355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики » Текст книги (страница 23)
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Текст добавлен: 12 октября 2016, 02:02

Текст книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"


Автор книги: Алекс Беллос


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 23 (всего у книги 24 страниц)

На следующий день возникает более сложная ситуация. Приезжает автобус, и каждому пассажиру этого автобуса нужен номер. А в автобусе бесконечное число сидений, занумерованных как 1, 2, 3 и так далее, и все они заняты. Есть ли теперь хоть какой-то способ расселить всех без исключения пассажиров? Другими словами, хотя гостиница и полна, может ли администратор так перетасовать постояльцев по номерам, чтобы в итоге освободить бесконечное число номеров для пассажиров автобуса? Да это легче легкого, говорят нам.

Все, что надо проделать на этот раз, – это переселить каждого постояльца в номер, на двери которого написано число в два раза большее, чем то, что написано на номере, где этот постоялец живет в данный момент. Тем самым заполнятся номера 2, 4, 6, 8…. А все номера, на дверях которых написано нечетное число, освободятся, и пассажирам автобуса дадут ключи от них. Пассажир, ехавший на первом сиденье, получит номер 1 (первое из нечетных чисел), пассажир, ехавший на втором сиденье, получит номер 3 (второе нечетное число) и т. д.

На третий день в Гильбертов отель прибывает много автобусов. Бесконечно много. Автобусы выстраиваются на стоянке перед гостиницей: сначала автобус 1, затем автобус 2, вслед за ним автобус 3 и т. д. В каждом автобусе – бесконечное число пассажиров (это автобусы того же типа, что приезжали накануне). И понятно, каждому пассажиру требуется номер. Есть ли способ найти для каждого пассажира из каждого автобуса номер в (уже заполненном) Гильбертовом отеле? Не проблема, отвечает администратор. Прежде всего ему надо освободить бесконечно много номеров. Он делает это тем же способом, что и накануне, – переселяет каждого постояльца в комнату с удвоенным номером. В результате свободными оказываются все нечетные номера. Все, что ему надо сделать, чтобы разместить там бесконечное число групп автобусных пассажиров, – это найти способ пересчитать всех пассажиров, потому что, как только он найдет такой способ, он поселит первого пассажира из списка в номер 1, второго – в номер 3, третьего – в номер 5 и т. д.

Администратор проделывает следующее. Сначала составляется список пассажиров, в котором каждый пассажир представлен записью вида m/n, где  m —это номер автобуса, на котором данный пассажир приехал, а  n —номер его места в автобусе. Если начать с пассажира, ехавшего на первом месте в первом автобусе (путешественник 1/1), а затем следовать по зигзагообразной кривой, показанной ниже, – так, что вторым окажется путешественник, занимавший второе место в первом автобусе (1/2), затем тот, кто сидел на первом месте во втором автобусе (2/1), и т. д. – в концов концов окажутся переписанными все без исключения пассажиры.

Теперь перенесем на язык символьной математики то, что мы узнали про Гильбертов отель.

Когда номер нашли для одного путешественника, это эквивалентно формулируется как 1 + ℵ 0= ℵ 0.

Когда номер нашли для счетно-бесконечного числа путешественников, мы узнали, что ℵ 0+ ℵ 0= ℵ 0.

Когда счетно-бесконечное число пассажиров в каждом автобусе из счетно-бесконечного числа автобусов смогли расселиться по номерам, мы узнали, что ℵ 0× ℵ 0= ℵ 0. Таковы правила, которых мы ожидаем от бесконечности: прибавление бесконечности к бесконечности дает бесконечность, и умножение бесконечности на бесконечность также дает бесконечность.

* * *

Давайте на секунду остановимся. Мы уже получили один потрясающий результат. Взглянем снова на таблицу с номерами мест и номерами автобусов. Рассмотрим каждого путешественника, обозначаемого символом m/n, как дробь m/ n. Если продолжить нашу таблицу до бесконечности, в ней будут указаны все без исключения положительные дроби – просто потому, что положительные дроби и представляют собой выражения m/ nдля любых натуральных чисел  mи n.Например, дробь 5628/ 785окажется перечисленной, когда мы доберемся до 5628-й строки и 785-го столбца. Зигзаговый метод подсчета всех пассажиров во всех автобусах можно поэтому использовать и для пересчета всех положительных дробей. Другими словами, множество положительных дробей и множество натуральных чисел имеют одно и то же кардинальное число ℵ 0. Интуитивно кажется, что дробей должно быть больше, чем натуральных чисел, потому что между любыми двумя натуральными числами имеется бесконечное число дробей, и, однако же, Кантор показал, что наша интуиция неверна. Положительных дробей ровно столько же, сколько и натуральных чисел. (Конечно, положительных и отрицательных дробей тоже столько же, сколько натуральных чисел, потому что имеется ℵ 0положительных дробей и ℵ 0отрицательных, а из предыдущего мы знаем, что ℵ 0+ ℵ 0= ℵ 0)

Чтобы оценить, насколько необычным является этот результат, рассмотрим числовую прямую, которая позволяет воспринимать числа как точки на линии. Вот числовая прямая, начинающаяся в 0 и устремляющаяся в бесконечность:

Каждую положительную дробь можно рассматривать как точку на этой числовой прямой. Из предыдущих глав мы знаем, что имеется бесконечно много дробей, заключенных между 0 и 1, а равным образом между 1 и 2 или между двумя любыми другими числами. Теперь представим себе, что мы поднесли к числовой прямой микроскоп, который позволяет разглядеть, что происходит между точками, представляющими дроби 1/ 100и 2/ 100. Как мы показали выше, имеется бесконечно много точек, представляющих дроби между двумя указанными точками. И куда бы на числовой прямой мы ни направили микроскоп и сколь бы маленький интервал между двумя точками он ни показывал, там всегда будет бесконечно много точек, представляющих дроби в данном интервале. Поскольку имеется бесконечно много точек, представляющих дроби всюду, куда ни посмотри, осознание того факта, что все их, без единого исключения, можно пересчитать, поместив в упорядоченный список, сбивает с толку.

* * *

И теперь главное. Это доказательство того, что имеется кардинальное число, большее ℵ 0. Сначала – назад в Гильбертов отель. На этот раз гостиница пуста, когда появляется бесконечное число людей, желающих поселиться. Но теперь путешественники приехали не в автобусах; они представляют собой толпу, причем каждый одет в футболку, надпись на которой представляет собой десятичное разложение некоторого числа, лежащего между 0 и 1. Ни у каких двух людей написанные на груди десятичные разложения не совпадают, и при этом использованы все десятичные разложения между 0 и 1. (Конечно, десятичные разложения бесконечно длинные, поэтому для их изображения требуются бесконечно широкие футболки, но, поскольку мы уже кое на что согласились, когда попытались представить себе гостиницу с бесконечным числом номеров, я полагаю, что в случае с футболками прошу не так уж и о многом.)

Некоторые из прибывших атакуют стойку регистрации, пытаясь выяснить, может ли гостиница их принять. Все, что для этого надо сделать администратору, – это найти способ составить список, в котором присутствовало бы каждое десятичное число между 0 и 1, поскольку, как только такой список будет составлен, расселение не составит труда. Задача не кажется нерешаемой – ведь, в конце концов, наш находчивый администратор однажды уже придумал, как организовать в список всех пассажиров из бесконечного числа автобусов, в каждом из которых было бесконечно много пассажиров. И тем не менее эта новая задача оказывается нерешаемой! Нетспособа пересчитать все десятичные разложения между 0 и 1 таким образом, чтобы стало возможным внести все их в упорядоченный список. Дабы продемонстрировать это, я покажу, что для каждого бесконечного списка чисел, лежащих между 0 и 1, всегда найдется число между 0 и 1, которого в этом списке нет.

Вот как это делается. Вообразим себе, что первый из прибывших одет в футболку с разложением 0,6429657, второй – 0,0196012 и администратор отводит им номера 1 и 2. И пусть он так и продолжает назначать номера следующим, кто прибывает, в результате у него получается бесконечный список, начало которого выглядит следующим образом (не будем забывать еще, что разложения продолжаются до бесконечности):


Номер 10,6429657…
Номер 20,0196012…
Номер 30,9981562…
Номер 40,7642178…
Номер 50,6097856…
Номер 60,5273611…
Номер 70,3002981…
Номер…0….

Наша цель, как было сказано, состоит в том, чтобы предъявить десятичное разложение, лежащее между 0 и 1, которого нет в этом списке. Мы этого добьемся, используя следующий метод. Сначала построим число, первая десятичная цифра которого совпадает с первой десятичной цифрой из номера 1, вторая десятичная цифра – со второй из номера 2, третья – с третьей из номера 3 и т. д. Другими словами, мы выберем цифры, стоящие на диагонали. Для удобства мы их подчеркнем:


Номер 10,6429657…
Номер 20,0196012…
Номер 30,9981562…
Номер 40,7642178…
Номер 50,6097356…
Номер 60,5273611…
Номер 70,3002981…
Номер…0….

Полученное число такое: 0,6182811….

Мы почти у цели. Теперь, в качестве последнего действия, построим число, которого нет в списке администратора: изменим каждую цифру в только что полученном числе, прибавляя 1 к каждой цифре, так что 6 станет 7, 1 станет 2, 8 станет 9 и т. д.; в результате получится число

0,7293922….

Это оно и есть! Это то самое десятичное разложение, не включенное в список, которое мы искали. Оно не может быть в списке администратора, потому что мы искусственно построили его таким, чтобы оно там не содержалось. Это не число из номера 1, потому что его первая цифра отлична от первой цифры числа из номера 1. Наше число – не из номера 2, потому что его вторая цифра отлична от второй цифры числа из номера 2, и т. д. – откуда видно, что наше число не может относиться ни к какому номеру n,потому что его n-я цифра непременно отлична от n-й цифры в разложении из номера n.Поэтому наше хитрое разложение 0,7293922… не может быть равным никакому из разложений, написанных на футболках путешественников, расселенных по номерам отеля, ведь всегда по крайней мере однацифра из этого десятичного разложения будет отличаться от десятичного разложения, приписанного данному номеру. В списке вполне может оказаться число, первые семь десятичных цифр которого равны 0,7293922, и, однако же, оно будет отличаться от нашего специального числа по крайней мере одной цифрой где-то дальше в разложении. Другими словами, даже если администратор все дальше и дальше будет продолжать раздавать номера, он не сможет найти номер для путешественника, на котором надета футболка с придуманным нами числом, которое начинается как 0,7293922….

Я взял список, начинающийся с произвольных чисел 0,6429657… и 0,0196012…, но равным образом я мог бы рассмотреть список, начинающийся с любых других чисел. Для каждого списка, который можно создать, всегда удастся выписать, используя предложенный выше «диагональный» метод, такое число, которое в данном списке не присутствует. Пусть в Гильбертовом отеле бесконечное число номеров, но в нем нельзя расселить такое бесконечное число людей, которое определяется десятичными разложениями всех чисел между 0 и 1. Всегда кто-то останется на улице. Отель для этого просто недостаточно вместительный [72]72
  В применении «диагонального метода» имеются тонкости, связанные с тем, что одно и то же число можно записать двумя способами, как это обсуждалось в гл. 3, где мы видели, что 0,9999… = 1. Но связанные с этим сложности преодолимы, и диагональный метод действительно работает во всей строгости. ( Примеч. перев.)


[Закрыть]
.

* * *

Сделанное Кантором открытие того, что имеется бесконечность большая, чем бесконечность натуральных чисел, было одним из величайших математических прорывов XIX столетия. Это сногсшибательный результат, и сила его не в последнюю очередь определяется тем, что его совсем несложно объяснить: некоторые бесконечности – счетные, и их размер равен ℵ 0, а некоторые бесконечности – не счетные, а потому большие. И эти несчетные бесконечности тоже могут иметь различные размеры.

Самая простая для понимания несчетная бесконечность называется с, она выражает число людей, прибывших в Гильбертов отель одетыми в футболки со всеми десятичными разложениями между 0 и 1. Подобно тому, что мы делали выше, поучительно интерпретировать с, глядя на числовую прямую. Каждый персонаж с десятичным разложением между 0 и 1 на футболке можно также понимать как точку на прямой, лежащую между 0 и 1. Символ с был исходно выбран потому, что он напоминает о слове «континуум» – непрерывном множестве точек на числовой прямой.

И здесь мы подошли к еще одному странному результату. Мы знаем, что имеется сточек, лежащих между 0 и 1, но при этом мы также знаем, что имеется ℵ 0дробей на всей числовой прямой, взятой целиком. Поскольку мы доказали, что с превосходит ℵ 0, получается, что на отрезке прямой между 0 и 1 помещается больше точек, чем имеется точек, представляющих дроби на всей числовой прямой.

Кантор снова завел нас в мир, противоречащий интуиции. Дроби, хоть их и бесконечно много, ответственны только за очень малую, просто крохотную часть числовой прямой. Они рассыпаны там гораздо реже, чем числа того другого типа, которые в основном и составляют числовую прямую, – числа, которые нельзя выразить в виде обыкновенной дроби, то есть наши старые друзья – иррациональные числа. Оказывается, что иррациональные числа сидят на числовой прямой настолько плотно, что в любом конечном интервале их больше, чем дробей на всей числовой прямой.

Мы определили скак число точек на числовой прямой, заключенных в интервале между 0 и 1. Сколь много точек имеется между 0 и 2 или между 0 и 100? В точности c. На самом деле между любыми двумя точками на числовой прямой имеется ровно cточек, независимо от того, насколько далеко друг от друга располагаются выбранные концы. Но еще более поразительным является то, что совокупность точек на всей числовой прямой также есть c, что видно из следующего доказательства, проиллюстрированного на рисунке.

Наша цель – показать, что имеется взаимнооднозначное соответствие между точками, лежащими между 0 и 1, и точками на всей числовой прямой. Для этого найдем для каждой точки на числовой прямой пару из отрезка от 0 до 1. Сначала нарисуем полуокружность, висящую над этим отрезком. Эта полуокружность играет роль посредника в том плане, что она организует в пары точки, лежащие между 0 и 1, и точки на всей числовой прямой. Возьмем любую точку на числовой прямой, обозначенную буквой а,и проведем прямую линию из aк центру окружности. Эта прямая пересекает полуокружность в точке, которая единственным образом определяет расстояние между 0 и 1, обозначенное a',если провести прямую вертикально вниз до пересечения с числовой прямой. Организуем пару из каждой точки aи точки a', которая однозначно определяется для нее указанным выше способом. Когда выбранная точка аустремляется к плюс бесконечности, соответствующая точка между 0 и 1 приближается к 1, а когда выбранная точка устремляется к минус бесконечности, соответствующая точка приближается к 0. Если каждую точку на числовой прямой можно соединить в пару с единственной точкой, лежащей между 0 и 1, и наоборот, то, значит, число точек на числовой прямой равно числу точек, лежащих между 0 и 1.

Различие между ℵ 0и c– это различие между числом точек на числовой прямой, представимых в виде дробей, и полным числом точек, включая дроби и иррациональные числа. Однако разрыв между ℵ 0и cстоль огромен, что если бы мы наугад выбирали точки на числовой прямой, то вероятность выбрать дробь была бы равна нулю. По сравнению с несчетной бесконечностью иррациональных чисел дробей, можно сказать, попросту очень мало.

* * *

С каким бы трудом идеи Кантора ни воспринимались поначалу, история реабилитировала его трактовку числа алеф; не только сам алеф прижился среди чисел практически повсеместно, но и зигзаговые и диагональные доказательства по всеобщему признанию были провозглашены наиболее яркими во всей математике. Давид Гильберт заявил, что «никто не изгонит нас из рая, созданного Кантором».

К несчастью для Кантора, этот рай стоил ему дорого – он заплатил за него своим душевным здоровьем. Поправившись после первого срыва, ученый стал уделять больше внимания другим предметам, таким как теология и история эпохи Елизаветы, и пришел к убеждению, что автором пьес Уильяма Шекспира на самом деле был ученый Фрэнсис Бэкон. Доказательство этой гипотезы стало для Кантора личным крестовым походом, идеей фикс, определявшей его все более странное поведение. В 1911 году Кантора пригласили в Университет Сент-Эндрюс прочитать лекцию по математике. Представ перед публикой, он с жаром принялся обсуждать свои теории о Шекспире и Бэконе, чем немало смутил собравшихся, ожидавших услышать о последних достижениях математической мысли. Кантор испытал еще несколько тяжелых приступов депрессии и много времени проводил в больнице. Умер выдающийся математик в 1918 году.

* * *

Набожный лютеранин, Кантор вел широкую переписку с духовными лицами по поводу значимости своих результатов. Он полагал, что его подход к бесконечности продемонстрировал ее постигаемость человеческим разумом, а поэтому подвел человека ближе к Богу. Среди предков Кантора были и евреи, что, как полагают многие, повлияло на его выбор буквы алеф в качестве символа для бесконечности: великий математик мог знать, что в мистической еврейской традиции Каббалы алеф обозначает высшее проявление Бога. Сам же Кантор говорил, что гордится своим выбором алефа, поскольку эта буква, первая буква древнееврейского алфавита, – очень подходящий символ для нового начала.

Алеф годится и для завершения нашего путешествия в мир математики. Эта наука, как я писал в начальных главах этой книги, возникла из стремления человека придать смысл тому, что его окружает. Делая насечки на стволах деревьев или считая на пальцах, наши далекие предки изобрели числа. Числа помогали и в земледелии, и в торговле, они открыли человечеству дверь в «цивилизацию». Затем, по мере развития математики, предметом ее стали в меньшей степени реальные вещи, а в большей – абстракции. Греки ввели в обиход такие концепции, как точка и линия, а индусы изобрели нуль и тем самым проложили дорогу к еще более радикальным абстракциям – отрицательным числам. Хотя эти концепции казались сначала идущими вразрез с интуицией, они довольно быстро были приняты, и ныне мы пользуемся ими ежедневно. К концу XIX столетия, однако, пуповина, связывающая математику с непосредственным опытом, была разорвана раз и навсегда. После Римана и Кантора она потеряла какую-либо связь с интуитивным восприятием мира.

Обнаружив кардинальное число ℵ 0, Кантор не остановился и доказал, что имеются даже еще большие бесконечности. Как мы видели, c —это число точек на прямой. Оно же есть число точек на двумерной поверхности. (Еще один удивительный результат, который вам придется принять с моих слов на веру.) Пусть d– число всевозможных кривых, линий и загогулин, которые можно нарисовать на двумерной поверхности. Используя теорию множеств, можно доказать, что dбольше, чем с. Можно двинуться и дальше – показать, что должна иметься бесконечность еще бо́льшая, чем dНикто, впрочем, не смог предъявить множество вещей, кардинальное число которого было бы больше, чем d.

Кантор увел нас далеко за пределы вообразимого. Это довольно чудесное место и, занятным образом, противоположное тому, в котором пребывает племя в бассейне Амазонки, о котором говорилось в начале книги. У мундуруку много вещей, но не хватает чисел, чтобы их пересчитать. Кантор предоставил нам числа в неограниченном избытке, зато теперь у нас не хватает вещей, которые можно было пересчитывать с их помощью.

Список литературы

Подробную библиографию по каждой главе, а также приложения можно найти на веб-сайте www.alexbeIlos.com . Ниже перечислены наиболее существенные книги, из которых я почерпнул информацию.

Acheson D. 1089, and All That.New York: Oxford University Press. 2002.

Aczel A. D. Chance.New York: Basic Books, 2005.

Aczel A. D. The Mystery of the Aleph.New York: Washington Square Press, 2000.

Andrews F. E. New Numbers.London: Faber & Faber, 1936. Balliett L. D. The Philosophy of Numbers.Atlantic City, N.J.: L. N. Fowler & Co., 1908.

Beckmann P. A History of Pi.New York: St. Martin’s, 1971.

Bell E. T. Numerology.New York: Century, 1933.

Bell E. T. Men of Mathematics.New York: Touchstone, 1937.

Bennett D. J. Randomness.Cambridge: Harvard University Press. 1998.

Bentley P. J. The Book of Numbers.London: Cassell Illustrated, 2008.

Berggren L., Borwein J., and Borwein P. Pi: A Source Book.New York: Springer, 2003.

Butterworth B. The Mathematical Brain.London: Macmillan, 1999.

Cajori F. A History of Mathematical Notations.New York: Dover, 1993 (facsimile of original by Illinois: Open Court, 1928/9).

Cohen I. B. The Triumph of Numbers.New York: W. W. Norton, 2005.

Darling D. The Universal Book of Mathematics.Hoboken, N.J.: Wiley, 2004.

Dehaene S. The Number Sense.Oxford: Oxford University Press, 1997.

Derbyshire J. Unknown Quantity.London: Atlantic Books, 2006.

Devlin K. All the Math That's Fit to Print.Washington: Mathematical Association of America, 1994.

Dudley U. Numerology.Washington: Mathematical Association of America, 1997.

Dudley U. (ed.). Is Mathematics Inevitable?Washington: Mathematical Association of America, 2008.

Du Sautoy M. Finding Moonshine.London: Fourth Estate, 2008.

Du Sautoy M. The Music of the Primes.London: Fourth Estate, 2003.

Eastaway R., Wyndham J. How Long Is a Piece of String?London: Robson Books, 2002.

Eastaway R., Wyndham J. Why Do Buses Come in Threes?London: Robson Books, 1998.

Ferguson K. The Music of Pythagoras.New York: Walker, 2008.

Fibonacci L. Fibonacci’s Liber Abaci.New York: Springer, 2002.

Gardner M. Martin Gardner's Mathematical Games.Washington: Mathematical Association of America, 2005.

Gowers T. Mathematics: A Very Short Introduction.Oxford: Oxford University Press, 2002.

Gullberg J. Mathematics: From the Birth of Numbers.New York: W. W. Norton, 1997.

Hidetoshi F., Rothman T. Sacred Mathematics.Princeton: Princeton University Press, 2008.

Hodges A. One to Nine.London: Short Books, 2007.

Hoffman P. The Man Who Loved Only Numbers.London: Fourth Estate, 1998.

Hogben L. Mathematics for the Million.London: George Allen & Unwin, 1936.

Hull T. Project Origami.Natick, Mass.: AK Peters, 2006.

Ifrah G. The Universal History of Numbers.Hoboken, N.J.: Wiley, 2000.

Joseph G. G. Crest of the Peacock.London: Penguin, 1992.

Kahn С. H. Pythagoras and the Pythagoreans: A Brief History.Indianapolis, Ind.: Hackett Publishing Company, 2001.

Knott K. Hinduism: A Very Short Introduction.Oxford: Oxford University Press. 1998.

Livio M. The Golden Ratio.London: Review, 2002.

Loomis E. S. The Pythagorean Proposition.Urbana, Ill.: National Council of Teachers, 1968.

Maor E. Trigonometric Delights.Princeton: Princeton University Press, 1998.

Matzusawa T. (ed.). Primate Origins of Human Cognition and Behavior.Tokyo: Springer, 2001.

Mazur J. Euclid in the Rainforest.New York: Plume, 2005.

Mlodinow L. Euclid’s Window.New York: Free Press, 2001.

Mlodinow L. The Drunkard’s Walk.London: Allen Lane, 2008.

Nelsen R. B. Proofs Without Words.Washington: Mathematical Association of America, 1993.

Newman J. (ed.). The World of Mathematics.New York: Dover, 1956.

O’Shea D. The Poincarez' Conjecture.New York: Walker, 2007.

Pickover C. A. A Passion for Mathematics.Hoboken, N.J.: Wiley, 2005.

Pickover C. A. The Zen of Magic Squares, Circles, and Stars. Princeton: Princeton University Press, 2002.

Poundstone W. Fortune’s Formula.New York: Hill and Wang, 2005.

Riedwig C. Pythagoras: His Life, Teaching, and Influence.Ithaca; N.Y.: Cornell University Press, 2002.

Seife C. Zero.London: Souvenir Press, 2000.

Simoons F. J. Plants of Life, Plants of Death.Madison: University of Wisconsin Press, 1998.

Singh S., Fermat’s Last Theorem.London: Fourth Estate, 1997.

Slocum J. The Tangram Book.New York: Sterling, 2001.

Slocum J., Sonneveld D. The 15 Puzzle.Beverly Hills, Calif.: Slocum Puzzle Foundation, 2006.

Sundara Row T. Geometric Exercises in Paper Folding.Chicago: Open Court, 1901.

Swetz F. J. Legacy of the Luoshu.Chicago: Open Court, 2002.

Tirthaji Jagadguru Swami S. В. K. Vedic Mathematics.Delhi: Motilal Banarsidass, 1992.


    Ваша оценка произведения:

Популярные книги за неделю