не были ясны математикам того времени. Замечательным вкладом в науку явилось открытие им в 1843 г. исчисления кватернионов – своеобразной системы чисел, представляющей собой обобщенную комплексную величину, которая состоит из суммы четырех членов. Первый член был назван ученым скаляром, три остальных – векторами (термин, введенный Гамильтоном и получивший широкое распространение в физике, механике и технических науках). В основе арифметики кватернионов лежат не две единицы, как в арифметике комплексных чисел (т. е. действительная и мнимая единицы), а четыре, операции над которыми подчинены определенным законам. Особые трудности представило для Гамильтона установление закона умножения кватернионов, который он нашел много времени спустя после того, как разработал правила их сложения и вычитания.
Гамильтон с большой глубиной и подробностью разработал теорию кватернионов, ее приложения в геометрии и механике, а также кватернионный и векторный анализы. Развитию этой теории он посвятил почти целиком последние 22 года своей жизни. В 1853 г. был опубликован капитальный труд Гамильтона по этой теории под названием «Лекции о кватернионах».
Историческая роль этой работы велика: во-первых, в ней заложены основы нынешнего векторного исчисления; во-вторых, теория кватернионов Гамильтона является одним из главных источников развития такой отрасли математики, как некоммутативная алгебра, т. е. алгебра, в которой не действует переместительный закон умножения. Такая некоммутативная алгебра получила широкое применение в современной теоретической физике.
ВКЛАД ЯКОБИ В РАЗВИТИЕ ДИНАМИКИ
Карл Густав Якоби (1804—1851) – один из крупнейших немецких математиков и механиков первой половины XIX в. Он был профессором математики сначала в Кенигсбергском, а затем в Берлинском университетах. В 1829 г. Якоби был избран членом-корреспондентом, а в 1836 г. действительным членом Берлинской академии наук. За свои выдающиеся научные заслуги он был избран членом многих зарубежных академий наук. Русские ученые одними из первых оценили огромное значение его исследований по математике и механике и уже в 1830 г. избрали его членом– корреспондентом Петербургской академии наук; три года спустя (в 1833 г.) ему было присвоено звание почетного члена Петербургской академии наук. Следует отметить, что Карл Якоби живейшим образом интересовался деятельностью Петербургской академии наук. Укреплению связей К.Г. Якоби с русскими научными кругами, в частности с М.В. Остроградским, благоприятствовал личный момент: его брат Мориц, крупный физик (известный в России как Борис Семенович Якоби), был русским академиком (с 1837 г.). К.Г. Якоби – один из создателей теории эллиптических функций, ему принадлежат крупные достижения в области теории чисел, линейной алгебры, интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления. Он ввел в математику функциональные определители, которые часто называют в его честь якобианами. Основной труд Якоби по механике – его замечательные «Лекции по динамике», выполненные в 1842—1843 гг. и изданные его учеником А. Клебшем (1839—1894) после смерти Якоби в 1866 г. Эти лекции представляют собой развитие классической аналитической механики Лагранжа и содержат много новых идей как по математике (теория дифференциальных уравнений в частных производных, вычисление геодезических линий на эллипсоиде), так и по механике.
Исходным моментом исследований Якоби по механике является принцип Гамильтона – Остроградского, предложенный в первоначальной форме ирландским механиком и математиком У.Р. Гамильтоном и в окончательной ферме русским ученым М.В. Остроградским.
В своих «Лекциях» Якоби значительно развил теорию канонических уравнений Гамильтона, существенно расширив класс механических систем, к которым она применима. Изложив принцип Гамильтона и выведя канонические уравнения для любых механических систем, обладающих силовой функцией, в которую может входить время, Якоби применяет к этим уравнениям теорему С. Пуассона, открытую им в связи с другими задачами механики.
КАРЛ ГУСТАВ ЯКОБИ (1804-1851)
Немецкий математик. К. Якоби сделал ряд важных открытий в области теории эллиптических функций, вариационного исчисления, дифференциальных уравнений, теоретической механики и других математических дисциплин
В дальнейшем Якоби находит много различных случаев получения интегралов уравнений движения. Например, рассматривая системы с силовой функцией, Якоби показывает, что в случае, когда можно выбрать такие обобщенные координаты qi, где силовая функция не зависит от координаты qs, а живая сила зависит от нее, можно получить интеграл данной системы уравнений в виде os = const (при этом говорят, что координата qs циклическая).
Важнейший результат К. Якоби – его теорема о том, что канонические уравнения являются уравнениями характеристик некоторого дифференциального уравнения в частных производных первого порядка, т. е. интегральные поверхности указанного уравнения в частных производных состоят из интегральных кривых системы канонических уравнений, определяющих движение механической системы. Тем самым интегрирование канонических уравнений сводится к разысканию полного интеграла уравнений в частных производных.
Дальнейшее обобщение метода Гамильтона – Якоби было осуществлено М.В. Остроградским.
ТРУДЫ ОСТРОГРАДСКОГО ПО МЕХАНИКЕ
За свою почти сорокалетнюю научную деятельность Михаил Васильевич Остроградский (1801 —1861) создал ряд ценных трудов по основным проблемам механики. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщенных принципов статики и динамики.
Многочисленные исследования М.В. Остроградского по механике можно разбить, как это сделал Н.Е. Жуковский, на три группы: 1) работы по началу возможных перемещений, 2) работы по дифференциальным уравнениям механики и 3) работы по решению частных механических задач.
Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит его с Лагранжем – одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.
Такой же подход к механике характерен и для Остроградского, который рассматривал ее проблемы, как правило, в самом общем виде. Общая постановка вопроса вела в свою очередь к изучению вариационного исчисления, в которое как частный случай входит динамика. Поэтому мемуар Остроградского «О дифференциальных уравнениях, относящихся к задаче изопериметров» (1850) принадлежит в равной мере как механике, так и вариационному исчислению. В силу такого сугубо математического подхода (как у Лагранжа) исследования Остроградского значительно обогатили, развили и углубили понимание вариационных принципов прежде всего с математической точки зрения.
МИХАИЛ ВАСИЛЬЕВИЧ ОСТРОГРАДСКИЙ (1801-1861)
Русский математик и механик, основатель аналитической механики в России. М.В. Остроградский разрешил ряд важных задач в области гидродинамики, гидростатики, теории упругости, теории теплоты, баллистики. Автор многочисленных трудов по математике и небесной механике
В названном мемуаре Остроградский рассматривает вариационную задачу, в которой подынтегральная функция зависит от произвольного числа неизвестных функций и их производных сколь угодно высокого порядка, и доказывает, что задача может быть сведена к интегрированию канонических уравнений Гамильтона, которые можно рассматривать как такую форму, в которую можно преобразовать любые уравнения, возникающие в вариационной задаче. Это преобразование не требует никаких операций, кроме дифференцирования и алгебраических действий. Заслуга такого обобщения задачи динамики принадлежит М.В. Остроградскому.
Кроме того, Остроградский ослабил ограничения на связи, всегда считавшиеся до него стационарными, и тем самым существенно обобщил проблему.
В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения, – «Об интегралах общих уравнений динамики» (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.
Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.
Эта теория состоит из трех основных этапов. Прежде всего необходимо было найти наиболее простую возможную форму дифференциальных уравнений движения. Такой формой оказались канонические уравнения; они получили свое название благодаря замечательному свойству инвариантности относительно некоторых преобразований координат. Термины «канонические уравнения», «канонические преобразования» были введены Якоби.
Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта норвежским математиком Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид: в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей: найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных, так называемого уравнения Гамильтона – Якоби.
В разработку всей этой теории существенный вклад внес М.В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла независимо от Гамильтона и Якоби он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона – Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.
«По своей ясности, – писал Н.Е. Жуковский, – рассматриваемый мемуар Остроградского («Об интегралах общих уравнений динамики». – А. Г.) являлся по тогдашнему времени весьма ценным изложением теории интегрирования уравнений динамики и может с успехом служить для лекционных целей и в настоящее время»{179}.
Остроградский придавал большое значение изучению величин, инвариантных относительно преобразований координат. Он отмечает свойство инвариантности канонических уравнений и дает этому факту совершенно правильное объяснение: причина заключается в том, что само движение не зависит от выбора системы координат.
Работы Остроградского по динамике являются основополагающими. Их значение состоит еще в том, что они послужили источником для ряда дальнейших исследований по выяснению основ вариационных принципов механики.
Под влиянием работ Остроградского многие русские ученые внесли большой вклад в развитие вариационных принципов механики. В работах Н.Д. Брашмана, И.И. Сомова, М.И. Талызина, Ф.А. Слудского, Н.Е. Жуковского, Г.К. Суслова, Д.К. Бобылева и других ученых был решен комплекс вопросов о характере вариации в принципе наименьшего действия в форме Лагранжа и о методе вывода из него уравнений движения механики. Глубоко изучена была также строгая математическая форма самого принципа наименьшего действия и его связь с уравнениями движения. Выяснение этих вопросов было необходимо для того, чтобы принцип наименьшего действия стал не только безупречным основанием аналитической механики, но и мощным методом исследования в различных областях физики.
Действительно, роль принципа Гамильтона – Остроградского в дальнейшем развитии физико-математических наук оказалась весьма значительной. Теперь трудно указать такую область механики, физики, где мы не встретились бы в той или иной форме с применением принцип на Гамильтона – Остроградского.
Из других важных трудов Остроградского по механике следует отметить его исследование о принципе возможных перемещений «Общие соображения относительно моментов сил» (1834 г., опубликовано в 1838 г.). Эта работа значительно расширила область применения принципа возможных перемещений, распространила его на так называемые освобождающие (или неудерживающие) связи.
Исследования Остроградского по принципу возможных перемещений являются непосредственным продолжением работ Лагранжа и обобщением его идей. Так считал и сам Остроградский, писавший: «Лагранж не удовлетворился тем, что вывел следствия из принципа И. Бернулли, но расширил и обобщил самый принцип и приложил его к решению труднейших вопросов равновесия и движения систем. Затем вопрос сочли исчерпанным и полагали, что ничего нельзя уже прибавить к теориям, установленным Лагранжем. Однако принцип виртуальных скоростей еще шире, чем предполагал сам Лагранж, который, как и Бернулли, считал, что для равновесия системы необходимо, чтобы полный момент, т. е. сумма моментов всех сил, был равен нулю для всех перемещений, которым может быть подвержена система»{180}.
Под моментом сил Остроградский подразумевал работу сил. Итак, здесь ученый развивает мысль о распространении метода возможных перемещений на системы с освобождающими связями, поставив условием равновесия требование, чтобы полный момент сил был равен нулю или меньше нуля. Этот же метод был применен Остроградским для вывода дифференциальных уравнений движения, причем эти уравнения были выведены Остроградским и для случая голономных освобождающих связей, и для дифференциальных (неголономных) связей линейного вида.
В работах «О мгновенных перемещениях систем, подчиненных переменным условиям» (1838) и «О принципе виртуальных скоростей и о силе инерции» (1841 г., опубликована в 1842 г.) Остроградский дал строгое доказательство формулы, выражающей принцип возможных перемещений, для случая нестационарных связей. Во второй работе указаны некоторые неточности, допущенные Пуассоном в курсе механики.
Лагранж в «Аналитической механике» рассмотрел многие вопросы этой науки, но одна интересная задача теории удара была оставлена им в стороне; частный случай ее был изучен вскоре Л. Карно. В мемуаре «К общей теории удара» (1854 г., опубликован в 1857 г.) Остроградский исследовал удар систем в предположении, что возникающие в момент удара связи сохраняются и после него. Он распространил здесь принцип возможных перемещений на явление неупругого удара и получил основную формулу аналитической теории удара, из которой легко получается ряд теорем, решение упомянутой задачи, и в частности обобщение одной теоремы Карно. М.В. Остроградский читал лекции по аналитической механике. Курс, читанный им в Институте инженеров путей сообщения, был литографирован в 1834 г. По словам коллеги Остроградского, известного математика В.Я. Буняковского, выход этого сочинения ожидался с нетерпением. Позднее, в 1852 г., вышли в литографическом издании лекции по аналитической механике, читанные Остроградским в Главном педагогическом институте. Эти лекции Остроградского, составленные на основе классических работ Лагранжа, а также новейших работ Фурье (1768—1830), С. Пуассона (1781—1840), Гамильтона и самого лектора, имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простые и общие принципы, позволяющие доказывать ее теоремы изящно, кратко и просто.
Выдающийся советский ученый академик Алексей Николаевич Крылов в своем предисловии к новому изданию этих лекций говорил о богатстве их содержания и своеобразии изложения. В докладе Президиуму АН СССР Крылов писал: «Эта книга не только будет служить некоторым памятником знаменитому ученому, но принесет большую пользу как пособие для вузов и втузов».
Остроградскому принадлежат не только общие теоретические труды широкого охвата, но и работы, содержащие решения конкретных частных задач механики, возникших в технической практике того времени. Особого упоминания заслуживает серия его работ по баллистике, предпринятая по заданию русского артиллерийского ведомства. Плодом этих занятий явились следующие его мемуары в этой области: «Заметка о движении сферического снаряда в сопротивляющейся среде» и «Мемуар о движении сферического снаряда в воздухе» (1840 г., опубликован в 1841 г.), а также «Таблицы для облегчения вычисления траектории тела в сопротивляющейся среде» (1839 г., опубликовано в 1841 г.). В первых двух работах Остроградский исследовал актуальный для артиллерии того времени вопрос о движении центра тяжести, о вращении сферического снаряда, геометрический центр которого не совпадает с центром тяжести. Здесь был сделан существенный шаг вперед по сравнению с несколько более ранними исследованиями Пуассона, который изучил движение сферических снарядов в допущении, что эти два центра совпадают.
Третье упомянутое сочинение заключает в себе вычисленные Остроградским таблицы функции
которая играет весьма важную роль в баллистике. Эти работы послужили одной из основ для создания во второй половине XIX в. русской школы баллистики, блестящими представителями которой впоследствии явились П.Л. Чебышев, Н.В. Маиевский, Н.А. Забудский и др.
Стоит отметить также, что в последние годы жизни М.В. Остроградский дважды прочитал курс баллистики в Артиллерийской академии. Подчеркнем также, что труды Остроградского по баллистике и по небесной механике привели его к открытию важных формул в области приближенных вычислений.
Подведем итог краткому разбору основных трудов Остроградского по механике выразительной характеристикой, принадлежащей Н.Е. Жуковскому: «Большая часть ученых работ М.В. Остроградского относится к его любимому предмету – аналитической механике. Он писал по разнообразным вопросам этого предмета: по теории притяжения, по колебанию упругого тела, по гидростатике и гидродинамике, по общей теории удара, по моменту сил при возможных перемещениях и т. д. Во всех его работах главное внимание сосредоточивалось не на решении частных задач, а на установлении общих теорий. Он с особенной любовью занимался расширением метода Лагранжа о возможных скоростях и установлением на самых общих началах теорем динамики. Его обширная работа «Об изопериметрах» заключает в себе как частные случаи различные предположения Лагранжа, Пуассона, Гамильтона и Якоби об интегрировании уравнений динамики. С именем М.В. Остроградского всегда будет связано распространение способа возможных перемещений на системы с освобождающими связями и изложение теорем динамики с помощью вариаций координат, происходящих от изменения произвольных постоянных»{181}.