355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Тяпкин » Пуанкаре » Текст книги (страница 11)
Пуанкаре
  • Текст добавлен: 28 сентября 2016, 22:28

Текст книги "Пуанкаре"


Автор книги: Алексей Тяпкин


Соавторы: Анатолий Шибанов
сообщить о нарушении

Текущая страница: 11 (всего у книги 34 страниц)

Соревнование умов

Чем сильнее и ярче индивидуальность человека, тем труднее склонить его к согласию с другой сильной индивидуальностью. Каждый из них хочет идти своим путем, каждого могут убедить аргументы только особого, индивидуального характера. Но разногласия по поводу названия новых функций, конечно же, далеко не главное в переписке Пуанкаре с Клейном. Основное внимание они уделяют вопросам построения этих периодических трансцендентностей. Клейн отметил, что возможны еще более общие функции такого рода, если в дробно-линейных преобразованиях переменной величины, oт которой зависит функция, использовать не вещественные, а произвольные коэффициенты. Возникла задача построения этих функций наряду с фуксовыми и соответствующих им групп преобразований.

Поскольку интересы обоих ученых устремлены в одном направлении, в их отношения невольно проникает дух благожелательного научного соперничества. По своему творческому складу Клейн резко отличался от Пуанкаре. Судьба столкнула в научном противоборстве искрометного французского Моцарта и обстоятельного немецкого Сальери. Клейн предпочитал двигаться вперед постепенно, шаг за шагом, не пропуская ни единой промежуточной ступени. Не будь Пуанкаре, он развил бы этот раздел математики, последовательно переходя от одних частных видов функций к другим, более общим, от одной стадии обобщения к другой, более глубокой. Браться за решение задачи сразу во всей ее общности было несвойственно его творческому методу. Но быстрый и подвижный ум Пуанкаре навязывал ему совсем иной стиль работы. Не принять его правил игры – значило безнадежно отстать, попросту проиграть. И Клейну пришлось работать в совершенно несвойственной ему манере.

Много позднее, вспоминая новый «день творения» этих периодических трансцендентностей, и сам Клейн, и другие математики начинали изъясняться языком спортивных состязаний. Стремительность развития математической мысли нагнетает драматизм и неподдельный азарт, до предела учащенный ритм научной гонки придает остроту и накал этой интеллектуальной борьбе. Клейн скажет потом, что их научное соревнование напоминало скачки, на которых то один, то другой жокей вырывается вперед. «Клейн ошибался… – категорически заявляет в середине XX века математик Г. Фрейденталь, – с самого начала Пуанкаре настолько вырвался вперед, что догнать его Клейн так и не смог».

В таком отчаянном, чрезвычайно форсированном режиме работы еще резче проявляются индивидуальные черты творчества Пуанкаре, смелость его поиска, помноженная на широту обобщения. Доказывая существование новых групп, на которые указывал Клейн, он столкнулся с непредвиденными трудностями. Не спасала положение даже неевклидова геометрия, как это было в случав с фуксовыми группами. Но Пуанкаре находит выход из, казалось бы, безнадежной ситуации. Он изобретает прием, позволяющий ему воспользоваться неевклидовой геометрией двух– и трехмерных пространств, и подбирает ключи к новым группам. После этого им была решена проблема новых трансцендентных функций, соответствующих этим группам преобразований переменной величины.

Предельное напряжение духовных сил отнюдь не выглядит у Пуанкаре чрезмерным перенапряжением. Кажется, что он творит играючи, радостно и непринужденно, хотя сам предмет – сложнейшие абстрактные построения математики – никак не совмещается с понятием легкости. Невозможно отметить разницу между начальным и конечным потенциалом его творческих сил, как будто неподвластных никем не высказанному, но тем не менее глубоко справедливому закону сохранения духовной энергии человека. Обманчивая легкость моцартовского гения, как будто мимоходом срывающего уже готовые решения труднейших математических задач. Уверенная быстрота его творчества кажется вполне естественной, словно идет обычная, повседневная работа, без яростных титанических взлетов и сверхусилий. Но так оно и есть на самом деле – нормальная, ежедневная деятельность, даже ежеминутная. Ведь мысль его не знает ни усталости, ни покоя. Мозг трудится непрерывно, как раз и навсегда заведенный механизм. Даже в часы отдыха, когда самому Пуанкаре кажется, что он бездействует, внезапно посещающие его озарения демаскируют работу подсознания, перемалывающего заложенные в него математические «орешки». Реализуется оборотная сторона никогда не покидающей его рассеянности, свидетельствующей о том, каким невероятным и углубленным мысленным трудом достигается эта видимая «легкость».

В то же время истощающее, с полной отдачей сил соревнование с Пуанкаре дорого обошлось Клейну, вызвав сильнейшее нервное переутомление, за которым последовала глубокая депрессия. Под угрозой оказалась вся его последующая научная карьера. «Цена, которую мне пришлось заплатить за мои работы, была, во всяком случае, очень велика, так как мое здоровье оказалось совершенно расшатанным, – признается он много лет спустя. – В последующие годы мне приходилось брать несколько раз продолжительные отпуска и отказаться от всякой творческой деятельности. Только к осени 1884 года положение несколько улучшилось, но прежней степени творческой активности я уже не достиг никогда». По свидетельству некоторых немецких математиков, работавших с Ф. Клейном в последующий период его жизни, он утратил способность доводить свое исследование до логического конца. Его все меньше интересовали важные для каждого работающего математика вопросы математической техники.

Поле боя осталось за Пуанкаре. До 1884 года он опубликовал пять больших работ о новых функциях и соответствующих им группах. Когда настало время дать имя новооткрытым берегам математического континента, Пуанкаре недолго колебался. Группы и функции, на возможность существования которых первым обратил внимание Клейн, названы им клейновыми. Недвусмысленный вызов тем из его соотечественников, кто незадолго до этого возмущался названием «фуксовы функции». Клейн неправильно истолковал этот жест французского коллеги, и по ответному письму Пуанкаре от 4 апреля 1882 года чувствуется, как он неприятно задет таким совершенным (в некотором роде даже оскорбительным) непониманием его лучших побуждений. «Если я дал ваше имя клейновым функциям, то это по причинам, которые я привел, а не по тем, на которые вы намекаете (zur Entschadigung[13]13
  [13] zur entschadigung (нем.) – для компенсации (возмещения).


[Закрыть]
), так как мне нечего вам компенсировать… Я надеюсь, что наша борьба, оружием в которой является вежливость и которой мы предались только лишь из-за имени, не изменит наших добрых отношений. Было бы смешно к тому же дискутировать все время из-за имени, „имя – только дым и звук“.[14]14
  [14] Из «Фауста» Гёте, сцена xvi


[Закрыть]
А после всего этого мне безразлично, поступайте, как вы находите нужным, я буду делать, со своей стороны, как мне желательно…» Видно, что Пуанкаре уже отчаялся в своих попытках убедить самого Клейна и представителей его школы в обоснованности даваемых им имен. Названия эти так и не привились. В современных математических трудах уже не встретишь термин «фуксовы функции». Присоединяясь к мнению Клейна, ученые называют их автоморфными функциями.

Возвращение в Париж

Почти два года провел Анри в Кане. Этот период оказался весьма важным, если не решающим, для его последующей судьбы. Именно здесь произошли те свершения, которые на долгие годы определили его жизнь и научную деятельность. Дебют молодого математика был весьма впечатляющим. В нем уже чувствовалась заявка на свое творческое кредо, на свой, индивидуальный стиль научного мышления. Развитый им подход оценивали впоследствии как «дерзкий поступок двадцатисемилетнего ученого, осмелившегося порвать с полувековой традицией».

Теория фуксовых функций, как продукт тесного переплетения и взаимопроникновения самых различных идей и методов, родилась на перекрестке ведущих математических теорий прошлого столетия: теории дифференциальных уравнений, теории инвариантов, неевклидовой геометрии, теории групп, теории эллиптических функций. Вчерашний студент, перешагнув через переходный этап, сразу же явил ученому миру зрелость вполне сложившегося таланта, с широким кругозором и необычайным многообразием своих внутренних возможностей. Не имеет даже смысла говорить о «раннем Пуанкаре», такого Пуанкаре попросту не было, не было периода первоначальных исканий и ученичества, который принято называть «порой надежд». От самого порога. Горной школы он вышел на уровень лучших математиков своего времени.

Фуксовы функции составили первую главу в научном наследии знаменитого ученого. «Именно этой первой главе и суждено было несколько десятилетий спустя первой достичь того состояния, когда о математической теории начинают говорить, что она уже „стала классической“, – пишет Г. Фрейденталь. Эллиптические функции, считавшиеся до этого одним из прекраснейших достижений математики XIX века, оказались теперь частным случаем фуксовых функций, созданных в результате грандиозного обобщения, предпринятого Пуанкаре. Открытие этих функций позволило решить одну из важнейших проблем математического естествознания – интегрирование линейных дифференциальных уравнений с алгебраическими коэффициентами. С этой целью Пуанкаре и начал свои исследования. Однако значение фуксовых, ныне автоморфных, функций выходит далеко за рамки этого приложения.

Почти сразу же выяснилось, что применение их в теории алгебраических форм сулит многообещающие возможности. К этой мысли пришел сам Пуанкаре. Вот как он рассказывает об этом: „Я занимался изучением некоторых вопросов арифметики без особого успеха, не подозревая, что предмет моих исследований может иметь какую-то связь с моими прежними работами (по теории фуксовых функций). Разочарованный своими неудачами, я решил провести несколько дней на побережье и поразмыслить о совсем других вещах. Однажды, когда я прогуливался по обрывистому берегу, мне пришла в голову идея, столь же краткая, сколь неожиданная и вполне определенная, что арифметические преобразования неопределенных тернарных квадратических форм должны быть тождественны преобразованиям неевклидовой геометрии. Вернувшись в Кан, я тщательно обдумал эту идею и попытался вывести из нее некоторые следствия“.

Пуанкаре настолько глубоко проникся своими исследованиями, что кажется, будто не он в мучительном напряжении ищет решения стоящих перед ним проблем, а они охотятся за ним и преследуют его, являясь ему в самых неожиданных местах и обстоятельствах. Эту характерную особенность его творчества сумел уловить даже ректор Канского университета, отметивший как-то в одном из конфиденциальных разговоров: „Господин Пуанкаре – это математик великих достоинств, неотступно осаждаемый объектом своих исследований“. Внезапно озарившая Пуанкаре идея позволила ему с помощью аппарата фуксовых групп добиться значительных результатов в изучении тернарных форм. Впоследствии стали даже говорить, что фуксовы функции вручили Пуанкаре „ключи от алгебраического мира“.

Таких отомкнутых „миров“ было немало. Решая проблему униформизации алгебраических зависимостей между двумя переменными (то, что потом получило название 22-й проблемы Гильберта), Пуанкаре использовал открытые им функции. Не раз он возвращался к этой проблеме в своем последующем творчестве и в 1907 году одновременно с П. Кебе дал ее окончательное решение. Связав фуксовы функции с такой далекой от них областью математики, как теория чисел, Пуанкаре сумел представить некоторые проблемы этой теории в совершенно новом, необычном освещении. В его работах берет свое начало также арифметическая теория автоморфных функций, которая затем усиленно разрабатывалась другими учеными. Пуанкаре принадлежит заслуга введения в математику фуксовых групп, а развитый им метод представления этих групп через фундаментальную область стал одним из основных методов общей теории дискретных групп.

Рассказывая о канском периоде жизни Пуанкаре, невозможно обойти молчанием одно весьма важное событие его личной жизни. По своему значению оно, безусловно, заслуживает того, чтобы ему посвятили больше внимания и места, но отсутствие у авторов достаточного количества документальных материалов, к сожалению, ограничивает их возможности. При всей своей занятости и углубленности в сложнейшие проблемы математики Пуанкаре сумел заинтересоваться одной прелестной молодой особой и в то же время привлечь ее внимание к себе. Посвятив свое высокое интеллектуальное горение фуксовым функциям, он отдал мадемуазель Полей д'Андеси благородный пыл своего сердца. 20 апреля 1881 года в Париже торжественно празднуется их свадьба, о чем он сообщает в своем письме Фуксу. Гейдельбергский профессор отвечает ему длинным и любезным письмом, на этот раз на французском языке, в котором выражает свое искреннее поздравление молодой чете. Супруга Анри Пуанкаре приходилась внучкой Изидору Жоффруа Сент-Илеру, знаменитому французскому биологу, члену Академии наук.

Благодаря блестящему открытию фуксовых функций Пуанкаре в свои 27 лет приобрел столь большую известность в ученых кругах, что ему предлагают должность преподавателя на Факультете наук в Парижском университете. Семья Пуанкаре перебирается из нормандской столицы в столицу Франции. Снова Анри обосновывается в Латинском квартале и в октябре 1881 года приступает к исполнению своих новых обязанностей. Как привилегированное учебное заведение, Политехническая школа готовила своих воспитанников к государственной карьере, давая каждому из них шанс достигнуть высокой административной должности. Но Пуанкаре окончательно и бесповоротно порывает со своей прежней профессией и избирает научное поприще. Его шанс так и остался неиспользованным.

Глава 6 ПАРИЖ. СОРБОННА

Три математика

Коллеги но академии или по университету нередко видят Шарля Эрмита в обществе трех молодых математиков. Невзирая на свой преклонный возраст, маститый академик с поистине молодым задором предается жаркому спору, предмет которого порой уводит собеседников далеко от сугубо математических вопросов.

– …В математике все мы скорее слуги, чем господа.

Не раз уже слышали молодые математики эту сакраментальную фразу от прославленного метра. Знакомо им и ее толкование, которое он со вкусом развивает перед своей немноголюдной аудиторией.

– Даже когда истина нам еще неясна, она все равно предсуществует нашей мысли и неукоснительно предписывает ей дорогу, по которой мы должны следовать под угрозой заблудиться. Иначе какое еще вы можете дать толкование той необъяснимой интуиции, что руководит нами в математическом творчестве?

В ответ на чье-то возражение Эрмит со всей убежденностью отстаивает воображаемый им мир математических объектов, подобный миру платоновских идей.

– Нет, почему же, и числа и функции так же реальны, как и другие окружающие нас предметы. Разве вы, математики, не чувствуете, что они действительно существуют вне нас и независимо от нас, а мы только находим их в окружающем мире! В этом отношении математик ничем не отличается от физика, химика или зоолога.

Одним из трех заинтересованных слушателей Эрмита был его бывший ученик по Политехнической школе Анри Пуанкаре, ныне молодой преподаватель Сорбонны.

На первых порах обязанности Пуанкаре на Факультете наук сводились лишь к проведению практических занятий. Он должен был помогать студентам в усвоении лекционного материала, разрабатывать для них домашние задания и проверять их готовность, то есть выполнять всю ту работу, которую по обыкновению возлагали на репетиторов. Немного позднее ему поручили читать курс математического анализа.

Почти одновременно с ним в столице обосновывается Альфред Рамбо, занявший должность профессора истории Парижского университета. Но Пуанкаре нечасто видится с бывшим лицейским преподавателем. Свое свободное время он делит между домашним очагом и наиболее близкими друзьями – Аппелем и Пикаром, которые в том же 1881 году вернулись в Париж после нескольких лет, проведенных в провинции. Все трое проделали традиционный путь в науку, который прошли до них многие известные французские математики, начиная с самого Огюстена Коши.

Отправным пунктом для большинства из них служило одно из двух ведущих учебных заведений страны: Политехническая школа или Нормальная школа. Лишь очень немногие из знаменитых французских математиков XIX века, буквально единицы, вышли из стен Сорбонны. Получив специальное образование, будущие знаменитости посвящали некоторый период своей жизни практической инженерной деятельности, как, например, О. Кошп и К. Жордан, или преподаванию в провинциальных университетах, как Ш. Брио и Ж. Буке. Пуанкаре пришлось пройти и через то и через другое. Не избежал этой участи и Поль Аппель. Окончив Нормальную школу и защитив докторскую диссертацию, он некоторое время преподавал механику на Факультете наук в Дижоне. Их новый товарищ Эмиль Пикар, окончивший Нормальную школу двумя годами позже Аппеля, читал математический анализ в университете Тулузы[15]15
  [15] Подобно Пуанкаре и Аппелю, Пикар сдавал вступительные экзамены одновременно в Нормальную школу и в Политехническую школу, в конкурсе которых он занял соответственно первое и второе места. Выбор его пал на Нормальную школу. Подобная практика участия в конкурсах сразу двух школ, по-видимому, не была в то время чем-то из ряда вон выходящим. Так, например, Г. Дарбу в свое время тоже сдавал экзамены в обе школы и, получив и там и тут высокие оценки, поступил в Нормальную школу.


[Закрыть]
].

Путь из провинции в столицу лежал через успех и придание в ученых кругах. У всех троих уже были несомненные заслуги перед отечественной наукой. В то время как Пуанкаре в упорном и поистине рыцарском соперничестве с немецкими математиками завоевывал фуксовы функции, Аппель сформулировал и доказал весьма важную теорему из теории дифференциальных уравнений высших порядков. В серии заметок и статей за 1880–1881 годы он применяет ее для решения общей проблемы преобразования линейных дифференциальных уравнений, связав этот вопрос с инвариантами, введенными для этих уравнений Лаггером в 1879 году. Инвариантно-групповой подход становится самым модным в математике, и Аппель не остался в стороне от этих наиболее современных и плодотворных методов. Двадцатидвухлетний Пикар прославился благодаря открытию двух замечательных теорем, заинтересовавших многих математиков не только во Франции, но и за рубежом. Используя введенное Эрмитом понятие модулярной функции, он смог с помощью этих теорем описать поведение функции в окрестности существенно особой точки. Завоеванный Пикаром и Аппелем авторитет позволяет им вести курсы в Нормальной школе среди других именитых преподавателей.

Неразлучную троицу заботливо опекает Шарль Эрмит, профессор Нормальной школы и Парижского университета, член Академии наук, после смерти Коши ставший общепризнанным главою французских математиков. Благодаря своему личному обаянию, благодаря своей оживленной переписке со многими известными математиками Эрмит, по словам Ф. Клейна, "был в течение многих десятилетий одним из важнейших центров всего математического мира". Клейн ставит ему в заслугу стремление "поднять математику выше того одностороннего национализма, который постепенно стал охватывать молодое французское поколение". (К сожалению, не только французское, но и немецкое, следовало бы поправить Клейна.) Сплотив вокруг себя группу наиболее талантливых молодых математиков, Эрмит старается связать их тесными дружескими и творческими узами с зарубежными коллегами. И надо отметить, что немало в этом преуспел.

Мудрый и доброжелательный ученый весьма дорожит сложившимся вокруг него благополучным миром научного и человеческого общения, приятных мысленных контактов. Он очень остро ощущает незащищенность этого мира перед неуправляемыми социальными стихиями. Нередко молодые коллеги слышат в его словах откровенное беспокойство перед возможной войной или революцией. По мере сил они стараются развеять его опасения. Для подобной тревоги нет абсолютно никаких причин! На последних парламентских выборах республиканцы одержали полную победу. Правда, сформированное Гамбеттой правительство, от которого ждали так многого и которое называли "великим министерством", не продержалось и трех месяцев. Но республика сейчас прочнее, чем когда бы то ни было раньше. Вместе с отставкой генерала Мак-Магона с поста президента исчезла последняя угроза реставрации. Расшитый золотом мундир с галунами и позументами сменило нарочито скромное партикулярное платье без единого знака отличия. Новый президент Жюль Греви, немногословный, умеренный и холодный, демонстрирует намеренно безличный метод правления, желая, видимо, как можно резче оттенить контраст с декоративной пышностью и мишурой мак-магоновского двора, кишевшего неисчислимой свитой адъютантов и церемониймейстеров.

Весьма энергичный и уверенный в себе, Эмиль Пикар пришелся по душе Аппелю и Пуанкаре. Их дружба крепнет с каждым днем. Сообща они участвуют в одном начинании Гастона Дарбу, возглавлявшего в это время кафедру высшей геометрии в Сорбонне. Еще в 1870 году Дарбу основал специальный журнал "Бюллетень математических наук и астрономии", призванный в какой-то степени решить весьма остро стоявшую тогда проблему ознакомления французских математиков с исследованиями и достижениями зарубежных коллег. Но для бесперебойного функционирования журнала необходим был контингент сотрудников, знающих языки и хорошо разбирающихся в математике, которые могли бы не просто переводить статьи, а даже рецензировать и комментировать их. Прибывшие в Париж молодые математики сразу же оказались среди самых деятельных участников в подготовке выпусков этого издания.

Общие научные интересы и даже совместное творчество еще теснее сплачивают математическое трио. Подхватив и продолжив исследования Пуанкаре по фуксовым функциям, Пикар вводит в математику аналогичные функции, но уже не одного, а двух переменных, назвав их гиперфуксовыми. В соавторстве с Пуанкаре он доказывает знаменитую теорему Римана об однородных функциях. Пуанкаре же в своих работах по определителям бесконечного порядка словно бы начинает диалог с Аппелем, ведущим изыскания в том же направлении.


    Ваша оценка произведения:

Популярные книги за неделю