355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Тяпкин » Пуанкаре » Текст книги (страница 10)
Пуанкаре
  • Текст добавлен: 28 сентября 2016, 22:28

Текст книги "Пуанкаре"


Автор книги: Алексей Тяпкин


Соавторы: Анатолий Шибанов
сообщить о нарушении

Текущая страница: 10 (всего у книги 34 страниц)

Извержение

В одной из своих монографий Брио и Буке отмечали: «Случаи, когда можно интегрировать дифференциальное уравнение, в высшей степени редкие и должны рассматриваться как исключения. Но можно рассмотреть дифференциальное уравнение как определяющее функцию и заняться изучением свойств этой функции по данному дифференциальному уравнению». Из самого дифференциального уравнения авторы предлагали извлекать информацию о той неизвестной функции, которая является его решением. Этот новый подход превращал все не решенные до сих пор дифференциальные уравнения в неисчерпаемый источник новых трансцендентных функций. К сожалению, не было примеров подобных открытий на этом заманчивом, многообещающем пути. Сами Брио и Буке продемонстрировали свой метод на известных эллиптических функциях, установив их основные свойства, которые уже были объектом исследования многих математиков.

Анри Пуанкаре, со студенческих лет находившийся под большим влиянием идей Брио и Буке, решил воспользоваться их рекомендацией, разработанным ими методом. Приняв в качестве определения искомой функции линейное дифференциальное уравнение с алгебраическими коэффициентами, он пришел к первому важному результату: функция, являющаяся решением такого уравнения, должна оставаться неизменной при дробно-линейных преобразованиях переменной величины, от которой она зависит. Это свойство функции сразу же позволяло отнести ее к разряду особого рода периодических функций, если пересмотреть и расширить понятие периодичности. Обычные периодические функции и двоякопериодические эллиптические функции остаются неизменными при простом прибавлении периода к их переменным величинам. Новая гипотетическая функция должна принимать одинаковые значения при более сложных, более общих операциях, произведенных над ее переменной. Подхватив и продолжив эстафету обобщения понятия периодичности, Анри уже в первых работах продемонстрировал свою склонность к широким научным обобщениям.

Чтобы построить эту трансцендентную периодическую функцию более высокого порядка, нужно было найти порождающую ее группу преобразований. В отличие от обычного словоупотребления математики называют группой не произвольное скопление каких-то объектов, а только такое, которое в некотором смысле аналогично множеству целых чисел. Как известно, сумма любых целых чисел тоже является целым числом, то есть не выходит за пределы их множества. Причем от перестановки любого количества слагаемых результат сложения не меняется. Множество целых чисел включает в себя нуль, прибавление которого к любому числу не изменяет его. И, наконец, у каждого положительного целого числа имеется его антипод – такое отрицательное целое число, что их сложение дает в сумме нуль.

Подобные групповые свойства можно обнаружить не только у различных математических объектов – чисел, векторов, функций и так далее, но и у некоторых однотипных действий, преобразований, совершаемых над такими объектами. Так, совокупность всевозможных переносов периода вдоль оси времени, позволяющая построить простейшую периодическую функцию – синус или косинус, – составляет ее группу преобразований. В самом деле, два последовательных переноса (их сумма) равносильны одному переносу удвоенного периода и не меняют значения функции. Последовательность нескольких переносов можно совершать в любом порядке, функция все равно не изменится. Нулевым элементом этой группы можно считать отсутствие всякого переноса. Наконец, после каждого переноса периода по оси времени всегда можно совершить такой обратный перенос, который полностью его компенсирует, низводит до нуля. Такими же групповыми свойствами для эллиптической функции обладает совокупность переносов параллелограмма периода на плоскости.

Если новая функция относится к периодическим, для нее тоже должна найтись своя группа преобразований, свой «перенос» периода. Но дробно-линейному преобразованию переменной величины, при котором функция не меняет своего значения, соответствует весьма непростой «плоский период»: не параллелограмм, а какой-то криволинейный многоугольник. И это сразу затрудняет проблему нахождения такой группы преобразований. Не представляет труда выложить всю плоскость одинаковыми параллелограммами, плотно укладывая их один к другому, как паркет. Но как заполнить плоскость причудливыми фигурами, ограниченными неправильными криволинейными контурами, не оставляя просветов и обходясь без наползания, накладывания соседних фигур друг на друга? Пока не удастся решить этот вопрос, бессмысленно браться за поиски предполагаемой периодической функции. Сначала нужно убедиться, что существуют преобразования, в совокупности составляющие группу, применяя которые к одному-единственному криволинейному многоугольнику можно получить соседние, плотно к нему примыкающие многоугольники, затем более удаленные, смежные с ними, и так до тех пор, пока вся плоскость не будет покрыта плотно сколоченной причудливой мозаикой без зазоров и без перекрытий. Только тогда можно быть уверенным, что, зная функцию на одном таком многоугольнике, на одном периоде, можно воспроизвести ее на всей плоскости.

На пути решения проблемы встала самостоятельная, сама по себе сложная и интересная задача: построить дискретные группы преобразований, обладающие рассмотренными выше свойствами. Но задачу удобнее было решать в несколько иной формулировке: разбить всю плоскость на бесконечное число плотно прилегающих друг к другу, но неперекрывающихся криволинейных многоугольников. От теории дифференциальных уравнений мысль Анри проделала сложный и прихотливый путь к чисто геометрической задаче. Это умение улавливать связь между, казалось бы, совершенно разнородными и далекими друг от друга вопросами математики, преодолевая разделяющие их огромные мысленные дистанции, пройдет через все творчество Пуанкаре.

Впоследствии Пуанкаре признавался, что возникшие трудности, возможно, остановили бы его, если бы не помощь, которую он нашел в совершенно другой математической теории – в неевклидовой геометрии. Задача была решена смелым и изящным способом.

Если плоскость, заполненную параллелограммами периода эллиптической функции, преобразовать в неевклидову плоскость, где параллельные прямые пересекаются, где царят законы необычной геометрии, то вместо прямых сторон параллелограммов получатся дуги, а вместо самих параллелограммов – криволинейные многоугольники. И эти многоугольники будут так же плотно пристыкованы, как сами параллелограммы. Все теоремы о покрытии обычной плоскости параллелограммами периода можно теперь переформулировать с учетом неевклидовости и получить искомые преобразования новой группы. Эти преобразования тоже оказались простым переносом, только на неевклидовой плоскости. Открытые новые группы, неизвестные до этого времени математикам, Пуанкаре назвал фуксовыми в честь немецкого коллеги, мысль которого оказала на него столь плодотворное влияние.

События теперь разворачивались со скоростью импровизации. Да это и была самая настоящая математическая импровизация, ибо каждая ступень на пути к цели таила в себе неожиданность и требовала мгновенной перестройки мышления на новые методы, изобретения новых, не испробованных еще подходов. Построив фуксовы группы, Анри приступил к следующему, не менее сложному этапу. Нужно было выяснить, существуют ли для этих групп такие функции, которые не изменяются при найденных преобразованиях. Неизвестно почему, но Пуанкаре сначала исходил из ошибочного убеждения, что таких функций быть не может. В течение двух недель тщетно пытался он доказать свой отрицательный вывод. И только одна бессонная ночь разом перевернула все его представления. Но лучше предоставим слово самому Пуанкаре:

«…Каждый день я садился за рабочий стол, проводил за ним час или два, исследуя большое число комбинаций, и не приходил ни к какому результату. Однажды вечером, вопреки своей привычке, я выпил черного кофе; я не мог заснуть; идеи теснились, я чувствовал, как они сталкиваются, пока две из них не соединились, чтобы образовать устойчивую комбинацию. К утру я установил существование одного класса этих функций, который соответствует гипергеометрическому, ряду; мне оставалось лишь записать результаты, что заняло несколько часов».

Открытие пришло к нему нежданно, как внезапное озарение, как награда за долгие муки поисков и сомнений.

Восьмидесятый год оказался весьма плодотворным для Пуанкаре. Идеи буквально осаждали его, преследовали, являясь порой в самые неожиданные моменты, застигая его врасплох. Летом Анри покидает Кан, чтобы примкнуть к традиционной геологической экскурсии по Нормандии, организованной Горной школой для своих питомцев. То ли ему захотелось отдохнуть после первого года напряженной преподавательской деятельности, то ли его влекли к себе воспоминания о том веселом времени, когда он сам, будучи студентом, участвовал в подобных экскурсиях. Только вскоре он кочует по краю с веселящейся компанией студентов-горняков. Здесь-то и настигает его еще одно озарение, о котором он поведал впоследствии:

«Прибыв в Кутанс, мы сели в омнибус для какой-то прогулки; в момент, когда я встал на подножку, мне пришла в голову идея, без всяких, казалось бы, предшествовавших раздумий с моей стороны, идея о том, что преобразования, которые я использовал, чтобы определить фуксовы функции, были тождественны преобразованиям неевклидовой геометрии. Из-за отсутствия времени я не сделал проверки, так как, с трудом сев в омнибус, я тотчас же продолжил начатый разговор, но я уже имел полную уверенность в правильности сделанного открытия. По возвращении в Кан я на свежую голову и для очистки совести проверил найденный результат».

Словно мощные подземные толчки, эти внезапные интуитивные прозрения свидетельствуют о нетерпении сдерживаемого в глубине творческого заряда его мысли, предвещая грядущие бурные события. В феврале 1881 года в «Comptes rendus»[11]11
  [11] «comptes rendus» – сокращенное название наиболее популярного во Франции научного журнала «Comptes rendus de l` Асаdemie des Sciences de Paris», выходящего еженедельно и публикующего краткие доклады, представленные в Академию наук.


[Закрыть]
появилась первая заметка Пуанкаре о фуксовых функциях, из которой уже следует, что автору полностью ясен план всей теории, заполнившей впоследствии целый том в его собрании сочинений. Первая вспышка огненного облачка над вершиной оживающего вулкана, вслед за которой хлынул обильный, напористый поток лавы, удививший всех своей энергией и неистощимостью. Это было настоящее научное извержение, как оценили его некоторые математики. За два года Пуанкаре опубликовал серию из 25 заметок и нескольких обширных мемуаров. Эти работы были первыми его систематическими научными публикациями, если не считать докторской диссертации и статьи, написанной еще в Политехнической школе.

Открытые им новые функции Пуанкаре мог бы назвать как угодно, скажем, ультраэллиптическими, гиперэллиптическими и так далее. Ведь он прекрасно осознавал и неоднократно подчеркивал их обобщающий характер по отношению к эллиптическим функциям. Но Пуанкаре называет их фуксовыми. Им движет уважение и признательность к математику, который первым указал на возможность таких функций, хотя даже не доказал их существование. Поскольку работа Фукса дала столь мощный импульс его творческому воображению, он, не задумываясь, делит с ним славу своего открытия.

Такое великодушие пришлось не по нраву некоторым его соотечественникам, породив у них не только изумление, но и возмущение. Жгучий, болезненно чуткий патриотизм французов, не на шутку разыгравшийся после неудачного исхода франко-прусской войны, мешал им по достоинству оценить благородный поступок молодого ученого. Его достижение они воспринимали как научную победу над своими вчерашними врагами, «победу без кровопролития», как вспоминал об этом Поль Аппель. По свидетельству Жака Адамара, в то время говорили, что фуксовы функции «разгромлены» в серии блестящих мемуаров Пуанкаре. Сама военная терминология, применявшаяся, как только речь заходила об этом открытии, ярко обрисовывает ту политическую окраску, которую ему старались придать. Даже много позднее, когда Анри Пуанкаре вступал во Французскую академию, Ф. Массон в своем приветственном докладе с удовольствием вспоминал: «Это открытие было для французской науки настоящей победой. Вот уже несколько лет немецкие геометры кружили вокруг дома, не находя двери. Вы ее обнаружили ив то же время открыли. Это было „похищение“, как говорили про то, что вы сделали с Германией…» Разве могли шовинистически настроенные французские круги одобрить широкий рыцарский жест Пуанкаре-победителя, как бы возвращающего свое открытие менее удачливому немецкому коллеге? Неизвестный острослов сочинил по этому поводу эпиграмму, звучавшую примерно так:

У Фукса одно лишь желание ость —

Присвоить чужого открытия честь.

Автор эпиграммы был, конечно, несправедлив и к Фуксу, и к своему соотечественнику, хотя имя Пуанкаре даже не упоминалось. Но не мог же Анри показывать всем и каждому письма Фукса и черновики своих писем, чтобы унять злые толки! Впрочем, этот общественный протест, как мы вскоре убедимся, его нимало не смутил. Наоборот, он укрепился в своей решимости следовать в подобных вопросах только велениям своей совести, своему пониманию чести ученого.[12]12
  [12] К чести французских ученых следует сказать, что они не шли на поводу у шовинистически настроенных кругов общества. Подтверждением служит хотя бы следующий эпизод, происходивший в это же время. Молодой немецкий математик Герман Минковский представил в мае 1882 года свою работу на конкурс «Гран-при» Академии наук Франции. Парижские газеты подняли против него шумную кампанию, изобиловавшую грубыми нападками и необоснованными подозрениями, но члены комитета не поддались этому массированному давлению. Даже несмотря на формальное нарушение со стороны Минковского условий конкурса (работа была представлена на немецком языке, а не на французском), они присудили премию 18-летпему немецкому математику совместно с известным английским ученым Генри Смитом.


[Закрыть]

Первые работы Пуанкаре сразу же привлекли к нему внимание европейских математиков, заставили их пристально следить за его уверенными шагами. Следить и удивляться. Маститый немецкий математик Карл Вейерштрасс в письме к своей любимой ученице Софье Ковалевской пишет: «Обратила ли ты внимание на последние работы Пуанкаре? Это, во всяком случае, крупный математический талант. Вообще, теперь во Франции молодое поколение математиков с большим успехом стремится к новым достижениям и в области анализа, единственным представителем которого после отхода Лиувилля долгое время оставался Эрмит. Исследования, начатые Пуанкаре в связи с работами Фукса, Шварца и Клейна, во всяком случае, приведут к новым аналитическим трансцендентным, даже если он еще не находится на верном пути».

Спор из-за названия

В письме Вейерштрасса упоминается фамилия еще одного участника описываемых событий. Речь идет о немецком математике Феликсе Клейне, весьма примечательной фигуре в науке того времени.

За несколько лет до того, как Пуанкаре, став студентом Политехнической школы, перебрался в Париж, туда приехал из Геттингена двадцатидвухлетний Клейн. На заре своей научной деятельности он вместе со своим другом, норвежским математиком Софусом Ли, совершил паломничество в столицу Франции. Научная слава вскоре осенит обоих математиков своим крылом, а пока они неутомимо постигают новые для них идеи и методы. В Париже их внимание привлекают работы К. Жордана и Г. Дарбу, с которыми у молодых зарубежных коллег завязывается тесное знакомство. Только что вышедший «Трактат» Жордана открывает им глаза на возможность применения теории групп как полезнейшего инструмента математических исследований, в частности в теории уравнений. Но благотворное знакомство с французской математикой было недолгим, во всяком случае для Клейна. Внезапно разразившаяся франко-прусская война вынуждает его возвратиться в Германию, где он отбывает военную службу в запасных частях. В октябре он неожиданно заболевает тифом. Оправившись после тяжелой болезни, Клейн возвращается в Геттинген и оттуда ведет интенсивную переписку с Г. Дарбу и С. Ли.

Известность приходит к Клейну в 1872 году, когда он вступает в должность профессора университета в Эрлангене. По традиции ему полагалось выступить перед будущими коллегами с программным докладом. Подводя итоги своим двухлетним исследованиям, молодой математик дал столь ясную и отчетливую перспективу дальнейшего развития геометрии, что эта лекция навсегда вошла в фонд научной классики под громким названием «Эрлангенской программы».

Геометрия к тому времени превратилась в весьма расчлененную науку, многие разделы которой настолько далеко разошлись друг от друга, что казались совершенно несвязанными. Наряду со старой, известной с древних времен евклидовой геометрией в математике появились неевклидова, проективная, аффинная, конформная, дифференциальная и другие геометрии. В своем докладе «Сравнительное рассмотрение новых геометрических исследований» Ф. Клейн выдвинул синтетическую идею, объединяющее начало, восстановив утраченное единство геометрии. Различные геометрические теории как бы собираются им в один фокус, а линзой послужило понятие группы, позволившее с единой точки зрения охватить весь геометрический калейдоскоп. И дело не только в формально-теоретическом объединении, это было принципиально новое понимание и обоснование различных геометрий.

За двадцать лет до этого английским математиком Дж. Дж. Сильвестром впервые были введены в науку понятие и термин «инвариант». В последующие годы теория инвариантов и ее применение к алгебраическим проблемам усиленно разрабатывались в Англии им самим и его другом А. Кэли, а во Франции – Ш. Эрмитом. В своих письмах Эрмит не раз шутливо называл себя и своих английских коллег «троицей инвариантов». Клейн положил понятие инварианта наряду с понятием группы в основу своих геометрических изысканий.

Кратко суть «Эрлангенской программы» заключается в том, что любая геометрия объявляется учением о свойствах фигур, инвариантных, то есть неизменных, при некоторых однотипных преобразованиях, совокупность которых образует группу. Каждому типу преобразований соответствует своя геометрия. Например, элементарная евклидова геометрия изучает свойства фигур, которые не зависят от их положения в пространстве. Две фигуры в этой геометрии считаются одинаковыми, если, двигая одну фигуру, можно точно совместить ее с другой. Группа преобразований, соответствующая евклидовой геометрии, составлена из различных движений, перемещений в пространстве. В проективной геометрии фигуры одинаковы, если можно одну из них спроектировать конусом световых лучей на другую так, что они полностью совпадут. Так совпадает с диском луны монета, которую мы держим в вытянутой руке. В этой геометрии любые треугольники считаются одинаковыми, так как всегда можно найти такой угол зрения, под которым эти треугольники точно совместятся. Точно так же одинаковыми принимаются любая окружность и любой эллипс. Множество всех мыслимых проекций, образованных расходящимся из точки пучком лучей, – такова группа проективной геометрии. Различные геометрии отличаются друг от друга тем, какие фигуры в них получаются одинаковыми, инвариантными, при дозволенных в этих геометриях преобразованиях. Геометрия становится теорией инвариантов некоторой группы преобразований.

Этим результатам Клейна потому уделено внимание в нашей книге, что инвариантно-групповой подход стал сквозной идеей в творчестве Пуанкаре, подведя его вплотную к приложению идей «Эрлангенской программы» в механике и физике. Не раз еще, рассматривая его труды, мы встретимся с этими терминами – группа и инвариант. Глубоко усвоив достоинства групповых методов и живо восприняв идею инвариантов, Пуанкаре одним из первых возвестил о новом теоретико-инвариантном подходе в точном естествознании.

Когда в 1880 году Феликс Клейн возглавил в Лейпциге университетскую кафедру геометрии, его внимание и внимание его учеников было приковано к функциям, инвариантным относительно некоторых общих преобразований переменной величины. Поэтому он не мог не заметить первых статей Пуанкаре по фуксовым функциям. Ознакомившись с ними, он сразу же осознает важность выдвигаемых там идей. Даже среди математиков Клейн был одним из немногих, кто по-настоящему глубоко мог проникнуть в работы молодого французского математика и дать им оценку, основанную на подлинном понимании. Ведь, как и Фукс, он со. своей школой занимается теми же проблемами, и понятие новой функции ему уже знакомо.

Клейн был поражен тем, как быстро овладел никому не известный еще, начинающий математик всеми позициями в этом вопросе. С некоторым беспокойством следит он за стремительными действиями молодого Бонапарта от математики. Ему просто не верится, что Пуанкаре охватил столь огромную проблему сразу во всей ее общности, в то время как сам он ограничивался до сих пор рассмотрением отдельных, специальных случаев. И вот после появления третьей заметки Пуанкаре он, весьма заинтригованный, пишет молодому автору письмо, датированное 12 июня 1881 года. Между двумя учеными завязывается переписка, в которой они обменялись 26 письмами. Тон переписки установился сам собою: Клейн на пять лет старше Пуанкаре и уже завоевал авторитет и известность в международных математических кругах, поэтому Анри выступает в роли молодого ученого, почти ученика, дружелюбно, но с подчеркнутой почтительностью беседующего с ведущим математиком, который, в свою очередь, весьма тактично и благожелательно восполняет порой пробелы в его математической эрудиции.

«Монсеньор, ваше письмо доказывает мне, что вы заметили раньше меня кое-какие результаты, которые я получил в теории фуксовых функций, – отвечает Пуанкаре на первое письмо из Лейпцига. – Я этому нисколько не удивился, так как знаю, насколько вы преуспели в познании неевклидовой геометрии, являющейся настоящим ключом к задаче, которая нас занимает. Я воздам вам должное в этом отношении, когда опубликую мои результаты…»

Но озадачивает Пуанкаре та оппозиция, которую он встретил со стороны немецкого коллеги в вопросе о названии новых функций. Клейн категорически против его предложения называть их фуксовыми. Он считает, что у Фукса слишком мало достижений в этой области математики. «…Я не оспариваю ту большую пользу, которую господин Фукс принес другим частям теории дифференциальных уравнений, – пишет Клейн в одном из своих писем, – но именно здесь его работы вызывают большое недоумение тем, что единственный раз, когда в одном из писем к Эрмиту он высказался об эллиптических модулярных функциях, проскальзывает фундаментальная ошибка, которую Дедекинд критиковал впоследствии слишком осторожно…» Клегн не склонен принижать значение ошибок Фукса, которые не позволили ему достичь правильных конечных результатов. Пуанкаре более великодушен, и в своем великодушии он не терпит компромиссов. «Что же касается названия этих фуксовых функций, – отвечает он, в свою очередь, Клейну, – я его не изменю. Уважение, которое я испытываю к господину Фуксу, мне это не позволит. К тому же, хотя и верно, что точка зрения ученого-геометра из Гейдельберга полностью отлична от вашей и моей, все же его работы определенно послужили исходной точкой и основанием всему тому, что делалось в этой теории…»

Дискуссия по поводу названия продолжается и в 1882 году. Пуанкаре, пытаясь убедить Клейна и научную общественность, аргументирует свою точку зрения. В письме от 30 марта 1882 года он пишет в Лейпциг; «…Вы были столь добры, что поместили в „Математических анналах“ мою работу об однозначных функциях, которые происходят из линейных подстановок, и сопроводили ее своим замечанием, излагая причины, по которым вы находите малоподходящими имена, данные мною этим трансцендентностям. Позвольте мне адресовать вам несколько строк, чтобы защитить мои названия, которые я выбрал не случайно…» Тон письма вежливый, но достаточно твердый. «Ученик» демонстрирует не строптивость, а упорство в отстаивании своей позиции, даже не научной, скорее нравственной. Если бы Алина Бугру видела своего брата, пишущего эти строки, она только по выражению его лица, по особому помаргиванию его глаз сразу догадалась бы, что им овладела стихия сопротивления. Так с ним случалось и в детстве. Покладистый и сговорчивый, когда дело касалось мелочей, Анри проявлял невиданное упорство, если затрагивались принципиальные вопросы, в которых он чувствовал себя правым. Но сопротивлялся он молча, пассивно, без бурного проявления своего негодования, без эмоциональных взрывов. Только хорошо знавшие его люди замечали по некоторым едва уловимым внешним признакам, что Анри чем-то недоволен и не намерен уступать.

Видимо, под влиянием этой дискуссии Пуанкаре счел необходимым в одной из своих больших статей по фуксовым группам, опубликованной в том же 1882 году, вставить пояснение: хотя группы, изученные Фуксом, «не выходят за рамки уже известных, все же чтение именно этого замечательного мемуара побудило меня к моим первым исследованиям и позволило найти закон образования фуксовых групп и дать ему строгое доказательство». По мнению Пуанкаре, даже побудительный мотив заслуживает того, чтобы его увековечить. Что ж, быть может, это действительно спорная позиция, но, безусловно, проистекающая из лучших, благородных побуждений.


    Ваша оценка произведения:

Популярные книги за неделю