Текст книги "Механика от античности до наших дней"
Автор книги: Ашот Григорьян
Жанры:
Культурология
,сообщить о нарушении
Текущая страница: 21 (всего у книги 32 страниц)
ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ
Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными исследованиями, особенно по фигурам равновесия вращающейся жидкости. Мы остановимся преимущественно на разработке Ляпуновым проблемы устойчивости движения.
Александр Михайлович Ляпунов родился 6 июня 1857 г. в Ярославле. Первоначальное математическое образование он получил под руководством отца, М.В. Ляпунова, известного астронома, работавшего ряд лет в Казани, а с 1855 по 1863 г. бывшего директором Демидовского лицея в Ярославле. В 1870 г. семья Ляпуновых переехала в Нижний Новгород. В 1876 г. А.М. Ляпунов окончил здесь гимназию и поступил в Петербургский университет на отделение естественных наук физико-математического факультета; вскоре он перешел на математическое отделение. Особенно большое влияние оказали на Ляпунова курсы лекций П.Л. Чебышева, а также Д.К. Бобылева.
Под руководством Бобылева А.М. Ляпунов начал свои первые научные исследования. В 1880 г. Ляпунову была предложена для сочинения тема по гидростатике «О равновесии тяжелых тел в тяжелых жидкостях». За это сочинение он получил золотую медаль. По окончании университета в 1880 г. Ляпунов был оставлен при кафедре механики Петербургского университета для подготовки к профессорскому званию. Одновременно он был назначен на должность хранителя механического кабинета.
В 1882 г. Ляпунов сдал магистерские экзамены и обратился за советом к Чебышеву относительно выбора темы для магистерской диссертации. Чебышев предложил ему задачу, определившую выбор темы магистерской диссертации Ляпунова «Об устойчивости эллипсоидальных форм равновесия вращающейся жидкости», которую он защитил в 1885 г. в Петербургском университете. К задаче Чебышева и магистерской диссертации Ляпунова мы возвратимся позже.
В 1885 г. Ляпунов был приглашен приват-доцентом в Харьковский университет и приступил здесь к чтению лекций по механике.
В Харькове Ляпунов занимался проблемой устойчивости движения, математической физикой, особенно теорией потенциала, а также гидродинамикой. К работам по математической физике и механике жидкостей он привлек своего ученика В.А. Стеклова. Кратким, но важным эпизодом в научной деятельности Ляпунова явились его занятия теорией вероятностей: вслед за Чебышевым и А.А. Марковым (1856—1922) он далеко и оригинально продвинул исследование предельной теоремы Лапласа. Активно участвовал Ляпунов в работе Харьковского математического общества: в 1891—1898 гг. – в должности товарища председателя и в 1899—1902 гг. – в должности председателя и редактора научного органа.
АЛЕКСАНДР МИХАЙЛОВИЧ ЛЯПУНОВ (1857-1918)
Русский математик и механик. Основоположник современной теории устойчивости движения. А.М. Ляпунову принадлежат важнейшие исследования по теории фигур равновесия вращающейся жидкости и устойчивости этих фигур
Свою первую работу по устойчивости движения Ляпунов напечатал в 1888 г. в «Сообщениях Харьковского математического общества». Это была статья «О постоянных винтовых движениях твердого тела в жидкости». Вопрос об устойчивости постоянных винтовых движений, как писал в этой статье Ляпунов, представляет хороший пример для общей теории устойчивости движения. В 1889 г. Ляпунов напечатал вторую статью на эту тему – «Об устойчивости движения в одном частном случае задачи о трех телах».
Разработка вопросов общей теории устойчивости, проводившаяся Ляпуновым в эти годы, завершилась опубликованием в 1892 г. в Харькове замечательного труда «Общая задача об устойчивости движения», который он защитил в качестве диссертации на степень доктора прикладной математики в 1893 г. Защита состоялась в Московском университете, причем оппонентами были Н.Е. Жуковский и Б.К. Млодзеевский. После защиты Ляпунову было присвоено звание ординарного профессора. В течение ряда лет Ляпунов продолжал исследования в том же направлении, существенно дополнив результаты докторской диссертации.
В 1900 г. Ляпунов был избран членом-корреспондентом Академии наук, а в конце 1901 г. – академиком по кафедре прикладной математики, которая оставалась незанятой с 1894 г., после смерти Чебышева. В 1902 г. Ляпунов переехал в Петербург. Здесь он уже не преподавал, а целиком отдался научной работе. Он возобновил занятия фигурами равновесия жидкости и их приложениями к теории фигур небесных тел. В этой области ему принадлежат исключительно глубокие открытия.
Летом 1917 г. в связи с болезнью жены Ляпунов переехал в Одессу. В сентябре следующего года он начал в Одесском университете чтение курса «О форме небесных тел». Этот курс ему закончить не удалось: 3 ноября 1918 г. он скончался.
Научные заслуги Ляпунова были широко оценены на родине и за рубежом. Он был избран почетным членом многих русских университетов, членом-корреспондентом Парижской академии наук, иностранным членом Римской академии наук и т. д.
Обратимся к проблеме устойчивости движения, имеющей важное значение для теоретической механики, астрономии, аэромеханики, прикладной механики, теории механизмов и других областей техники.
В механических задачах, как правило, для упрощения анализа приходится пренебрегать влиянием некоторых факторов, пренебрегать силами, действие которых мало по сравнению с основными силами, определяющими движение. Однако в ряде случаев эти хотя бы и незначительные силы, действуя достаточно долго или возобновляясь периодически, могут частично и даже полностью изменить характер первоначального движения. Таким образом, это движение окажется неустойчивым.
Если точное решение задачи получено в конечном виде, можно судить об устойчивости или неустойчивости движения. Но не всегда такое решение можно найти. Отсюда вытекает необходимость найти метод, позволяющий, не решая полностью уравнений движения, определять, будет ли данное движение устойчивым или нет. Проблема устойчивости была поставлена в XVIII в. в связи с исследованием проблемы устойчивости Солнечной системы. Если пренебречь взаимными притяжениями планет и считать, что планеты притягиваются только Солнцем, то аналитическая механика дает однозначное решение, полностью определяющее основную траекторию движения планеты. Однако в действительности на каждую планету кроме силы притяжения Солнца действуют также силы притяжения других планет, которые возмущают движение рассматриваемой планеты по найденной основной орбите. Влияние этих возмущений может накапливаться и с течением времени полностью разрушить основное движение. Исследуя этот вопрос, Лаплас и Лагранж пришли к выводу, что для Солнечной системы возмущения больших полуосей и эксцентриситетов орбит не возрастают монотонно с течением времени, но периодически колеблются, достигая максимального и минимального значений; следовательно, движение больших планет Солнечной системы устойчиво. Но эта устойчивость не всегда имеет место (например, движение частиц в кольцах Сатурна). Как известно, кольца Сатурна состоят из частиц, вращающихся вокруг планеты. В этих кольцах на некоторых расстояниях от центра планеты имеются щели, разделяющие их на ряд концентрических колец и представляющие собой области, где движение находившихся там некогда частиц было неустойчиво.
Весьма существенное значение вопрос об устойчивости движения имеет в баллистике при исследовании законов движения продолговатого снаряда. Задача об устойчивости движения возникла также в связи с развитием машиностроения в XIX в. Решение вопроса об устойчивости движения важно для определения режима работы машин и механизмов.
Общая задача об устойчивости движения сводится к исследованию систем дифференциальных уравнений вида
где Xk – заданные функции времени t и xk, при достаточно малых xk аналитические; для простоты можно принять, что эти функции обращаются в нуль, когда все xk равны нулю. Если во все время движения, т. е. при любых t, функции xk, зависящие от t, остаются меньше заранее данных сколь угодно малых положительных величин, движение называется устойчивым (по Ляпунову). Если система уравнений интегрируется в конечном виде, то по найденному решению можно в принципе судить об устойчивости или неустойчивости движения. Но такое интегрирование удается сравнительно редко, и требуется дать ответ, не имея точного решения системы уравнений, определяющей движение системы.
Ученые издавна применяли в этом случае приближенные методы решения, причем ограничивались так называемым первым приближением, отбрасывая в степенных рядах, выражающих функции Xk, все члены выше первой степени относительно xk и исследуя возникающую при этом систему линейных уравнений. Однако движение, устойчивое в первом приближении, нередко бывает на самом деле неустойчивым. Привлечение второго (или даже более высокого) приближения также, вообще говоря, недостаточно. Возникал вопрос: когда первое приближение достаточно для суждения об устойчивости? Единственная попытка решить этот вопрос была незадолго до Ляпунова сделана А. Пуанкаре. В предисловии к работе «Общая задача об устойчивости движения» Ляпунов писал: «Хотя Пуанкаре и ограничивается очень частными случаями, но методы, которыми он пользуется, допускают значительно более общие приложения и способны привести еще ко многим новым результатам. Идеями, заключающимися в названном мемуаре, я руководствовался при большей части моих изысканий»{216}. В этом исследовании, опубликованном в 1892 г. в издании Харьковского математического общества, Ляпунов поставил следующую задачу: указать те случаи, в которых первое приближение полностью решает вопрос об устойчивости или неустойчивости движения, и дать способы, позволяющие решать этот вопрос по крайней мере в некоторых из тех случаев, когда по первому приближению нельзя судить об устойчивости.
Ляпунов дал строгое решение вопроса о том, когда при исследовании задачи об устойчивости движения можно ограничиваться рассмотрением первого приближения. Он установил особые случаи, при которых использование первого приближения не решает задачу об устойчивости. Большой заслугой его явилось подробное исследование уравнений, в которых коэффициентами являются периодические функции с одним и тем же периодом. Он указал признаки устойчивости и неустойчивости для периодических движений. Отметим еще, что он впервые доказал теорему, согласно которой положение равновесия при некоторых дополнительных условиях неустойчиво, если в положении равновесия потенциальная энергия не минимальна.
После докторской диссертации Ляпунов напечатал еще ряд работ в дополнение к ней, на которых мы останавливаться не будем.
Ценность трудов Ляпунова по теории устойчивости движения не только в непосредственно полученных им результатах, но и в разработке новых оригинальных математических приемов изучения дифференциальных уравнений. Последующие исследования по теории устойчивости в значительной мере опирались на идеи и методы Ляпунова. Его докторская диссертация была издана на французском языке в 1907 г. О значении этого труда в наше время свидетельствуют четыре переиздания его на русском языке после 1935 г. и перепечатка французского перевода в США в 1947 г.
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ
На рубеже XIX—XX вв. в России была создана новая область механики, первые стимулы к разработке которой возникли в теоретическом естествознании и которая приобрела исключительно важное значение в технике середины XX в. Это динамика тел переменной массы И.В. Мещерского.
Иван Всеволодович Мещерский (1859—1935) родился в Архангельске. Учился он сначала в приходском училище, затем в уездном. В 1871 г. поступил в Архангельскую гимназию, курс которой окончил в 1878 г. с золотой медалью, причем в аттестате была отмечена «любознательность весьма похвальная, и особенно к древним языкам и математике». В той: же году И.В. Мещерский поступил на математическое отделение физико-математического факультета Петербургского университета. Это было время расцвета Петербургской математической школы, созданной П.Л. Чебышевым. Здесь он с восторгом слушал лекции как самого П.Л. Чебышева, так и известных в то время профессоров А.Н. Коркина (1837– 1908), К.П. Поссе (1847—1928) и многих других.
В студенческие годы Мещерский с особым интересом занимался механикой, которую читали Д.К. Бобылев и Н.С. Будаев. Влияние их сказалось на всей дальнейшей научной деятельности И.В. Мещерского. Особенно значительную роль в его жизни сыграл Д.К. Бобылев, автор крупных работ по гидродинамике и замечательный педагог. По окончании университета в 1882 г. Мещерский был оставлен при университете для подготовки к профессорскому званию.
ИВАН ВСЕВОЛОДОВИЧ МЕЩЕРСКИЙ (1859—1935)
Советский ученый в области механики, основоположник механики тел переменной массы. Работы И.В. Мещерского явились основой для решения многих проблем реактивной техники
В 1889 г. И.В. Мещерский выдержал при Петербургском университете экзамены на ученую степень магистра прикладной математики и получил право на чтение лекций. В ноябре 1890 г. И.В. Мещерский начал преподавание в Петербургском университете в качестве приват-доцента. В 1891 г. он получил кафедру механики на Петербургских высших женских курсах, которую занимал до 1919 г., т. е. времени слияния этих курсов с университетом. В 1897 г. Мещерский успешно защитил в Петербургском университете диссертацию на тему «Динамика точки переменной массы», представленную им для получения степени магистра прикладной математики.
В 1902 г. он был приглашен заведовать кафедрой в незадолго перед тем основанный Петербургский политехнический институт. Здесь и протекала до конца жизни его основная научно-педагогическая работа. И.В. Мещерский 25 лет вел педагогическую работу в Петербургском университете и 33 года в Политехническом институте. Многие слушатели Мещерского стали крупными учеными. Так, например, среди слушателей курса «Интегрирование уравнений механики», прочитанного Мещерским, были такие выдающиеся русские ученые, как академик А.Н. Крылов, профессор Г.В. Колосов и др. В архиве АН СССР хранится тетрадь А.Н. Крылова с записями лекций Мещерского, прочитанных последним в 1890/1891 учебном году в Петербургском университете. Широко известен его курс теоретической механики и особенно прекрасный задачник по механике, выдержавший более двух десятков изданий и принятый в качестве учебного пособия для высших учебных заведений не только в СССР, но и в ряде зарубежных стран.
Основным предметом научных исследований И.В. Мещерского явилась проблема движения тел с переменной массой. Всю свою творческую жизнь он посвятил созданию основ механики переменных масс и достиг в этом выдающихся результатов. Классический закон движения Ньютона, выражаемый дифференциальным уравнением
где m – масса точки, V – скорость, F – равнодействующая приложенных сил, перестает, вообще говоря, быть верным, если масса меняется со временем. Между тем в ряде важных случаев приходится иметь дело с движущимися телами переменной массы. Сам Мещерский в своей работе «Динамика точки переменной массы» писал: «Такие случаи нам представляет сама природа: масса Земли возрастает вследствие падения на нее метеоритов; масса метеорита, движущегося в атмосфере, убывает вследствие того, что некоторые частицы его или отрываются, или сгорают; масса падающей градины или снежинки возрастает в тех частях пути, где на нее оседают пары из окружающей атмосферы, и убывает вследствие испарения там, где она проходит через слои воздуха, более теплые и более сухие; плавающая льдина представляет пример, где масса возрастает вследствие намерзания и убывает вследствие таяния и т. д.
В некоторых случаях изменение массы вызывается искусственно: убывает масса летящей ракеты вследствие сгорания; убывает масса аэростата при выбрасывании балласта; возрастает масса привязного аэростата, когда он, поднимаясь, вытягивает за собой канат; возрастает масса корабля при нагрузке и убывает при разгрузке и т. д. Вообще, если тело находится в воздухе, масса его может возрастать вследствие оседания пыли и паров, вследствие присоединения частиц других тел, с которыми оно приходит в соприкосновение; масса может убывать вследствие сгорания, испарения, распыления.
Если тело находится в жидкости, его масса может возрастать вследствие оседания на поверхности некоторых частиц из этой жидкости, вследствие намерзания и может убывать вследствие размывания тела жидкостью, вследствие растворения или таяния»{217}.
До Мещерского были разобраны лишь немногие частные задачи такого рода, и к тому же решения их иногда были ошибочными. Можно утверждать, что на рубеже XIX и XX вв. трудами И.В. Мещерского были заложены основы динамики точки переменной массы и создан новый большой раздел теоретической механики – механика переменных масс. И.В. Мещерский начал заниматься вопросами движения тел переменной массы в 1893 г. 27 января этого года на заседании Петербургского математического общества он доложил о первых своих результатах в этом направлении.
В магистерской диссертации «Динамика точки переменной массы» Мещерский установил, что если масса точки изменяется во время движения, то основное дифференциальное уравнение движения Ньютона заменяется следующим фундаментальным уравнением движения точки переменной массы:
где F и R = dm/dt∙Ur – заданная и реактивная силы.
Это уравнение называют уравнением Мещерского. В диссертации Мещерский дал общую теорию движения точки переменной массы для случая отделения (или присоединения) частиц. В 1904 г. в «Известиях Петербургского политехнического института» был напечатан второй труд И.В. Мещерского «Уравнения движения точки переменной массы в общем случае». В этой работе теория Мещерского получила окончательное и в высшей степени изящное выражение. Здесь он устанавливает и исследует общее уравнение движения точки, масса которой изменяется от одновременного процесса присоединения и излучения материальных частиц. И.В. Мещерский не только разработал теоретические основы динамики переменной массы, но и рассмотрел большое количество частных задач о движении точки переменной массы, например восходящее движение ракеты и вертикальное движение аэростата. Он подверг весьма обстоятельному исследованию движение точки переменной массы под действием центральной силы, заложив тем самым основания небесной механики тел переменной массы. Он исследовал также и некоторые проблемы комет. И.В. Мещерский впервые сформулировал и так называемые обратные задачи, когда по заданным внешним силам и траектории определяется закон изменения массы.
Заслуги И.В. Мещерского в науке чрезвычайно велики. Однако лишь в последнее время с достаточной полнотой выяснилось огромное практическое значение его исследований по механике переменных масс. После второй мировой войны стало появляться большое число глубоких теоретических исследований, посвященных как специальным проблемам ракетодинамики и динамики тел переменной массы, так и обобщению результатов исследований И.В. Мещерского. Опираясь на труды И.В. Мещерского, советские ученые разработали основные вопросы динамики твердого тела и произвольных изменяемых систем переменной массы.
В историю отечественной науки Мещерский вошел как основоположник механики тел переменной массы. Его исследования в этой области явились теоретической основой современной ракетодинамики. Имя И.В. Мещерского неразрывно связано с именем создателя научных основ космонавтики К.Э. Циолковского.
Константин Эдуардович Циолковский является пионером ракетодинамики, теории реактивных двигателей и учения о межпланетных сообщениях. Он один из основателей экспериментальной аэродинамики в России, создатель первого проекта конструкции и теории цельнометаллического дирижабля, автор многих ценных изобретений в технике летания.
Жизнь Циолковского полна подлинного драматизма. Его трагическая судьба в дореволюционной России и затем великий триумф в Советском Союзе отразили исторический перелом в судьбах отечественной научно-технической мысли.
Напряженная, наполненная непрестанными поисками, до предела насыщенная внутренним содержанием, жизнь Циолковского небогата внешними событиями. Его биография резко отличается от обычных жизнеописаний ученых. Здесь нет студенческих лет, непосредственного общения с представителями предшествующего поколения ученых, разрабатывавшими такие же или сходные проблемы, нет кафедры, научных рангов и т. д.
Константин Эдуардович Циолковский родился 17 сентября 1857 г. в с. Ижевском Спасского уезда Рязанской губернии в семье ученого-лесовода. Девяти лет Циолковский в результате осложнения, полученного после скарлатины, почти полностью потерял слух. Глухота не позволила продолжать учебу в школе. Чтобы восполнить пробел в своем образовании, он, занимаясь самостоятельно, прошел полный курс средней школы и значительную часть университетского курса.
В своей автобиографии К.Э. Циолковский писал: «…Учителей, кроме ограниченного количества и сомнительного качества книг, у меня не было, и меня можно считать самоучкой чистой крови. Я так привык к самостоятельной работе, что, читая учебники, считал более легким для себя доказать теорему без книги, чем вычитывать из нее доказательства».
В 1879 г. Константин Эдуардович сдал экстерном экзамен на звание учителя средней школы и начал преподавать математику в Боровском уездном училище Калужской губернии. Все свободное от школьных занятий время он посвящал научным исследованиям.
Творчество Циолковского отличают разносторонность и широта научных интересов. Его интересовали самые разнообразные области знания – естествознание, техника, философия. Однако основные его работы связаны с решением трех крупнейших технических проблем: воздухоплавание, авиация и межпланетные сообщения.
В середине 80-х годов Циблковский начал проводить серьезные исследования по проблеме создания управляемого аэростата. В результате он пришел к выводу, что целесообразно создавать аэростаты только металлические и больших размеров. Кроме того, Циолковский показал, что возможно осуществить управление аэростатами. Он разработал проект цельнометаллического дирижабля с гофрированной оболочкой, у которого в полете мог изменяться объем и производиться подогрев газа.
Изменение объема аэростата давало возможность сохранить неизменной подъемную силу при изменении температуры и давления окружающего воздуха. Подогрев газа внутри корпуса аэростата Циолковский предполагал производить за счет тепла отработанных продуктов сгорания. Идея подогрева газа преследовала цель регулировать изменение подъемной силы дирижабля при перемене метеорологических условий, при подъеме и спуске, сохраняя газ и балласт.
КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ (1857—1935)
Советский ученый и изобретатель, основоположник современной ракет о динамики, теории реактивных двигателей и учения о межпланетных сообщениях
Другой важной технической проблемой, которой Циолковский уделял большое внимание, является разработка вопросов аэродинамики и авиации. Уже в работе по теоруии аэростата, законченной в 1886 г., он затрагивает вопросы аэродинамики в связи с определением, формы аэростата наименьшего сопротивления. Непосредственно аэродинамическим исследованиям посвящена его работа «Давление жидкости на равномерно движущуюся плоскость» (опубликована в 1891 г.).
В 1894 г. появляется его работа по теории самолета «Аэроплан или птицеподобная (авиационная) летательная машина».
Анализируя возможные схемы летательных аппаратов (с машущими и с неподвижными крыльями), Циолковский приходит к идее создания летательной машины, близкой по схеме к современному самолету-моноплану. Циолковский разработал схему самолета, представлявшего собой моноплан со свободнонесущими крыльями, обтекаемой формы фюзеляжем, горизонтальным и вертикальным оперениями, винтомоторной группой (с двигателем внутреннего сгорания), колесным шасси. Крыло самолета имело вогнутый профиль (с острой задней кромкой), толщина которого уменьшалась при приближении к задней кромке.
В 1897 г. Циолковский сконструировал аэродинамическую трубу – первую в России трубу, примененную для исследований в области авиации и воздухоплавания. Опыты в аэродинамической трубе позволили Циолковскому установить важнейшие законы сопротивления среды, провести систематическое исследование лобового сопротивления и подъемной силы тел различной формы, в том числе пяти моделей крыльев (плоских и вогнутых пластинок различного удлинения) и оболочек дирижаблей. Результаты своих первых исследований в аэродинамической трубе Циолковский изложил в работе «Давление воздуха на поверхности, введенные в искусственный воздушный поток», напечатанной в «Вестнике опытной физики и элементарной математики» в 1898 г.
В этой работе Циолковский дал анализ влияния удлинения крыла и тела вращения на их аэродинамические характеристики, нашел формулу для сопротивления трению и установил зависимость его от величины скорости и характерного размера тела (причем эти величины входят в формулу в одной и той же степени), дал сравнительную оценку сопротивления тел различной формы, указал на важное влияние формы кормовой части тела на величину его сопротивления.
Третьим крупнейшим циклом работ Циолковского являются его исследования в области реактивного движения и межпланетных сообщений. В 1883 г. он написал книгу «Свободное пространство», в которой рассматривает явления, происходящие в среде при отсутствии силы тяжести. В этой работе он высказывает мысль о возможности использования реактивного движения для полетов в безвоздушном пространстве.
В 1898 г. Циолковский вывел формулу, связывающую скорость ракеты, скорость истечения продуктов горения, массу ракеты и массу израсходованного горючего.
Результаты своих исследований по теории движения ракет, проводившихся в 1896—1898 гг., Циолковский опубликовал лишь в 1903 г. в знаменитом труде «Исследование мировых пространств реактивными приборами». Циолковский впервые обосновал возможность осуществления межпланетных сообщений с помощью ракетных аппаратов и установил законы движения ракет.
В основе теории движения ракет лежит гипотеза о постоянстве относительной скорости истечения газа из сопла. Эта гипотеза называется в современной литературе гипотезой Циолковского и составляет основу всех расчетов, связанных с изучением движения ракет. Вначале Циолковский решает задачу о движении ракеты в среде, где отсутствуют внешние силы. С качественной стороны эта задача была проанализирована Циолковским еще в 1883 г. в работе «Свободное пространство». Дав научное обоснование теории полета ракет, разработав теорию прямолинейного реактивного движения тел переменной массы, Циолковский стал основоположником ракетодинамики.
В литературу по ракетодинамике вошли теоремы, доказанные Циолковским. Первая теорема представляет собой формулу
Vmax = c∙ln(1+z)
где Vmax – скорость полета ракеты в среде без атмосферы и сил тяготения, с – относительная скорость истечения газов, z = т/М (т – масса топлива, М – масса ракеты без топлива). Отношение т/М = z называется числом Циолковского.
Вторая теорема утверждает, что
u = 1/2∙[ln(1 + z)]2,
где
u = T/T’ = 1/2∙ Vmax2∙M : 1/2∙c2∙m
– утилизация по Циолковскому, собственно коэффициент полезного действия ракеты (Т – работа, производимая при движении ракеты, Т – работа взрывчатых веществ, т. е. работа, обусловленная истечением газов).
Первая теорема, или формула Циолковского (так она называется в современной технической литературе), применяется в некоторых случаях при расчете параметров космических аппаратов.
Заслуги Циолковского признаны и в других странах, где имя его пользуется большим уважением. Известный немецкий ученый и исследователь реактивного движения в космическом пространстве профессор Герман Оберт писал в 1929 г. К.Э. Циолковскому: «Я, разумеется, самый последний, кто стал бы оспаривать Ваше первенство и Ваши заслуги в области ракет, и я только сожалею, что не услышал о Вас раньше 1925 г. Я был бы, наверное, в моих собственных работах сегодня гораздо дальше и обошелся бы без многих напрасных трудов, зная Ваши превосходные работы»{218}.
Французский аэроклуб, одна из старейших воздухоплавательных организаций, желая посмертно отметить выдающиеся заслуги Циолковского как патриарха звездоплавания и основоположника теории реактивных летательных аппаратов, в 1952 г. изготовил в его честь большую золотую медаль.
За шесть дней до своей смерти, 13 сентября 1935 г., К.Э. Циолковский писал, что его мечта не могла осуществиться до революции. После Октября, говорит Циолковский, «я почувствовал любовь народных масс, и это давало мне силы продолжать работу, уже будучи больным… Все свои труды по авиации, ракетоплаванию и межпланетным сообщениям передаю партии большевиков и Советской власти – подлинным руководителям прогресса человеческой культуры. Уверен, что они успешно закончат мои труды». И он не ошибся. Идеи Циолковского успешно претворяются в жизнь.
Труды К.Э. Циолковского по аэродинамике, авиации, ракетной технике и астронавтике вошли в золотой фонд мировой науки.