Текст книги "Пуанкаре"
Автор книги: Алексей Тяпкин
Соавторы: Анатолий Шибанов
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 24 (всего у книги 34 страниц)
Конец абсолютного времени
Абсолютное и всеобщее время принадлежало к наиболее фундаментальным исходным понятиям механики. Оно казалось столь же незыблемым, как и основные законы этой науки, сформулированные еще Ньютоном и много раз подтвержденные с тех пор астрономическими наблюдениями. Но установленная двести лет назад конечность скорости распространения света давала достаточный повод для того, чтобы усомниться в правомерности представления об абсолютном времени. Однако за прошедшие два века никто из физиков или философов не посмел подвергнуть сомнению это понятие. В конце XIX века некоторые ученые – Э. Мах, Д. Б. Сталло, И. Петцольдт – выступили с критикой классического абсолютного времени с общенаучных и философских позиций. И только Пуанкаре показал его полную несостоятельность, опираясь на вполне конкретный экспериментальный факт – конечность скорости передачи самого быстрого материального сигнала, скорости света. Им был дан наиболее четкий научный анализ понятия времени и других связанных с ним понятий, явно или неявно используемых в науке. Прямой связи между этими его исследованиями и проблемами электродинамики движущихся тел, которые находятся в поле его зрения, нет. К критическому пересмотру классических взглядов на время он пришел от проблем обоснования геометрии пространства.
В 1898 году один из выпусков широко известного тогда французского научного журнала открылся статьей Пуанкаре "Измерение времени". На протяжении почти тринадцати страниц автор основательно анализирует такие простые, казалось бы, понятия, как равенство двух промежутков времени и соответствие между собой моментов времени в разных точках пространства. Его рассуждения показывают, что понятие времени казалось до сих пор очень простым только потому, что о нем серьезно не задумывались. Принимая абсолютное время, классическая физика, оказывается, делала ряд неявных допущений, с которыми следовало бы расстаться после того, как убедились в конечном значении скорости света. Даже определение скорости движения основывалось на представлении о равномерном и одинаково идущем во всех точках пространства времени. Задание величины скорости подразумевает отсчет времени хотя бы в двух пространственно разделенных точках. Но полученный таким способом временной интервал имеет смысл только в том случае, когда решен вопрос о приведении в соответствие времен в разных точках пространства. Для этого недостаточно установить одинаковость хода времени в этих точках, необходимо также согласовать начало его отсчета, или, как принято говорить, установить одновременность.
Как же установить эти характеристики времени в реальной действительности, если самый быстрый процесс – это распространение света, скорость которого тоже конечна? Этот вопрос Пуанкаре подвергает детальному анализу, рассматривая те измерительные процедуры, с помощью которых понятию времени придается физический смысл. Полученный им ответ казался его современникам весьма неожиданным и одиозным: абсолютного времени и абсолютной одновременности в природе не существует. Лишь на основе условного соглашения, конвенции, можно считать равными длительности двух промежутков времени и одновременными два явления, происшедшие в разных точках пространства. Например, при практическом установлении с помощью световых сигналов одновременности двух разноместных событий нужно сначала измерить скорость света, а ее измерение, в свою очередь, предполагает установление одновременности. Возникают непреодолимые трудности, справиться с которыми помогает определенное, условное в известных пределах соглашение, договоренность. Свою статью Пуанкаре заканчивает требованием, которому должны удовлетворять такие сознательно заключаемые соглашения: "Одновременность двух событий или порядок их следования, равенство двух длительностей должны определяться таким образом, чтобы формулировка естественных законов была бы настолько простой, насколько это возможно".
Это было совершенно новое, «неклассическое» понимание времени и одновременности. Введенное в науку на самом закате прошлого века, знание это принадлежало уже надвигающемуся столетию и сыграло в нем первостепенную роль. Только во второй половине нашего столетия, и то после долгих лет сомнений и недопонимания, получило должную оценку и другое положение, сформулированное Пуанкаре в статье 1898 года. Рассматривая взятое в качестве примера утверждение астронома о том, что "звездное явление, которое он видит в настоящее время, произошло 50 лет назад", автор вскрывает в нем неявное допущение о постоянстве скорости распространения света во всех направлениях. Принципиально невозможно измерить скорость распространения света в одном каком-нибудь направлении. Измерению подлежит лишь усредненная скорость прохождения светом некоторой протяженности в двух противоположных направлениях. Поэтому предположение о равенстве двух противоположных по направлению скоростей света является только условным соглашением.[47]47
[47] Это обстоятельство и сейчас еще нередко упускают из виду при обсуждении возможностей экспериментальной проверки отдельных положений теории относительности, что лишний раз характеризует всю глубину анализа, проведенного Пуанкаре в конце прошлого века.
[Закрыть] «Это есть постулат, – писал Пуанкаре, – без которого нельзя было бы предпринять никакого измерения скорости. Данный постулат никогда нельзя проверить прямо на опыте… Я хочу отметить, что он дал нам новое правило для поисков одновременности, полностью отличное от того, которое мы упоминали выше». Именно это сформулированное Пуанкаре правило определения одновременности, исходя из наиболее простого и удобного соглашения о равенстве скоростей света в прямом и обратном направлениях, было использовано впоследствии для обоснования релятивистских свойств времени.
Новые взгляды на время Пуанкаре проводит и в своем лекционном курсе "Электричество и оптика", прочитанном в 1899 году и опубликованном два года спустя, а также В докладе на философском конгрессе 1900 года, который вошел в виде отдельной главы в книгу "Наука и гипотеза".
Лоренцу в этот период тоже потребовалось пересмотреть понятие времени, чтобы раскрыть физический смысл некоторых сторон развиваемой им электродинамики движущихся сред. Но он так и не отважился сразу и решительно порвать со столь привычным всеобщим временем классической физики. Первым его шагом было введение особого понятия «местного» времени, которое использовалось им фактически как реальное время для описания процесса распространения световой волны в движущейся среде. «Местным» оно называлось по той причине, что в каждой точке движущейся системы было выбрано свое, характерное для данного места начало его отсчета.
Сам Лоренц был далек от того, чтобы это «местное» время признать равноправным со временем неподвижной системы, которое он называл всеобщим. Но это лишь свидетельствовало об отсутствии у него понимания подлинного значения сделанного им шага. Для согласования своей теории с результатами опыта Физо ему пришлось отказаться от всеобщего времени, связанного с классическими преобразованиями Галилея, и использовать «местное» время как реальное физическое время. Таким образом, даваемая Лоренцем оценка «местного» времени как некоторой вспомогательной величины не соответствовала фактическому его употреблению.[48]48
[48] Без использования этой вспомогательной величины для описания процесса распространения света в движущейся среде невозможно было бы получить согласие с опытом. Но реальное физическое время не имеет никакого другого, отличного от этого смысла. Поэтому никак нельзя согласиться с широко распространенным непризнанием факта использования Лоренцем «местного» времени именно как реального времени только на том основании, что сам автор считал его вспомогательной величиной.
[Закрыть]
В этой ситуации особенно важное значение приобретало то простое разъяснение физического смысла «местного» времени, которое дал Пуанкаре. В своей статье "Теория Лоренца и принцип равенства действия и противодействия", опубликованной в 1900 году в одном из голландских журналов, посвященном двадцатипятилетию научной деятельности Лоренца, он определяет «местное» время как соответствующее показаниям часов, синхронизованных световым сигналом. Это означало, что оно является таким же реальным физическим временем в движущейся системе, каким считалось отличное от него время неподвижной системы.
Неожиданное решение
И «местное» время, и гипотеза о сокращении длин твердых тел, движущихся в эфире, все это были неосознанные отступления от общепринятых методов классической физики, с которыми сам Лоренц никак не хотел расстаться. По его представлениям, любые электромагнитные явления происходят всегда в неподвижном мировом эфире в строгом соответствии с уравнениями Максвелла. Это означало, что при движении какой-либо системы относительно эфира меняются лишь условия наблюдения процессов, разыгрывающихся всегда на одной и той же сцене по одному и тому же сценарию, задаваемому уравнениями Максвелла. Чтобы выяснить, к каким последствиям приводят эти изменения условий наблюдения, нужно было перейти от пространственно-временных координат системы, связанной с эфиром, к таким же координатам движущейся системы отсчета.
Согласно представлениям классической физики математические соотношения между координатами двух систем отсчета предписаны очевидными соображениями и выражаются преобразованиями, принятыми еще Галилеем. Эти преобразования и были использованы Лоренцем для описания электромагнитных процессов в движущейся системе координат. Полученные им результаты, однако, расходились с опытными. Но, даже столкнувшись с таким противоречием, он проявляет удивительную верность уравнениям Максвелла и своей основной идее о неподвижном эфире. Стремясь согласовать свою теорию с опытом, Лоренц выдвигает те самые дополнительные гипотезы, которые, не затрагивая уравнений электродинамики, вносят необходимые изменения в описание процессов в движущейся системе. Фактически же «местное» время и гипотеза о сокращении длин означали изменение преобразований пространственно-временных координат, отход от обычных преобразований Галилея.
Еще в работе Лоренца 1895 года присутствовали новые преобразования координат, которые приближенно отвечали этим принятым им двум гипотезам. Несколько позже, в работе 1899 года, Лоренц получает уже точные выражения для таких преобразований. Он преподносит их как некие специальные преобразования пространственно-временных координат, применение которых обеспечивает неизменность, инвариантность уравнений Максвелла при переходе от системы эфира к движущейся системе. Правда, голландский физик не дал строгого и общего доказательства этого утверждения. Тем не менее, как было потом доказано Пуанкаре, полученные Лоренцем преобразования действительно обладают таким ценным свойством, отвечающим требованию принципа относительности. Сам Лоренц, проявляя свойственную ему непоследовательность, рассматривал полученные преобразования лишь как вспомогательный математический прием.
В 1900 году англичанин Лармор в своей книге "Эфир и материя" также приводит эти новые преобразования координат. Он доказал даже инвариантность уравнений Максвелла относительно полученных им независимо от Лоренца преобразований, правда, для простейшего случая – при отсутствии электрических зарядов и токов. В отличие от своего голландского коллеги английский ученый более определенно высказался о реальном физическом смысле новых преобразований. Он пишет, например, о замедлении времени, связывая его с ходом электромагнитных процессов в движущейся через эфир системе. Лармор получил также точную формулу для изменения длины волны света, обусловленного движением системы в эфире (эффект Доплера). Им же впервые была получена релятивистская формула сложения скоростей, которую он вывел для объяснения опыта Физо.
Таким образом, в самом конце XIX века были уже найдены новые преобразования пространственно-временных координат, составляющие основу будущей физической теория – теории относительности. Были получены также самые необычные следствия этой теории о сокращении длин отрезков и расширении временных интервалов. В работах Лоренца и Лармора контуры новой теории, связанной с революционным преобразованием всей физики, проступали весьма отчетливо. Но на их работы не было обращено должного внимания даже теми учеными, которые интересовались проблемами электродинамики движущихся тел. Да и сами авторы не придавали полученным ими результатам особого значения и не делали категорических выводов о преодолении кризиса в физике. К тому же ограниченное применение новых пространственно-временных преобразований лишь для уравнений электродинамики не обеспечивало еще всеобщности принципа относительности. Например, неинвариантными относительно новых преобразований оставались законы механики. Поэтому-то в своем докладе на конгрессе в Сент-Луисе Пуанкаре специально подчеркивал, что может потребоваться совершенно новая механика быстрых движений. В этом состояло глубокое понимание французским теоретиком того факта, что проблема электродинамики движущихся тел затрагивает общие свойства физических процессов и требует пересмотра основ другой науки – механики. Приведение в согласие различных разделов физики всегда рассматривалось Пуанкаре как важнейшее требование, вытекающее из единства физического мира. Теперь же приведение механики в соответствие с электродинамикой выдвигалось на очередь дня в качестве основного условия решения проблемы, связанной с невозможностью обнаружить абсолютное движение.
После возвращения из Америки Пуанкаре вновь обратился к последней работе Лоренца, опубликованной в мае 1904 года. Уж сколько раз приходилось ему подмечать в чужих статьях то, что оставалось скрытым даже от самого автора. Но здесь авторская идея выражена достаточно явно. Лоренц предлагает найденный им для электронов закон неограниченного возрастания массы при приближении их скорости к скорости света распространить на любые механические объекты. Аналогичное обобщение предлагалось для преобразования сил из одной системы координат в другую. Правда, идеи эти не были развиты до общих уравнений новой механики, и даже высказаны они были как бы мимоходом. Но у Пуанкаре нет и тени сомнения в том, что статья Лоренца представляет собой смелое посягательство на незыблемые основы классической механики. Он усмотрел в ней четкую формулировку новых начал необычной механики сверхвысоких скоростей.
После Ньютона великие механики и математики лишь совершенствовали созданный им теоретический аппарат. Никто не смел посягнуть на ньютоновские начала механики. И вот теперь голландским физиком Лоренцем выдвинуты совершенно другие исходные положения, из которых следует, что при больших скоростях движения, соизмеримых со скоростью света, механические объекты движутся совсем не так, как предписывалось законами Ньютона. Это обстоятельство, по мнению Пуанкаре, заполняло последний пробел в логике лоренцевского подхода. Он вдруг ясно увидел безупречность и завершенность предложенного пути решения всей проблемы. Найдя конкретное указание на необходимое изменение механики, Пуанкаре смог теперь соединить в единую стройную систему разрозненный и непоследовательно изложенный материал последней статьи Лоренца. В приведении механики в соответствие с теорией движения электронов он увидел окончательное доказательство невозможности наблюдения абсолютного движения. В этом понимании сути содержащегося в работе Лоренца полного, решения проблемы электродинамики движущихся тел Пуанкаре далеко превзошел и самого автора, и всех других физиков своего времени.
Пуанкаре неоднократно высказывал мнение о том, что электродинамика Лоренца ближе всех других теорий подошла к тому, чтобы строго удовлетворить принципу относительности. Однако ему казалось, что для полного согласования теории с этим принципом придется прибегнуть к общим изменениям и механики Ньютона, и электродинамики Максвелла – Лоренца. Но теперь из последней работы Лоренца ясно следовало, что только за счет соответствующего изменения механики можно достигнуть точного выполнения принципа. Это был совершенно неожиданный выход из создавшейся кризисной ситуации. При этом переворачивались вверх дном все до сих пор сложившиеся представления о путях развития научной теории.
Впервые предлагалось совершить целый переворот в теории, который не был продиктован прямыми экспериментальными исследованиями именно в этой области физики. Противоречие между теорией и опытными фактами наблюдалось в электродинамике, а устранялось оно преобразованием механики, в которой отсутствовали какие-либо экспериментальные указания на неточность теории. Электродинамика стала тем камертоном, с помощью которого обнаружились фальшивые ноты в механической теории, которых "не слышали" сами механики. Но, будь их опыты много точнее, а изучаемые ими скорости движения много выше, они обнаружили бы отступление от механики Ньютона даже при столкновении бильярдных шаров.
Как это не раз уже случалось с Пуанкаре и раньше, увиденная им в чужой статье потенциальная сила идей и грандиозность задач заворожили его творческий дух. Он тут же подключается непосредственно к разработке новой физической теории.
Глубокое теоретическое построение
Как и обычно, первое сообщение о проведенном исследовании Пуанкаре сделал перед своими коллегами по академии. Оно было опубликовано в «Comptes rendus» от 5 июня 1905 года под названием «О динамике электрона». В статье прежде всего отмечалось, что последняя работа Лоренца решила проблему невозможности обнаружить движение по отношению к эфиру. Собственные же результаты были охарактеризованы автором в весьма скромных тонах, как некоторое дополнение и видоизменение исследований Лоренца.
Чрезмерная сдержанность и умеренность в оценке плодов своего труда всегда были свойственны Пуанкаре, начиная с первых его работ по фуксовым функциям. В этом же случае они оборачивались явной недооценкой собственного вклада в развитие новой физической теории. Между тем даже из предварительного краткого изложения итогов его работы, помещенного в "Comptes rendus", можно было понять, что речь идет о совершенно новых, принципиально важных результатах. К ним относился вывод о том, что преобразования, связывающие пространственно-временные координаты двух систем отсчета, должны образовывать математическую группу и что полученное Лоренцем преобразование удовлетворяет этому обязательному условию. К фундаментальным результатам относилась также впервые высказанная идея о необходимости привести теорию тяготения в соответствие с преобразованиями Лоренца. Как и неоднократно раньше, Пуанкаре тут же дополняет выдвинутую им идею конкретными шагами по ее практическому претворению. В статье сообщается о первом воплощении этой грандиозной и дерзновенной программы пересмотра научной теории, считавшейся незыблемой со времени ее утверждения великим Ньютоном.
Примерно через полтора месяца в печать была направлена обширная статья под тем же названием "О динамике электрона", содержавшая подробное изложение всех полученных Пуанкаре результатов. Вводную часть этого мемуара, опубликованного в известном итальянском журнале "Отчеты математического кружка Палермо", автор начинает с перечисления отрицательных результатов всех основных опытов, в которых пытались обнаружить движение Земли относительно эфира. "Эта невозможность показать опытным путем абсолютное движение Земли представляет, по-видимому, общий закон природы, – заключает он далее. – Мы, естественно, приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и принять без оговорок. Все равно будет ли позднее этот постулат, до сих пор согласующийся с опытом, подтвержден или опровергнут более точными измерениями, сейчас, во всяком случае, представляется интересным посмотреть, какие следствия могут быть из него выведены".
Вновь отмечая, что в последней работе Лоренца достигнуто полное соответствие между разработанной им теорией и принципом относительности, Пуанкаре пишет, что важность вопроса побудила и его заняться им. "Результаты, полученные мною, согласуются во всех наиболее важных пунктах с теми, которые получил Лоренц. Я стремился только дополнить и видоизменить их в некоторых деталях. Некоторые имеющиеся расхождения, как мы увидим дальше, не играют существенной роли".
Последнее замечание о некоторых расхождениях, не играющих "существенной роли", относилось к исправлению использованных Лоренцем соотношений для преобразования из одной системы координат в другую электрического заряда и тока. Но именно эти выправленные соотношения позволили Пуанкаре доказать в самом общем случае, что уравнения электромагнитного поля не изменяются при введенных преобразованиях, которые он предложил называть "преобразованиями Лоренца". "Эти уравнения, – писал он, – можно подвергнуть замечательному преобразованию, найденному Лоренцем, которое объясняет, почему никакой опыт не в состоянии обнаружить абсолютное движение Земли". Неизменность, инвариантность уравнений электродинамики относительно новых преобразований становятся в работе Пуанкаре прямым следствием принципа относительности. И это новое понимание выступает у него единым подходом ко всем областям физических явлений. "Все силы, какого бы они ни были происхождения, ведут себя благодаря преобразованию Лоренца… точно так же, как электромагнитные силы".
Требование инвариантности всех законов физики относительно преобразований Лоренца являлось новой, более строгой в математическом отношении формулировкой универсального принципа относительности. Но свое замечательное достижение Пуанкаре приписывает Лоренцу. На самом же деле утверждение Лоренца об инвариантности уравнений электродинамики относительно найденных новых преобразований координат не связывалось им непосредственно с невозможностью наблюдать движение относительно эфира. Все его усилия были направлены на то, чтобы, сохраняя принятые уравнения электродинамики, доказать ненаблюдаемость эффектов, связанных с нарушением инвариантности этих уравнений относительно старых преобразований Галилея. Этот путь и привел его к осознанию необходимости соответствующих изменений в механике, что на деле означало предположить такую же неинвариантность для ее уравнений. Глубокое понимание всей проблемы позволило Пуанкаре увидеть в этом предложении фактический отказ от принципа относительности Галилея в пользу новой формы того же принципа, распространенного уже на все физические явления. Видимо, сам Пуанкаре считал не столь уж существенным переход к принятой им формулировке принципа относительности через преобразования Лоренца.
Название статьи Пуанкаре ни в коей мере не отвечало ее содержанию. Детальное рассмотрение законов динамики электрона понадобилось автору лишь для того, чтобы обобщить их согласно принципу относительности на все физические взаимодействия. Наиболее кардинальным выглядело изменение законов тяготения, которое Пуанкаре представлял естественным следствием принятого во всей общности постулата относительности, как полного отрицания всякой возможности наблюдать эфир. В то же время он оставлял место этой гипотетической среде для объяснения того, что "распространение сил тяготения происходит не мгновенно, но со скоростью света" и что "в законе тяготения и электромагнитных законах мы нашли бы общую постоянную – скорость света".
Перестройка теории тяготения в соответствии с принципом относительности имела особое значение как начало становления новой, так называемой релятивистской теории гравитации. Для решения этой проблемы Пуанкаре пришлось использовать разработанный им математический аппарат новой физической теории, получившей впоследствии название специальной теории относительности.
Именно в изложении Пуанкаре эта теория обрела строгую математическую форму. Он первым ввел в нее четырехмерное представление, добавив к трем пространственным координатам четвертую – собственное время системы отсчета, умноженное на скорость света и мнимую единицу. Каждая точка в такой необычной геометрии изображала мгновенное событие, происходящее в определенном пункте пространства и в определенный момент времени. Этот формализм четырехмерной геометрии позволил Пуанкаре установить абсолютные величины новой теории, которым соответствовали инвариантные соотношения, остающиеся неизменными при всех преобразованиях от одной системы отсчета к другой. Наглядный геометрический смысл был установлен, например, для одного из важнейших инвариантов теории, который изображался четырехмерным интервалом, то есть расстоянием в четырехмерном мире между двумя его точками. Эта величина оказалась не зависящей от выбора системы координат. Сами же преобразования Лоренца удобно представлялись простым поворотом осей координат в четырехмерном пространстве.
Пуанкаре первым заметил, что любые преобразования, связывающие пространственно-временные координаты инерциальных систем отсчета, должны образовывать группу. В противном случае эти преобразования приводили бы к несамосогласующимся, неоднозначным результатам. До него это обстоятельство не было уяснено, и в физике обсуждались порой преобразования, не удовлетворяющие столь очевидному теперь требованию. Преобразования Лоренца, как показал Пуанкаре, соответствовали этому обязательному условию.