355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики » Текст книги (страница 11)
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Текст добавлен: 12 октября 2016, 02:02

Текст книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"


Автор книги: Алекс Беллос


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 11 (всего у книги 24 страниц)

Затем надо было вычесть меньшее число из большего. Так что если вы выбрали число 614, то число с переставленными цифрами было бы равно 416, и 614 – 416 = 198. В качестве последнего действия предлагалось сложить полученную разность и число, получающееся в результате перестановки в ней цифр в обратном порядке. В только что выбранном примере это будет 198 + 891.

Как и раньше, ответ равен 1089. Таким он будет всегда – и алгебра объясняет нам почему. Но прежде всего нам надо выработать способ для записи нашего главного героя – трехзначного числа, в котором первая и последняя цифры различаются по крайней мере на два.

Рассмотрим число 614. Оно равно 600 + 10 + 4. На самом деле любое трехзначное число вида abcможно записать как 100 a+ 10 b+ с. Итак, пусть наше исходное число есть abc,где а, bи с —отдельные цифры. Для удобства будем считать, что абольше c.

Переставление цифр дает cba,что можно выразить как 100 c+ 10 b+ а.

Для получения промежуточного результата требуется вычесть cbaиз abc.Получаем, что abccbaравно

(100 a+ 10 b+ с) – (100 c+ 10 b+ а).

Два члена с буквой bсокращают друг друга, так что промежуточный результат равен

99 a– 99 c, или 99( ac).

На своем начальном уровне алгебра не предполагает особо глубоких озарений, однако требует соблюдения ряда правил. Цель всего происходящего состоит в том, чтобы применять эти правила, пока выражение не станет максимально простым. Выражение 99( ac) приведено именно в такой вид, в какой нужно.

Поскольку первая и последняя цифры в числе abcразличаются по крайней мере на 2, получаем, что асможет иметь одно из значений 2, 3, 4, 5, 6, 7 или 8.

Тем самым, число 99( aс) – одно из следующих: 198, 297, 396, 495, 594, 693 или 792. С какого бы трехзначного числа мы ни начали, вычитание его из числа, записанного с помощью его же цифр, взятых в обратном порядке, даст промежуточный результат, который непременно будет равен одному из семи перечисленных чисел.

Заключительный этап состоит в том, чтобы сложить это промежуточное число с тем, которое получается из него изменением порядка цифр на противоположный.

Повторим то, что мы делали выше, в применении к промежуточному числу.

Пусть наше промежуточное число равно def,то есть 100 d +10 e+ fТребуется сложить defи fed.

Рассматривая приведенный список возможных промежуточных чисел, мы замечаем, что среднее число eвсегда равно 9. Кроме того, первая и третья цифры всегда дают в сумме 9 – другими словами, d+ f= 9.

Итак, def + fedравно

100 d+ 10 e+ f+ 100 f+ 10 e+ d,

или

100( d+ f) + 20 e+ d+ f,

что есть

(100 × 9) + (20 × 9) + 9.

Или, другими словами,

900 + 180 + 9.

Вуаля! Сумма равна 1089 – и секрет фокуса раскрыт.

Элемент неожиданности в «фокусе 1089» состоит в том, что, какое бы число мы случайно ни выбрали, в ответе всегда получается одно и то же. Алгебра позволяет увидеть то, что скрыто за ловкостью рук, указывая путь, ведущий от конкретного к абстрактному, то есть предлагая следить не за поведением отдельного числа, а за поведением любого,произвольного числа. Это незаменимое средство, причем не только в математике. Другие науки также полагаются на язык уравнений.

* * *

В 1621 году во Франции вышел латинский перевод Диофантова шедевра «Арифметика». Новое издание оживило интерес к античным методам решения задач и в сочетании с усовершенствованными числовыми и буквенными обозначениями распахнуло двери в новую эру математического мышления. «Арифметика» Диофанта стала настольной книгой Пьера де Ферма [36]36
  де Ферма́ Пьер(1601–1665) – выдающийся французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Получил юридическое образование, с 1631 года занимал пост советника парламента в Тулузе. Ко всему прочему был блестящим полиглотом. ( Примеч. ред.)


[Закрыть]
(1601–1665), тулузского судьи и страстного математика-любителя, исписавшего поля всех ее страниц своими комментариями. В частности, рядом с разделом, где говорилось о Пифагоровых тройках – любых натуральных числах а, bи с, таких что а 2+ b 2= с 2(например, 3, 4 и 5), – Ферма отметил, что невозможно подобрать такие значения а, bи с, чтобы выполнялось равенство а 3+ b 3= с 3. Не смог он найти и значения а, bи с, для которых было бы верно а 4+ b 4= с 4.В результате Ферма написал – там же, на полях «Арифметики», – что для всякого числа n,превышающего 2, невозможно найти значения а, bи с,которые удовлетворяли бы уравнению а n+ b n= c n. «У меня имеется поистине чудесное доказательство, однако эти поля слишком узки для него», – написал он. Ферма так и не представил своего доказательства – чудесного или уж как получится, – даже когда узость полей его более не стесняла. Заметки Ферма на полях «Арифметики» отчасти указывают на то, что доказательство ему было известно, или же он сам уверовал, что его знает, а может, просто решил подзадорить публику. Во всяком случае, его нахальное заявление оказалось невероятной силы приманкой для многих поколений математиков, а само утверждение, вошедшее в науку как Великая теорема Ферма, оставалось самой знаменитой нерешенной задачей в математике до 1995 года, когда ее наконец продавил британец Эндрю Уайлс. Алгебра бывает обманчиво скромной в подобных ситуациях – она позволяет легко сформулировать задачу, которую решить оказывается совсем не легко. Вот и доказательство теоремы Ферма, предложенное Уайлсом, столь сложно, что, судя по всему, его понимают не более пары сотен человек во всем мире.

* * *

Прогресс в математических обозначениях сделал возможным открытие новых концепций. Невероятно важным изобретением стали логарифмы, придуманные в начале XVII столетия выдающимся шотландским математиком Джоном Непером (1550–1617) – бароном, восьмым лэрдом Мерчинстона, который, впрочем, прижизненно был куда более знаменит своими работами по теологии. Непер написал имевшую огромный успех книгу – толкование Апокалипсиса, – где утверждал, что папа есть Антихрист, и предсказывал, что конец света наступит между 1688 и 1700 годами. По вечерам он любил облачаться в длинное платье и разгуливать за пределами своего родового замка, что немало способствовало его репутации чародея. Кроме того, он экспериментировал с удобрением почвы на своих обширных владениях близ Эдинбурга, а также предложил несколько изобретений, касающихся военной техники, например металлическую колесницу, движимую находящимися внутри нее воинами, которые будут «поражать врагов во все стороны через маленькие отверстия в корпусе колесницы», и устройства для «плавания под водой, с ныряльщиками и иными хитрыми приспособлениями для внезапного нападения на врага» – предшественников танка и субмарины. Занимаясь математикой, Непер популяризировал применение десятичной запятой, а кроме того предложил идею логарифмов, изобретя и сам термин как производное от греческих слов logosи arithmos– «относительное число».

Пожалуйста, не пугайтесь, прочитав следующее определение: логарифм числа есть показатель степени в выражении данного числа в виде степени числа 10.Логарифмы проще понять, если выразить их алгебраически: если а= 10 b,то логарифм числа аравен b.Итак:

lg 10 = 1 (потому что 10 = 10 1),

lg 100 = 2 (потому что 100 = 10 2),

lg 1000 = 3 (потому что 1000 = 10 3),

lg 10 000 = 4 (потому что 10 000 = 10 4).

Нахождение логарифма числа – дело самоочевидное, если число это выражено как произведение десяток. Но как быть, если надо найти логарифм числа, которое не есть произведение десяток? Например, каков логарифм числа 6? Логарифм числа 6 – это число, показывающее, сколько раз 10 надо умножить само на себя, чтобы в результате получилось 6. Однако же кажется совершенно лишенным смысла говорить о том, что умножение числа 10 само на себя определенное число раз даст 6. Как можно умножить 10 само на себя дробное число раз? Конечно, вся идея и правда лишена смысла, когда мы пытаемся себе представить, что она могла бы означать в реальном мире, но мощь и красота математики в том и состоят, что нет нужды беспокоиться о каком бы то ни было смысле, выходящем за пределы алгебраических определений.

Логарифм числа 6 равен 0,778 с точностью до трех десятичных разрядов. Другими словами, когда мы умножим 10 само на себя 0,778 раз, мы получим 6 [37]37
  Может быть интересно оценить ошибку, связанную с ограничением тремя цифрами после запятой: 10 0,778= 5,9979. Разумеется, дело не в идее логарифмов, а в выбранной точности; повышая точность, получаем, например, 10 0,7781512304= 6,000000000225971… ( Примеч. перев.)


[Закрыть]
.

Приведем список логарифмов чисел от 1 до 10, оставляя в каждом логарифме по три десятичных знака:

lg 1 = 0

lg 2 = 0,301

lg 3 = 0,477

lg 4 = 0,602

lg 5 = 0,690

lg 6 = 0,778

lg 7 = 0,845

lg 8 = 0,903

lg 9 = 0,954

lg 10 = 1,000

Так в чем же суть логарифмов? Логарифмы превращают более сложную операцию умножения в более простую – сложение. Точнее говоря, умножение двух чисел эквивалентно сложению их логарифмов. Если X× У= Z, то lg X +lg Y= lg Z.

Проверим это, используя приведенную таблицу значений:

3 × 3 = 9

lg 3 + lg 3 = lg 9

0,477 + 0,477 = 0,954

Еще раз:

2 × 4 = 8

lg 2 + lg 4 = lg 8

0,301 + 0,602 = 0,903

Поэтому для того, чтобы перемножить два числа, можно использовать следующий метод: превратим заданные числа в их логарифмы, сложим эти логарифмы, а полученный «третий» логарифм снова превратим в число. Чему, например, равно 2 × 3? Находим логарифмы чисел 2 и 3, равные 0,301 и 0,477, и, складывая их, получаем 0,788. Как мы видели из приведенного списка значений логарифмов, 0,788 есть логарифм числа 6. Итак, ответ равен 6.

Теперь умножим 89 на 62.

Прежде всего нам надо найти их логарифмы. Для этого можно воспользоваться калькулятором или Гуглом. До последних десятилетий XX столетия, впрочем, единственный способ сделать это состоял в том, чтобы найти соответствующие значения в таблицах логарифмов.

Логарифм числа 89 равен 1,949 с точностью в три десятичных разряда. Логарифм числа 62 равен 1,792.

Сумма логарифмов составляет 1,949 + 1,792 = 3,741.

Число, логарифм которого равен 3,741, есть 5518. Это опять же можно выяснить, воспользовавшись таблицами логарифмов.

Итак, 89 × 62 = 5518.

Существенный момент состоит в том, что единственное вычисление, которое нам пришлось сделать, чтобы узнать результат умножения, состояло в простом сложении.

Логарифмы, писал Непер, способны освободить математиков от «тяжелых затрат времени» и «ошибок, закрадывающихся при выполнении умножения, деления и извлечения квадратных и кубических корней из больших чисел». С появлением изобретения Непера оказалось возможным не только свести умножение чисел к сложению их логарифмов. Деление чисел превратилось в вычитание их логарифмов, вычисление квадратного корня стало делением на два, а вычисление кубического корня – делением на три.

Удобства, предоставляемые логарифмами, сделали их самым значительным математическим изобретением XVII века. Наука, торговля и промышленность получили от них колоссальную пользу. Например, немецкий астроном Иоганн Кеплер, используя логарифмы, почти мгновенно вычислил орбиту Марса. Не так давно высказывалось мнение, что он, возможно, никогда не пришел бы к открытию своих трех законов небесной механики без упрощения вычислений за счет использования неперовских логарифмов.

В написанной в 1614 году книге «Описание восхитительных таблиц логарифмов» Непер использовал вариант логарифмов, слегка отличный от того, каким пользуются в современной математике. Логарифмы можно выражать как степень любого числа, которое называется в этом случае основанием. Система Непера основывалась на неоправданно сложном основании 1 – 10 -7(после чего он умножал на 10 7). Генри Бриггс – современник Непера и ведущий английский математик того времени – приехал в Эдинбург, чтобы поздравить шотландца с его открытием. Бриггс пошел дальше Непера и упростил систему, введя логарифмы по основанию десять – они стали известны как логарифмы Бриггса, или просто десятичные логарифмы, и именно они приобрели самое широкое распространение. (В данной главе под «логарифмами» я понимаю именно десятичные логарифмы.) В 1617 году Бриггс опубликовал таблицы логарифмов всех чисел от 1 до 1000 с точностью в восемь десятичных разрядов. К 1628 году Бриггс и голландский математик Адриан Флакк расширили таблицы логарифмов до 100 000 с точностью в десять десятичных разрядов. Проведенные ими вычисления требовали упорного численного счета – при том, что после единственной ошибки в вычислении его надо было начинать сначала.

* * *

Если нанести числа от 1 до 10 на линейку, расположив их в соответствии со значениями их логарифмов, то получится приведенная ниже картина, которую можно продолжить, скажем, до 100:

Получилась так называемая логарифмическая шкала. В этом масштабе числа по мере их возрастания располагаются все ближе и ближе друг к другу.

Некоторые измерительные шкалы являются логарифмическими – каждый шаг от одного значения к следующему на такой шкале представляет десятикратное увеличение соответствующего значения. Самая широко применяемая из них – это шкала Рихтера, по которой измеряются амплитуды волн, записанных сейсмографом. Землетрясение в 7 баллов по шкале Рихтера означает амплитуду колебаний в десять раз большую, чем для землетрясения в 6 баллов.

В 1620 году английский математик Эдмунд Гантер впервые нанес логарифмическую шкалу на линейку. Он заметил, что использование пары циркулей и его логарифмической линейки позволяет умножать числа, не обращаясь к таблицам логарифмов; если циркуль установлен на значении 1 слева и на значении асправа, то при переносе левой иглы циркуля в любое число bокажется, что правая игла стоит на числе а× b.На рисунке показан циркуль, поставленный на 2, а затем перенесенный так, что его левая игла стоит на 3; правая при этом оказывается на отметке 2 × 3 = 6.

Гантеровское умножение 2 × 3 = 6

* * *

Прошло немного времени, и англиканский священник Уильям Отред усовершенствовал идею Гантера. Он отказался от циркуля, предложив вместо этого использовать две деревянные линейки с нанесенными на них логарифмическими шкалами, скользящие одна вдоль другой, – получилась «логарифмическая линейка». Это вычислительное устройство поистине фантастическое по своей гениальности, и несмотря на то, что в наши дни оно выглядит пережитком прошлого, у него есть свои истовые поклонники. К одному из них – Питеру Хоппу – я заехал в гости в его родной городок в 40 милях от Лондона. «Между 1700-ми годами и 1975 годом все без исключения инновации в технике совершались с помощью логарифмической линейки», – сказал он мне, встречая меня на станции. Хопп – инженер-электрик на пенсии – необычайно любезный человек с клочковатыми бровями, голубыми глазами и роскошными бакенбардами. Он показал мне свою коллекцию логарифмических линеек, одну из самых больших в мире, содержащую более тысячи этих позабытых героев нашего научного прошлого. По дороге к его дому мы обсуждали с ним коллекционирование. Хопп заметил, что все самое лучшее продается на интернет-аукционах, и конкуренция приводит к взвинчиванию цен. А редкая логарифмическая линейка, сказал он, легко может стоить более тысячи долларов.

Когда мы добрались до его дома, миссис Хопп предложила нам чаю, а потом мы удалились в его кабинет, где он показал мне деревянную логарифмическую линейку 1970-х годов, изготовленную фирмой «Faber-Castell», с пластиковым покрытием цвета магнолии. Она ничем не отличалась от обычной 30-сантиметровой линейки, только внутри нее имелась подвижная средняя часть. На ней очень тонким шрифтом были нанесены несколько различных шкал. Кроме того, имелся прозрачный подвижный бегунок с рисками. Вид этого изделия фирмы «Faber-Castell» и то, каково оно было на ощупь, вызывало глубокие ассоциации с послевоенной докомпьютерной эрой чудаков-зубрил, когда занудничающие умники ходили в рубашках и галстуках и носили в карманах пластиковые пеналы, набитые ручками, – не то что нынешние, в футболках и кедах, с айподом в руках.

Я ходил в британскую младшую и среднюю школу в 1980-х годах, когда логарифмическими линейками уже больше не пользовались, так что Хопп прочитал мне краткий вводный курс. Он посоветовал, чтобы я, как начинающий, использовал шкалу от 1 до 100 на основной линейке и соседнюю с ней шкалу от 1 до 100 на подвижной средней части.

Умножение двух чисел с помощью логарифмической линейки – операция совсем не сложная, при этом даже не требуется понимать, что такое логарифмы. Пусть, например, я собираюсь умножить 4,5 на 6,2. Мне надо сложить длину, отмеченную как 4,5 на одной линейке, с длиной, отмеченной как 6,2 на другой. Для этого я сдвигаю среднюю подвижную часть линейки так, чтобы 1, нанесенная на ней, совпала с точкой 4,5 на основной линейке. Результат этого умножения находится в точке на основной линейке, стоящей напротив числа 6,2 на средней линейке. Все понятно из рисунка:

Прозрачный курсор с рисками помогает разглядеть, как именно соотносятся две шкалы. Проследив от точки 6,2 на подвижной средней линейке, можно увидеть, что на основной линейке это будет соответствовать отметке, лишь немного не доходящей до 28, что и представляет собой правильный ответ. Логарифмические линейки не являются прецизионными устройствами. Однако, говорит Хопп, несмотря на отсутствие прецизионности, логарифмические линейки, как правило, оказывались достаточно точными для инженерных задач.

Я использовал на логарифмической линейке шкалу от 1 до 100. Кроме того, там нанесены шкалы от 1 до 10, которые применяются при расчетах, требующих большей точности, потому что при такой шкале между нанесенными на линейку числами остается больше места. По этой причине при пользовании логарифмической линейкой лучше переписать подлежащее вычислению выражение так, чтобы в него входили числа между 1 и 10 – это можно сделать, перенеся десятичную запятую. Например, мы хотим умножить 4576 на 6231 – превратим это в умножение чисел 4,576 и 6,231. А получив ответ, перенесем десятичную запятую на шесть разрядов обратно направо. Имея входное значение 4,576 и выравнивая его с числом 6,231, получаем примерно 28,5, что означает, что ответ в задаче об умножении 4576 × 6231 составляет около 28 500 000. Совсем не такая плохая оценка. Точный ответ, вычисленный с использованием таблиц логарифмов, равен 28 513 056. Как правило, логарифмическая линейка, подобная линейке фирмы «Faber-Castell», дает точность в три значащие цифры – а нередко только это и требуется. Но там, где я проиграл в точности, я выиграл в скорости – это вычисление заняло у меня менее пяти секунд. Использование таблиц логарифмов потребовало бы в десять раз больше времени.

Самый старый экземпляр в коллекции Питера Хоппа – это деревянная логарифмическая линейка начала XVIII века, которую использовали сборщики налогов для вычисления объема спиртных напитков. До моей встречи с Хоппом я весьма скептически относился к коллекционированию логарифмических линеек как к интересномувремяпрепровождению. Марки и окаменелости, по крайней мере, бывают красивыми; логарифмические же линейки – это чисто функциональные устройства, созданные с целью облегчения вычислений. Но старинная логарифмическая линейка Хоппа определенно была красивой – из превосходного дерева, с изящно нанесенными цифрами.

В обширной коллекции Хоппа нашли свое отражение те небольшие изменения, что происходили с линейками в течение веков. К примеру, в XIX столетии появились новые шкалы. Питер Роже – тот самый лексикограф, что с поистине маниакальной настойчивостью составлял списки слов, пытаясь таким образом справиться с душевной болезнью (это привело в 1805 году к появлению «Тезауруса Роже», Thesaurus of English Words and Phrases,одного из первых в истории и наиболее известных на сегодня словарей, впервые опубликованного в 1852 году), – изобрел двойную логарифмическую шкалу, с помощью которой стало возможным вычислять дробные степени, подобные 3 2,5, и квадратные корни. По мере совершенствования производства логарифмических линеек появлялись все новые и новые изделия, сочетавшие в себе достижения изобретательности, точность и великолепие. Например, счетное устройство Тэчера выглядит как вращающийся цилиндр на металлическом основании, а калькулятор профессора Фуллера состоит из трех концентрических полых медных цилиндров с ручкой из красного дерева. Спираль общей длиной в 41 фут обвивает цилиндр, позволяя получать точность в пять значащих цифр. И в самом деле, решил я, логарифмические линейки – предмет, обладающий неожиданной привлекательностью.

* * *

Среди других экспонатов я приметил на полке у Хоппа нечто, выглядевшее как мельница для перца, и поинтересовался, что это такое. Хопп ответил, что это курта. Курта – черный цилиндр размером с ладонь, с заводной ручкой сверху – представляет собой уникальное изобретение: это единственный в своем роде механический карманный калькулятор. Чтобы показать, как он работает, Хопп сначала провернул ручку на один оборот – обнулил показания машинки. Числа задаются изменением расположения ползунков, перемещающихся в пазах боковой поверхности курты. Хопп выставил число 346 и один раз повернул ручку. Затем он поставил ползунки в положение, соответствующее числу 217. После еще одного поворота ручки сумма этих двух чисел, равная 563, появилась в окошке в верхней части механизма. Хопп сказал, что курта может еще вычитать, умножать, делить и выполнять другие математические операции.

И хотя курта – это не логарифмическая линейка, воплощенная в ней изобретательность сделала ее объектом, милым сердцу собирателей вычислительных устройств. Стоило мне только увидеть этот калькулятор в деле, как я сразу понял – он лучший в коллекции Хоппа. Начнем с того, что курта и правда почти буквально «перемалывала» числа – их в нее «засыпали», а результат появлялся после вращения ручки. Хотя «перемалывала» – пожалуй, слишком грубое слово для устройства, внутри которого запрятаны 600 механических деталей, работающих с точностью швейцарских часов.

С куртой связана весьма драматическая история. Ее изобретатель Курт Херцштарк придумал прототип этого устройства в концентрационном лагере Бухенвальд в конце Второй мировой войны. Херцштарка арестовали за «пособничество евреям» и за «связь с еврейскими женщинами». Лагерное начальство, узнав, что Херцштарк – гениальный инженер, велело ему продолжать работу над его вычислительной машиной. Херцштарку сказали, что, если устройство будет работать, его преподнесут Гитлеру в качестве подарка, и жизнь Херцштарка будет спасена. Когда с окончанием войны Херцштарк получил свободу, он покинул лагерь, имея при себе практически законченные чертежи. После нескольких попыток найти инвестора он в конце концов сумел убедить князя Лихтенштейна, и именно там, в Лихтенштейне, в 1948 году была выпущена первая курта. До начала 1970-х годов фабрика в этом княжестве произвела около 150 000 штук механических калькуляторов. Херцштарк прожил в Лихтенштейне до самой своей смерти. Он скончался в 1988 году в возрасте 86 лет.

* * *

В течение 1950-х и 1960-х годов курта оставалась единственным в мире карманным калькулятором, способным давать точные ответы. Но и курта, и логарифмическая линейка немедленно отправились в утиль, как только появился электронный карманный калькулятор.

Логарифмическая линейка первенство удерживала в течение трех сотен лет. До тех пор, пока в 1972 году компания «Hewlett-Packard» выпустила свое устройство НР-35, которое рекламировалось как «высокоточная переносная электронная логарифмическая линейка». Однако оно сильно отличалось от обычной логарифмической линейки. Приборчик этот был величиной с небольшую книгу, с красным жидкокристаллическим дисплеем, 35 кнопками и переключателем Вкл/Выкл. Уже через несколько лет стало практически невозможно купить обычную логарифмическую линейку, разве что подержанную, да и интересовала она лишь только редких коллекционеров.

За одним исключением. В современном мире есть место, где логарифмические линейки по-прежнему широко применяются. Это кабина пилота самолета. Круговая авиационная логарифмическая линейка называется навигационной линейкой. Она измеряет скорость, расстояние, время, расход топлива, температуру и плотность воздуха. Чтобы сдать экзамен на пилота, надо в совершенстве овладеть мастерством расчетов с помощью навигационной линейки – что может показаться исключительно странным в наш век продвинутых компьютерных технологий, когда кабина пилотов напичкана самыми разнообразными современными приборами. Навигационные логарифмические линейки нужны потому, что пилоты должны уметь летать и на маленьких самолетах, где нет бортовых компьютеров. Тем не менее нередко и пилоты, летающие даже на реактивных самолетах, предпочитают пользоваться навигационной линейкой. Имея ее под рукой, можно очень быстро получить оценки всех необходимых величин, а кроме того, нагляднее представлять себе численные параметры полета. Благодаря тому что пилоты умеют обращаться с вычислительным устройством начала XVII века, авиаполеты становятся безопаснее.

* * *

Возвращаясь к алгебре, рассмотрим неразлучного спутника школьной математики: системы уравнений.Задача, как правило, состоит в том, чтобы решить систему из двух уравнений, в каждое из которых входят две переменные. Например,

у= x,

у= 3 x– 2.

Здесь требуется решить оба уравнения, что мы сейчас и исполним. Подставив значение переменной, взятое из одного уравнения, в другое, найдем решения. В данном случае, поскольку у= x,имеем

x =3 x– 2,

что дает

x= 2.

Итак, x= 1 и у =1.

Всякое уравнение, содержащее две переменных, можно представить себе наглядно, на графике. Проведем горизонтальную прямую и пересекающую ее вертикальную прямую. Будем говорить, что горизонтальная прямая – это ось x,а вертикальная – ось у.Оси пересекаются в точке 0. Положение любой точки на плоскости можно тогда определить, указав соответствующие ей значения на каждой оси. Местоположение точки, определяемое числами ( a, b), задается как пересечение вертикальной прямой, проходящей через точку ана оси x,и горизонтальной прямой, проходящей через точку bна оси у.

Для всякого уравнения, содержащего  xи у,те точки ( x, у), в которых значения xи уудовлетворяют заданному уравнению, представляют собой некоторый график. Например, каждая из точек (0, 0), (1, 1), (2, 2) и (3, 3) удовлетворяет нашему первому уравнению, у= x.Если мы нанесем все эти точки на график, то станет ясно, что уравнение у= xпорождает прямую линию. Подобным же образом можно изобразить второе из приведенных выше уравнений, у= 3 х– 2. Выбирая значение xи затем выясняя, чему равен у,мы устанавливаем, что точки (0, -2), (1, 1), (2, 4) и (3, 7) лежат на линии, описываемой данным уравнением. Это тоже прямая, пересекающая ось ув точке -2:

Если мы наложим одну из наших прямых на другую, то увидим, что они пересекаются в точке (1, 1). Таким образом, мы видим, что решение системы уравнений – это координаты точки пересечения двух прямых линий, описываемых этими уравнениями.

Мысль о том, что уравнения можно выразить в виде линий, представляла собой радикальное новшество, предложенное Декартом в его книге «La Geometrie». Введение Декартовой системы координат носило революционный характер, потому что в ней соединились до того никак не связанные области: алгебра и геометрия. Впервые оказалось, что два различных раздела знания не только связаны между собой, но и являются альтернативными представлениями друг друга. Одна из задач, которые ставил перед собой Декарт, состояла в том, чтобы сделать и алгебру, и геометрию доступнее для понимания, потому что, как он заметил, взятые по отдельности, «они простираются лишь в области весьма абстрактных вещей, с виду не представляющих никакого практического интереса, – геометрия всегда настолько привязана к исследованию фигур, что понимания в ней невозможно добиться без чрезвычайного напряжения воображения, в то время как алгебра до такой степени подчинена всяческим правилам и числам, что превратилась в запутанное и замутненное искусство, которое подчиняет себе ум, вместо того чтобы быть наукой, способствующей развитию ума». Декарт не питал особой склонности к перенапряжению. Он вошел в историю как любитель позднего вставания, прославившись тем, что предпочитал при всякой возможности оставаться в кровати до полудня.

Выполненное Декартом соединение алгебры и геометрии – это мощный пример взаимодействия между абстрактными идеями и пространственным воображением, и это взаимодействие стало с тех пор постоянным сюжетом в математике. Многие из наиболее впечатляющих доказательств в алгебре – включая доказательство Великой теоремы Ферма – опираются на геометрию. Подобным же образом, получив алгебраическое описание, геометрические задачи, история которых составляет до двух тысяч лет, зажили новой жизнью. Одно из наиболее восхитительных свойств математики как раз и выражается в том, как различные с виду предметы оказываются связаны между собой, что приводит к новым неожиданным открытиям.

В 1649 году Декарт по приглашению шведской королевы Кристины перебрался в Стокгольм, дабы исполнять обязанности ее личного наставника. Королева была ранней пташкой. Необходимость вставать в 5 утра, помноженная на отсутствие привычки к скандинавской зиме, привела к тому, что вскоре после приезда Декарт заболел воспалением легких и умер.

* * *

Одним из наиболее очевидных следствий из Декартова озарения, заключавшегося в том, что уравнения, связывающие x и y,можно выражать в виде линий, было осознание того факта, что различные типы уравнений дают при этом различные типы линий. Мы можем начать их классификацию прямо с наших уравнений.

Уравнения, подобные у= xи у= 3 х– 2, содержащие только xи у,всегда дают прямые линии.

Напротив, уравнения, содержащие квадратичные члены – то есть те, которые включают выражения х 2и/или у 2, —всегда дают кривые одного из следующих четырех типов: окружность, эллипс, парабола или гипербола.

Тот факт, что всякую окружность, эллипс, параболу и гиперболу, нарисованные на плоскости, можно описать уравнением, квадратичным по xи у,крайне полезен для науки по той причине, что эти кривые присутствуют в реальном мире. Парабола – это траектория объекта, брошенного в воздух (в пренебрежении сопротивлением воздуха и в предположении однородного гравитационного поля). Когда футболист бьет по мячу, летящий мяч тоже описывает параболу. Эллипсы – это кривые, по которым планеты движутся вокруг Солнца, а траектория, по которой движется в течение дня тень, отбрасываемая самым кончиком гномона солнечных часов, – это гипербола.

Рассмотрим следующее квадратичное уравнение, которое на самом деле подобно машине для рисования окружностей и эллипсов:

где аи b —некоторые постоянные. У этой машины два рычажка, один из которых управляет буквой a, а другой – буквой b.Подбирая значения aи b,мы можем по своему желанию нарисовать любую окружность и любой эллипс с центром в точке 0.

Например, когда aсовпадает с b,получающееся уравнение описывает окружность радиуса a.Когда а= b= 1, уравнение принимает вид х 2+ y 2= 1 и получается окружность радиуса 1 – «единичная окружность», как та, что нарисована слева на рисунке. Если же аи b– различные числа, то уравнение описывает эллипс, который пересекает ось  xв точке аи ось ув точке b.Например, кривая справа – это эллипс, для которого а =3 и b = 2.


    Ваша оценка произведения:

Популярные книги за неделю