355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Тяпкин » Пуанкаре » Текст книги (страница 18)
Пуанкаре
  • Текст добавлен: 28 сентября 2016, 22:28

Текст книги "Пуанкаре"


Автор книги: Алексей Тяпкин


Соавторы: Анатолий Шибанов
сообщить о нарушении

Текущая страница: 18 (всего у книги 34 страниц)

Вскоре подали кофе, и некоторые из присутствующих, встав из-за стола, закурили.

– Не хватает только карточных столов, – с такими словами Пикар подошел к Пуанкаре. – Раз ты не куришь, почему бы тебе не выпить кофе?

– Так поздно не могу, иначе не засну до глубокой ночи, – ответил Анри. – В последнее время что-то мучает бессонница.

– Попробуй работать, пока не захочешь спать, – посоветовал Пикар.

– Пробовал, и весьма успешно. Только после этого требуется еще больше времени, чтобы заснуть.

Пикар вынул из кармана часы и вздохнул.

– В таком случае забираем Поля и отправляемся домой. Уже скоро полночь.

Отыскав в нестройно гудящей толпе Аппеля, они вместе с ним покинули банкетный зал.

За убегающим горизонтом

Юбилейные торжества продолжались четыре дня. На следующее утро академики присутствовали на праздничном представлении в театре «Комеди Франсез». А вечером для них был устроен раут в Елисейском дворце. Миновав почетный караул, выстроившийся по обе стороны лестницы, гости входили в приемный зал, где их встречал президент республики Ф. Фор со своей свитой. Прибывшие по очереди представлялись президенту, который всем одинаково улыбался и подавал руку. Пуанкаре обратил внимание, что приглашенных здесь было меньше, чем на приеме у Раймона. Да и сам прием во дворце прошел куда скромнее, без какого бы то ни было представления или концерта. Но именно поэтому Анри показалось намного уютнее в небольших, но щедро украшенных гобеленами и декоративными растениями залах дворца.

Президент, высокий, плотный и несколько сутуловатый, расхаживал среди гостей, то и дело потирая свои руки, словно был чем-то весьма доволен. (Кто-то рядом с Пуанкаре заметил вполголоса, что господин Фор "умывает руки после своего очередного политического хода".) Сопровождали его пять-шесть офицеров разных чинов. "Почетная свита или мера предосторожности?" – гадал Пуанкаре. Немногим больше года прошло с тех пор, как президент Сади Карно пал от руки анархиста. А еще за полгода до этого произошел взрыв бомбы в зале заседаний Палаты депутатов. Вспышка анархо-террористической деятельности охватила страну. Взрывы бомб гремели в кафе, в церквах, в полицейских участках. Политический горизонт был весьма неспокойным, и это очень волновало Эрмита. Старый математик пребывал в тревожном, возбужденном состоянии. Пуанкаре так и не решился обсуждать с ним свои топологические идеи. Ему хорошо была известна та неприязнь, которую Эрмит испытывал к геометрическим исследованиям, поэтому на одобрение его он не рассчитывал.

Следующую свою работу по топологии Пуанкаре опубликовал лишь в 1899 году. Это было первое из тех пяти дополнений к основному мемуару "Analysis situs", которые вышли в свет до 1904 года. В них автор встал уже на комбинаторную точку зрения, введя широко известный ныне в топологии метод симплициального разбиения или триангуляции. Идея его заключается в том, что на поверхности изучаемой фигуры наносится сетка с треугольными ячейками. Это позволяет успешно применять для ее топологического исследования эффективные средства, разработанные большей частью самим Пуанкаре.

Еще Л. Эйлером была высказана замечательная теорема о многогранниках: если к числу вершин любого многогранника прибавить число его граней и вычесть из этой суммы число ребер, то в итоге всегда будет получаться цифра два. Метод триангуляции позволяет обобщить теорему Эйлера на любую фигуру, даже на округлую, ведь нарисованные на ее поверхности треугольные ячейки можно считать гранями воображаемого многогранника. Расчеты по формуле Эйлера снова дадут цифру. Каждой внешней форме тела можно сопоставить, таким образом, число, топологический инвариант, значение которого определяется только видом поверхности. Для сферы и тора, например, эти числа различны. Пуанкаре обобщил теорему Эйлера на многомерные фигуры, то есть доказал формулу, связывающую число вершин, ребер и граней непредставимого воображением многогранника в многомерном пространстве. И в многомерной геометрии появился числовой топологический инвариант, предельно простой по смыслу и удобный в употреблении.

Современного читателя топологических работ Пуанкаре поражают удивительная завершенность, законченность, довольно-таки неожиданная для периода младенчества этой науки. Причем законченность не в смысле доскональности и совершенства математических доказательств, а в смысле точности и полноты введенных им понятий и методов. Изложенные в этих статьях идеи в течение всех последующих десятилетий питали топологию своей Живительной силой. Следуя за новаторской мыслью Пуанкаре, многочисленные исследователи развили в математике новое мощное и обширное направление, напоминающее ныне густо ветвящееся дерево. "Величайший представитель классической математики "взорвал изнутри" ее традиции и открыл доступ в нее не только новым методам исследования, но, что, может быть, еще важнее, и новым способам видеть вещи и интересоваться ими", – пишет академик П. С. Александров. Однако в конце XIX века и несколько позже рядом с ослепительным храмом небесной механики новоотстроенное здание никому не известной еще математической дисциплины выглядит совсем не впечатляюще. По сравнению с другими успехами Пуанкаре "Analysis situs" кажется его современникам несравненно более скромным достижением. Даже Эмиль Пикар, хорошо осведомленный о глубинных течениях творческой мысли своего друга, в обзорном докладе 1913 года о его математических работах ни словом не упоминает эти статьи. И только позже, с дистанции прошедших десятилетий, ученые смогли по достоинству оценить всю грандиозность топологических построений Пуанкаре.

Но топология – это всего лишь один из многих полюсов его тяготения в тот период. Научное творчество Пуанкаре движется сразу по нескольким руслам, в нем бьют сразу несколько обособленных потоков. Не исчерпывается оно даже таким громадным и многообразным трудом, как "Новые методы небесной механики". В многолетнюю работу над этим фундаментальным сочинением вторгаются другие научные интересы, никак не связанные с небесной механикой. Весьма занимает его ум, например, одна знаменитая математическая проблема, оказавшаяся довольно крепким орешком для крупнейших математиков. В свое время Лежен-Дирихле и Бернгардт Риман, основываясь на интуитивных соображениях, утверждали, что всегда существует решение краевой задачи для уравнения Лапласа, дифференциального уравнения с частными производными. Простые физические соображения внушали такую мысль, поскольку для соответствующих этой математической задаче реальных примеров непременно должен был наблюдаться какой-то результат. Это утверждение, облеченное в сложную математическую форму, легло в основу принципа Дирихле. Ученые свободно пользовались этим принципом в своих теоретических изысканиях, уверенные в его справедливости.

Так продолжалось до тех пор, пока К. Вейерштрасс, заинтересовавшийся этим вопросом, не подверг эту необоснованную уверенность сокрушительной математической критике. Его выводы повергли математиков в смятение. Весьма важный и широкоупотребительный принцип Дирихле сразу стал камнем преткновения. Строго доказать этот принцип никто не мог, а применять, как и раньше, не утруждая себя его обоснованием, казалось уже неправомерным. Не будь он столь важным и необходимым, от него давно бы отказались, столь велики были трудности, связанные с его доказательством. Но принцип Дирихле с успехом использовался в задачах гидродинамики, в теории упругости, в теории распространения тепла, в теории электричества, в теории ньютоновского притяжения и в других прикладных теориях. Время шло, а решение проблемы не приходило. Математики начали уже терять надежду на спасение столь ценного для них средства исследования. Карл Нейман сетовал на то, что принцип Дирихле, "такой красивый и имеющий такие важные приложения в будущем, навечно исчез из поля зрения".

Пуанкаре приступил к этой труднейшей проблеме в самый разгар своих небесномеханических увлечений. В 1890 году вышел в свет его мемуар, в котором он доказал существование функции, удовлетворяющей условиям задачи Дирихле, то есть доказал возможность ее решения. Добиться успеха помог ему весьма остроумный и оригинальный математический метод, названный автором методом выметания. Так впервые был обоснован принцип Дирихле для довольно широкого класса задач. "Одного этого исследования, независимо от всех других, было бы, на мой взгляд, достаточно, чтобы доставить автору почетную известность", – заявил видный советский математик, академик В. А. Стеклов.

В 1894 и 1896 годах появляются еще два больших мемуара Пуанкаре, посвященных решению дифференциальных уравнений с частными производными. В них автор решает задачи о распределении теплоты в твердом теле, о звуковых частотах, издаваемых вибрирующей мембраной. В них же он применяет расширенный им метод К. Неймана для решения задачи Дирихле. Эти исследования привели его к открытию новых функций, которые называются теперь фундаментальными функциями Пуанкаре.

В последнем десятилетии XIX века академик Пуанкаре демонстрирует наиболее щедрую отдачу идей, несмотря на завидное непостоянство интересов. Стремительными переходами от вопроса к вопросу, от проблемы к проблеме отмечен этот период его научной деятельности. Сегодняшние темы его научных работ непохожи на вчерашние и не имеют ничего общего с теми, что завладеют его умом завтра. Такие различные по характеру и содержанию, они накладываются друг на друга, совмещаясь во времени, конкурируют в его сознании и оспаривают друг у друга драгоценные часы его творчества.

Постоянная потребность видеть новое была отличительной чертой характера Пуанкаре. Для него гораздо важнее то, что будет, чем то, что есть. Поэтому он вечно в пути, вечно в погоне за убегающим горизонтом, за недостижимой во всей своей полноте и во всем своем многообразии научной истиной. Мысль его всегда нацелена вперед, в еще не наступивший день, как будто она стремится опередить саму себя, едва назревшие свои решения. Только что Пуанкаре исследовал периодические движения небесных тел, и вот уже внимание его приковано к доказательству теоремы Клаузиуса в термодинамике; не успев закончить обоснование принципа Дирихле, он уже публикует основополагающий труд по топологии. Головокружительная смена стилей и методов, тем и теорий вызывает в воображении образ всадника на горячем, нервном скакуне.

Некоторые из хорошо знавших Пуанкаре современников свидетельствовали, что когда он чувствовал интерес к проблеме, то включался в работу легко и непринужденно. Именно в такие минуты с наибольшей силой проявлялась его ставшая уже легендарной рассеянность. Зато с большим трудом сбрасывал он умственное напряжение, если решение задачи не было еще завершено. Во время вынужденных перерывов его творчество продолжалось подсознательно даже в часы отдыха. Поэтому Пуанкаре, страдавший бессонницей, избегал работать поздно вечером, после ужина. Если же тема не привлекала его, то он не мог чисто волевым усилием заставить себя трудиться над ней. Собственная незаинтересованность была для него самым непреодолимым препятствием в научной деятельности. Впрочем, интересы ученого были столь широки, что такое случалось нечасто.

С 1893 года Пуанкаре можно было встретить в небольшом зале Института Франции, где заседало Бюро долгот. Его выбрали членом этого авторитетнейшего научного учреждения. И это не было простой данью быстро растущему престижу знаменитого ученого. Он становится одним из наиболее деятельных участников проводимых этой организацией мероприятий. В октябре 1895 года на очередном заседании заслушивается доклад Пуанкаре о новой магнитной съемке на всех морях, предпринятой но инициативе Бюро долгот и Морского министерства. В 1899 году он был избран президентом этого прославленного учреждения, членом которого состоял великий Лаплас.

В 1901 году выходят в свет две его статьи о гравиметрических измерениях и об отклонениях от вертикали в геодезических исследованиях. Геодезия какой-то своей гранью примыкает к обширному математическому миру, и эти работы не стояли в стороне от его основного научного творчества. Известно, что великий Гаусс, "гёттингенский колосс", к важнейшим своим результатам по дифференциальной геометрии и теории поверхностей пришел от практических задач, которые ему приходилось решать при геодезической съемке Ганноверского королевства. Точно так же геодезические и картографические работы Бельтрами привели его к исследованиям по дифференциальной и неевклидовой геометрии. Но для Пуанкаре те задачи, которые входили в компетенцию Бюро долгот, сами по себе представляли непосредственный интерес. Когда был предложен проект об уточнении длины дуги меридиана, французское правительство передало его на рассмотрение Пуанкаре, который представил самый детальный отзыв, обсудив даже финансовую сторону дела. В начале XX века он руководит деятельностью геодезической экваториальной экспедиции, выполнявшей новые, более точные измерения дуги меридиана, не проводившиеся с XVIII века.

Порой сугубо математические исследования приводят Пуанкаре к решению прикладных задач, а те, в свою очередь, привлекают его внимание к новым математическим проблемам. Так, например, удачно применив расширенный им метод Неймана к уравнению Лапласа, он решил исследовать этим же математическим приемом равновесие и движение морей. Над задачей этой бились многие поколения ученых, начиная с самого Ньютона, разработавшего первую статическую теорию приливов. Лорд Кельвин, развивая эту статическую теорию, получил явные несообразности. По его вычислениям получалось, что упругие постоянные твердого ядра Земли должны превосходить упругие постоянные стали. Проанализировав его решение, Пуанкаре указал, какие следует внести дополнения в расчеты. Но с этими исправлениями математическая теория приливных колебаний морей существенно усложнилась.

В двух своих статьях 1896 года о равновесии и движении морей Пуанкаре возлагает надежды на теорию интегральных уравнений, которая должна принести решение задачи, столь долго испытывавшей терпение исследователей. С этого момента часть его усилий направлена в эту новую, весьма не разработанную еще область математики. В круг его внимания, помимо дифференциальных уравнений, попадает еще один математический объект – интегральные уравнения. Все первое десятилетие XX века у него будет сохраняться к ним интерес.

Математическое отделение Академии наук состояло из пяти секций: геометрии, механики, астрономии, физики, географии и навигации. До этого времени у Пуанкаре были все основания, чтобы числиться по любой из первых четырех секций. Новые его работы по геодезии и теории морских приливов давали ему право войти в пятую секцию. Широта его интересов вполне совмещалась с широтой охвата научных проблем математическим отделением академии, а последняя, в свою очередь, определялась запросами той эпохи. На примере многих работ Пуанкаре легко проследить, как его исследования, порой кажущиеся весьма отвлеченными, на самом деле подсказываются потребностями прикладного характера. Но от самого Пуанкаре можно услышать как будто бы иное мнение. "…Я не становлюсь на точку зрения тех лиц, которые ценят в науке только ее прикладную часть. Мне не надо добавлять, что я не разделяю такой точки зрения", – пишет он в одной из своих статей. В другом случае он заявляет еще более категорично: "Наука, созданная исключительно в прикладных целях, невозможна; истины плодотворны только тогда, когда между ними есть внутренняя связь. Если ищешь только тех истин, от которых можно ждать непосредственных практических выводов, то связующие звенья исчезают и цепь разрушается". Говоря о формуле "наука для науки", он добавляет, что это стоит тезиса "жизнь для жизни" или "счастье для счастья".

Как совместить эти взгляды с его собственным творчеством? Противоречия тут нет. Пуанкаре действительно считал решение прикладных задач важнейшим фактором развития науки, но никогда не ограничивал научные запросы узкоутилитарными, материальными потребностями.

Он отвергает примитивно понимаемый, деляческий практицизм, приземляющий научное творчество и иссушающий его душу. В то же время не кидался он и в другую крайность, не ратовал за сугубо абстрактные исследования, оторванные от насущных задач познания, хотя именно так его порой понимали. Даже математика, самая абстрактная из всех наук, не может, по его мнению, отвернуться от окружающего мира. "Нужно было бы полностью забыть историю науки, чтобы отрицать постоянное и самое благотворное влияние на развитие математики стремления познать природу, – говорит Пуанкаре с трибуны I Международного математического конгресса. – Чистый математик, который забыл бы о существовании внешнего мира, был бы подобен живописцу, умеющему гармонически сочетать цвета и формы, но лишенному натуры, модели, – его творческая сила быстро иссякла бы". И действительно, задачи, которые привлекают его внимание, не вырастают сами из себя; корни их тесно переплетены с самыми животрепещущими, а порой и просто практическими проблемами познания. Даже самые отвлеченные, казалось бы, образы топологии рождены потребностью качественного изучения сложных небесномеханических задач. Каждое открытие Пуанкаре – это дитя необходимости и вдохновения.

Мост к новому образу мышления

В молодости Анри был худощавым, но к сорока годам он постепенно достиг нормальной для своего среднего роста комплекции. Близорукие и в то же время проницательные глаза его во время разговора сосредоточенно вглядывались в собеседника сквозь стекла очков. Порой взгляд этот становился задумчиво-рассеянным, и тогда невозможно было понять, слышит ли он обращенные к нему слова. На кафедре Пуанкаре выглядел физически неловким и неуверенным до тех пор, пока не увлекался излагаемым материалом. С демонстрационными приборами у него были постоянные нелады. Таким запомнился он некоторым студентам, посещавшим его лекции.

Читая подготовленный и обработанный им курс секций, Пуанкаре порой не следует намеченному на бумаге порядку изложения материала, а поддается внезапно пришедшей ему в голову игре мысли. Известный физик Л. Бриллюэн, слушавший его курс лекций по космогонии, рассказываете "Иногда Пуанкаре неожиданно прерывал лекцию и молчаливо ходил перед доской взад и вперед. Затем он поворачивался к аудитории, отодвигал в сторону свои лекционные записки и говорил: "У меня только что возникла новая идея. Попробуем, подойдет ли она". Он излагал свою новую точку зрения и начинал писать на доске, определяя численные значения величин. Затем делал вывод: "Это не намного лучше, чем в других теориях". Это все та же манера, которая отличала молодого Анри, сдававшего вступительные экзамены в Нормальную и Политехническую школы, та же свободная раскованность устного исследования, обнажающая ищущую мысль, те же блестки прозрения, та же полная объективность и критичность к продукции своего ума.

Гильберт, прослушавший во время пребывания в Париже курс профессора Пуанкаре, делится в письме своими впечатлениями: "Он читает свои лекции очень ясно и понятно для моего образа мышления, хотя, как заметил здесь один французский студент, пожалуй, слишком быстро". На доске профессор пишет с одинаковой легкостью и проворством как левой, так и правой рукой, чем вызывает веселое оживление в аудитории. Но почерк его оставляет желать лучшего, а чертежи, как правило, малопонятны.

Чувство веселой иронии никогда не покидает Пуанкаре. Один из его слушателей рассказывал впоследствии об экзамене по астрономии, на котором какой-то студент далеко не блистал своими познаниями. Видя это, Пуанкаре задал ему совсем элементарный вопрос: "Сколько существует малых планет?" После некоторых колебаний экзаменующийся остановился на цифре 150. Пуанкаре, в ожидании ответа прохаживавшийся взад-вперед с руками, заложенными за спину, остановился и насмешливо изрек: "Должно быть, вы очень давно учили это".[29]29
  [29] К этому времени было обнаружено уже около 450 таких небесных тел.


[Закрыть]
Экзамены ему приходилось принимать и на степень лиценциатта, и даже на бакалавра. Иностранный ученый, увидевший это, заметил: «Поистине французы пользуются бритвой, чтобы обтесать бревно».

Каждый новый учебный год Пуанкаре, почти не повторяясь, излагает новую дисциплину. Обучая студентов, он образовывал и себя. В его курсе математической физики, читавшемся с 1887 по 1896 год, охвачена вся современная ему теоретическая физика: термодинамика и кинетическая теория газов, электростатика, теория потенциала, теплопроводность, турбулентность, капиллярность, упругость и другие обширные разделы этой науки. В отличие от большинства своих коллег по университету Пуанкаре не стремится публиковать свои лекции. Лишь благодаря инициативе студентов они были тщательно переписаны, отредактированы и изданы. Порой автор добавлял к ним предисловие. Среди студентов, участвовавших в издании, были Шази, Драш, Бэр, Борель, ставшие впоследствии известными учеными. Чаще всего эти лекции являлись их первой публикацией. Около половины двенадцатитомного курса математической физики было посвящено оптике, электричеству, электромагнитной теории и электрическим колебаниям, то есть тому комплексу вопросов, на котором после Максвелла были сосредоточены интересы физиков.

"В эту эпоху на континенте еще не освоились с идеями Максвелла, и нужно было, так сказать, перебросить мост между старым и новым образами мышления" – так комментирует Пуанкаре свое обращение к теории великого английского физика. Электромагнитная теория Максвелла читается им начиная с 1888 года. Дважды эти лекции издавались отдельной книгой под названием "Электричество и оптика" – в 1890 и в 1901 году. Их автор не скрывает своих намерений "облегчить для некоторых умов изучение электрических теорий". Ибо, несмотря на свою математическую строгость, теория Максвелла с большим трудом находит признание среди физиков.

"Трактат по электричеству и магнетизму", в котором Джеймс Кларк Максвелл подвел итоги двухвековому развитию учения об электрических и магнитных явлениях, был издан в 1873 году. Современники называли его "библией электричества". Книга содержала более тысячи страниц, из которых лишь десяток относился непосредственно к знаменитым уравнениям. Сами уравнения были разбросаны по разным частям, и было их довольно много – двенадцать. По характеру изложения «Трактат» был крайне сложным и неудобочитаемым, что затрудняло усвоение развиваемых там идей. Особенно раздражал он французских ученых, воспитанных на трудах своих великих предшественников, начиная с Лапласа и кончая Коши. Когда "читатель впервые открывает книгу Максвелла, к его восхищению примешивается чувство беспокойства, а подчас даже и недоверия, – пишет Пуанкаре во введении к своим лекциям "Электричество и оптика". – Только после глубокого знакомства и ценой больших усилий удается рассеять это чувство. Впрочем, у некоторых выдающихся умов оно так и осталось навсегда".

Многие ученые, столкнувшись с теорией Максвелла, оказывались в роли того анекдотичного персонажа, который, прослушав лекцию об устройстве и принципе действия телефона, заявил, что ему все понятно, за исключением того, как голос передается по проводам. Пуанкаре приводит высказывание одного своего коллеги, глубоко изучавшего труд Максвелла: "Я все понимаю в его книге, за исключением того, что такое наэлектризованный шар". Знаменитый голландский физик Г. А. Лоренц, которому суждено было впоследствии развить и продолжить эту электромагнитную теорию, познакомившись в молодости с уравнениями Максвелла, не смог понять их физического смысла и обратился за разъяснениями к переводчику сочинений Максвелла. Но переводчик заявил, что теория Максвелла – чистая математика, не имеющая никакого физического содержания.

С трудностями объяснения новой физической теории столкнулись и те немногие ученые, которые пытались распространить ее идеи с университетских кафедр. В Америке теорию Максвелла пропагандировал профессор Йельского университета Дж. У. Гиббс, один из основоположников статистической механики. Среди европейских ученых следует отметить Л. Больцмана, который окрестил «Трактат» книгой "за семью печатями". Пуанкаре одним из первых разобрался в многосложном изложении Максвелла. Его правильная и стройная интерпретация идей английского ученого помогла рассеять невразумительную путаницу у комментаторов этой теории. В своих лекциях Пуанкаре проводит глубокий анализ различных попыток теоретического обобщения экспериментально установленных законов электричества и магнетизма. Он подробно разбирает электродинамику Ампера, устанавливает ее связь с теоретическим подходом Гельмгольца и постепенно подводит слушателей к выводу о преимуществах уравнений Максвелла, наиболее полно охватывающих электромагнитные процессы и предсказывающих неизвестные еще физике явления.

Важнейшее предсказание было подтверждено в 1888 году немецким физиком Генрихом Герцем, соединявшим в себе черты блестящего экспериментатора и глубокого теоретика. Ему удалось получить и обнаружить электромагнитные волны, существование которых предвещала теория Максвелла. Однако измеренная им скорость распространения этих волн оказалась на 40 процентов меньше предполагавшейся величины – скорости света. Подтверждая общий вывод теории, опыт Герца ставил под сомнение заключение об электромагнитной природе света.

Пуанкаре в этом году только еще приступил к своим лекциям по теории Максвелла. Но все перипетии ее развития живо интересуют его ум и обсуждаются им на самом высоком профессиональном уровне. Внимательно просмотрев теоретические выкладки Герца, он находит у него ошибку в расчетах колебаний генератора. "Это исправление было легким, – скажет он впоследствии, – но важно было сделать его быстро, так как в тот момент, если бы эта ошибка осталась незамеченной, она могла задержать научный прогресс". Исправленная величина скорости распространения электрических колебаний практически совпала со скоростью света. Эксперимент оправдал обобщение электромагнитной теории на оптические явления.

Вопрос о герцевских колебаниях вновь осложнился после обнаружения швейцарскими учеными множественного электрического резонанса, казавшегося довольно парадоксальным. И вновь вмешательство Пуанкаре приносит решение проблемы. Отвергнув доводы авторов, он объяснил это явление быстрым затуханием колебаний во времени. По этому поводу Герц писал Пуанкаре: "Их (экспериментаторов) объяснение мне совершенно не нравится. Мой взгляд положительно близок к Вашему, может быть, даже совсем тождествен". Проведенная затем экспериментальная проверка подтвердила данное Пуанкаре истолкование.

Экспериментальные исследования по электромагнетизму занимают Пуанкаре ничуть не меньше, чем теоретические выводы и заключения. Все наиболее значительные опыты того времени проходят при явном или неявном соучастии и сопереживании знаменитого французского теоретика. Внимание его однажды привлекают попытки обнаружить магнитное поле конвекционных токов, то есть токов, обусловленных перемещением наэлектризованных тел. Еще Фарадей утверждал, что при движении наэлектризованного шара должны наблюдаться точно такие же эффекты, как и при прохождении электрического тока в неподвижном проводнике. В 1876 году американский физик Роуланд действительно показал наличие у конвекционного тока магнитного поля. Французский исследователь Кремье повторил опыт Роуланда, но уже по усовершенствованной схеме – с переменным электрическим зарядом. Никакого магнитного поля он не обнаружил. Через год Пандер, ученик Роуланда, воспроизводит опыты Кремье и вновь подтверждает результат американского ученого. Возникла противоречивая ситуация, требовавшая немедленного разрешения.

Пуанкаре внимательно следил за опытами Кремье, работавшего в Сорбонне, давал советы по постановке экспериментов и даже опубликовал несколько заметок, посвященных их обсуждению. Подчеркивая фундаментальный характер результата, полученного Роуландом, и, в частности, связь его с законом сохранения энергии, он убедил Кремье поставить в Сорбонне опыт вместе с Пандером. Первое сообщение о результатах этого совместного исследования, свидетельствовавших о наличии магнитного поля, сделал сам Пуанкаре в своей книге "Наука и гипотеза".

Даже после того, как опыты Герца доказали наличие электромагнитных волн, предсказанных теорией Максвелла, учение английского физика не получило широкого распространения. Главная причина его невосприятия заключалась, конечно, не в неудачной форме изложения автором своего творения, а в необычности предложенных им идей. Для осознания теории требовалось выйти за пределы уже сложившихся в физике понятий и представлений. Максвелл отверг прежние взгляды о выведении всего многообразия электромагнитных явлений только из взаимодействия зарядов. Он вводит новое физическое понятие – электромагнитное поле, которое было лишь косвенно связано с измеряемыми физическими величинами. В общепринятом тогда понимании теория Максвелла только описывала электромагнитные явления на строгом математическом языке, но не давала их объяснения. Объяснить – значило, по мнению физиков того времени, построить механическую модель явления. Механика представлялась незыблемым фундаментом всех разделов физики. За два столетия это превратилось уже в своеобразную теоретико-познавательную догму, требованиям которой пытались подчинить развитие всякой физической теории. Поэтому большинство ученых считало, что для завершения электромагнитной теории необходимо еще открыть механическую интерпретацию уравнений Максвелла. В плену этого предвзятого представления находились все физики. Не избежал этого заблуждения и сам автор электромагнитной теории.

В первых своих работах по электромагнетизму Максвелл основное внимание отводил именно механическим моделям. Подчеркивая непривлекательность одного из предложенных им объяснений, Пуанкаре писал: "Можно было подумать, что читаешь описание завода с целой системой зубчатых колес, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремнями". Однако позднее Максвелл меняет свою точку зрения. В работе "О динамической теории электромагнитного поля" он выражает желание "просто направить внимание читателя на механические явления, которые помогут ему в понимании электрических явлений. Все подобные фразы в настоящей статье должны пониматься как иллюстративные, а не объяснительные". Но электромагнитную энергию Максвелл по-прежнему трактует как механическую энергию. Не отказавшись от идеи механического истолкования электрических явлений, он убеждается тем не менее в принципиальной невозможности предпочесть одну какую-либо конкретную механическую модель. Эту мысль Максвелл образно поясняет на примере церковного перезвона: если заданы только движения канатов, то по звону колоколов нельзя однозначно определить механические связи между канатами и колоколами.


    Ваша оценка произведения:

Популярные книги за неделю