355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики » Текст книги (страница 14)
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Текст добавлен: 12 октября 2016, 02:02

Текст книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"


Автор книги: Алекс Беллос


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 14 (всего у книги 24 страниц)

Рокицки убежден, что «число Бога» равно 20. «На данный момент я разобрался примерно с 9 процентами всех конфигураций куба, и ни одно из них не потребовало 21 хода. Если и имеются конфигурации, требующие 21 или более ходов, то они исключительно редки». Проблема, стоящая перед Рокицки, не столько теоретическая, сколько логистическая. Просмотр всех возможных конфигураций куба требует невероятного количества компьютерной памяти и компьютерного времени. «Если использовать имеющиеся на данный момент методы, то понадобится около года работы 1000 современных компьютеров, чтобы доказать, что „число Бога“ равно 20», – говорит он.

Математика, присутствующая в кубике Рубика, долгое время была хобби Рокицки. Когда я спросил его, не думал ли он о том, чтобы исследовать математические аспекты других головоломок, например судоку, он отшутился: «И не пытайтесь отвлечь меня всякими другими заманчивыми проблемами. Математика этого кубика – уже достаточно серьезная задача!»

* * *

В один из дней, после обеда, участники конференции перебрались в дом Тома Роджерса, в пригород Атланты. Роджерс – бизнесмен, которому сейчас уже не так мало лет, – организовал первую G4G в 1993 году, а все свое детство был почитателем Гарднера. Исходная идея Роджерса состояла в том, чтобы организовать мероприятие, на котором славившийся своей застенчивостью Гарднер мог бы встречаться со своими поклонниками. Роджерс решил пригласить почитателей трех областей интересов Гарднера – математики, фокусов и головоломок. Конференция имела такой успех, что в 1996 году была организована вторая. Гарднер присутствовал на первых двух, однако впоследствии ухудшившееся здоровье уже не позволяло ему принимать в них участие. Роджерс живет в одноэтажном доме, построенном в японском стиле и окруженном зарослями бамбука, соснами и садом с плодовыми деревьями, которые, когда я туда приехал, утопали в цвету. В саду некоторые гости собирались в команды, чтобы строить геометрические скульптуры из дерева и металла. Другие пытались разгадать головоломки, подсказки к которым были прикреплены к наружным стенам дома.

В доме я встретил Колина Райта – австралийца, который живет в городке Порт-Санлайт на полуострове Уиррал. Мальчишечьи рыжие, непослушные волосы и очки делают его похожим на типичного математика. Райт – жонглер.

– После того как я научился ездить на одноколесном велосипеде, мне показалось совершенно естественным заняться жонглированием, – говорит он.

Райт также поучаствовал в разработке системы математических обозначений для жонглирования. С первого взгляда это может показаться вещью не слишком важной, однако эта система привела международное жонглерское сообщество в сильное возбуждение. Оказалось, что, используя специальный язык, жонглеры смогли придумать новые трюки, которые раньше – на протяжении тысяч лет – даже не приходили им в голову.

– Коль скоро у вас есть язык, на котором вы можете говорить о проблеме, ваш мыслительный процесс сильно облегчается, – замечает Райт, доставая несколько шариков для демонстрации недавно изобретенного фокуса. – Математика – это не только примеры, вычисления и формулы. Математика занимается тем, что разбирает вещи на части, чтобы понять, как они работают.

Я спросил его, не является ли это просто потворством собственным прихотям, нет ли чего-то бесцельного или даже расточительного в том, что лучшие математические умы тратят время, работая над такими несущественными проблемами, как жонглирование, пересчитывание чешуек в сосновых шишках или решение головоломок.

– Математикам нужно предоставить возможность делать то, что они делают, – ответил он. – Даже гений не всегда может предугадать, что и когда окажется полезным.

Он приводит пример кембриджского профессора Г. X. Харди, который в 1940 году громогласно (и с гордостью) заявил, что теория чисел лишена каких бы то ни было практических применений; на самом же деле в наше время эта теория лежит в основе множества программ, обеспечивающих безопасность в Интернете. Райт считает, что математикам часто сопутствует «несуразный успех» – когда они находят применение для с виду бесполезных теорем, причем нередко это случается годы спустя после их открытия.

* * *

Один из самых очаровательных аспектов конференции G4G состоит в том, что всех приглашенных (их 300 человек) просят привезти подарок – «нечто, что вы подарили бы Мартину». На самом деле всех просят привезти подарки в количестве 300 экземпляров, потому что каждый в конце получает мешок, в котором лежат подарки от всех остальных участников. В тот год, когда я был участником конференции, в моем мешке оказались головоломки, приспособления для фокусов, книги, компакт-диски и кусок пластика, издававший звуки, подобные тем, что издает человек, выпивший слишком много кока-колы. Один мешок предназначался Мартину Гарднеру, и я взялся доставить ему его.

Гарднер жил в Нормане, штат Оклахома. В тот день, когда я приехал, в штате свирепствовали ураганные ветры. Съехав с федеральной трассы, я немного поплутал, но наконец нашел нужное место – дом, где живут старики, нуждающиеся в уходе. Рядом располагалась забегаловка, торгующая техасским фастфудом. Дверь в комнату Гарднера была всего в нескольких шагах от входа, нужно было лишь пересечь общий холл, где беседовали несколько престарелых обитателей дома. Рядом с гарднеровской дверью стоял ящик для корреспонденции. Он не пользуется электронной почтой, но посылает и получает писем больше, чем все остальные его соседи, вместе взятые.

Гарднер открыл дверь и пригласил меня войти. На стене висел его портрет, выполненный из домино, большая фотография Эйнштейна и картина Эшера (оригинал). Гарднер был одет в обычную зеленую рубашку и свободные брюки. Мягкое, открытое лицо, на голове – клочья седых волос, а за большими очками в черепаховой оправе притаились внимательные глаза. Было в нем нечто неземное. Он был худощав и сохранил идеальную осанку, потому что работал каждый день, стоя за конторкой.

Я передал ему мешок с подарками от участников G4G и спросил, каково это – чувствовать себя темой конференции.

– Это большая честь для меня, и, признаюсь, я удивлен, – ответил он. – Меня изумляет, насколько она разрослась.

Довольно скоро я понял, что он стесняется говорить о том, насколько он знаменит среди математиков.

– Я не математик, – сказал он. – Я главным образом журналист. За пределами математического анализа я совершенно теряюсь. В этом-то и был секрет успеха моей колонки. Понимание того, о чем я пишу, занимало у меня так много времени, что мне удавалось изложить вопрос так, что большинство читателей тоже были в состоянии это понять.

Любимый предмет Гарднера – фокусы. Он говорил о них как о своем главном хобби. Он выписывал журналы, посвященные фокусам, и – насколько ему позволял его артрит – разучивал их и показывал всем желающим. Он предложил и мне показать фокус, который, по его словам, был единственным изобретенным им самим карточным фокусом, требующим ловкости рук. Фокус назывался «мгновенная перемена цвета», поскольку во время этого фокуса цвет карты меняется моментально. Гарднер взял колоду карт, положил черную карту на ладонь и накрыл колодой. Черная карта немедленно стала красной. Математика увлекла Гарднера через «математические» фокусы, и в молодости он больше общался именно с фокусниками, а не с математиками.

Гарднер сказал, что фокусы нравятся ему потому, что благодаря им люди не перестают испытывать чувство удивления окружающим миром.

– Вы смотрите на левитирующую женщину и понимаете, что это явление столь же чудесно, как и то, что она падает на землю под действием силы тяготения. Ведь сила гравитации столь же таинственна, как и парящая в воздухе женщина.

Я спросил, заставляла ли его математика испытывать такое же чувство удивления.

– Без сомнения, – ответил он, – конечно же да.

Гарднер, вероятно, более всего известен своими книгами, посвященными занимательной математике, но они составляют лишь часть его литературного наследия. Его первая книга называлась «Фантазии и заблуждения» – то была первая популярная книга, посвященная разоблачению псевдонауки. Он много писал на философские темы, а также опубликовал серьезный роман о религии. Созданный им бестселлер – неустаревающий сборник комментариев к книгам Л. Кэрролла «Алиса в Стране чудес» и «Алиса в Зазеркалье». В 93 года он не производил на меня впечатления человека, полностью отошедшего от дел. В планах у него было издание сборника эссе о творчестве Г. К. Честертона и большая книга об играх со словами и в слова.

Благодаря Гарднеру занимательная математика до сих пор пребывает в прекрасной форме. Она восхитительна и разнообразна, а потому по-прежнему дарит радость людям всех возрастов и национальностей, вдохновляя на весьма серьезные свершения и весьма серьезных ученых. Поначалу меня несколько расстроила фраза Гарднера о том, что он не математик, но потом, уже покидая Оклахому, я вдруг подумал о том, насколько блестяще отвечает духу занимательной математики тот факт, что человек, который является ее воплощением, – всего лишь продвинутый любитель [46]46
  В издательстве «КоЛибри» в серии «Galileo» вышла последняя книга Мартина Гарднера, сборник эссе «Когда ты была рыбкой, головастиком я…» ( Примеч. ред.)


[Закрыть]
.

Глава 7
Тайны следствия

Автор сталкивается лицом к лицу с бесконечностью, встречает неостановимую улитку и бесовское семейство чисел.

В Атланте я познакомился с человеком, у которого довольно необычное хобби. Нил Слоун – так его зовут – собирает числа.

Не отдельные числа, а семейства чисел, организованных в упорядоченные ряды, называемые последовательностями. Например, натуральные числа – это последовательность, которую можно определить, сказав, что ее n-й член равен n:

1, 2, 3, 4, 5, 6, 7…

Слоун начал собирать свою коллекцию в 1963 году, когда учился на старших курсах Корнеллского университета. Сначала он записывал последовательности на карточках. Это было довольно удобно, поскольку при этом упорядоченные ряды сами образовывали некий упорядоченный ряд. К 1973 году он собрал 2400 последовательностей и опубликовал их в книге под заглавием «Энциклопедия целочисленных последовательностей». К середине 90-х годов у него их было уже 5500. Но только с изобретением Интернета коллекция обрела идеальную среду для своего существования. Список Слоуна расцвел и превратился в «Онлайн-энциклопедию целочисленных последовательностей» – собрание, в котором сейчас более 160 000 записей и которое разрастается со скоростью около 10 000 записей в год.

При первом знакомстве Слоун производит впечатление человека, никогда не покидающего своего домашнего кабинета. Однако это впечатление обманчиво. Слоун худощав, лыс и носит очки с толстыми квадратными стеклами, при этом он жилистый и плотный и предстает перед вами со всей своей дзен-осанкой, которая есть плод другого его увлечения – скалолазания. Слоуну нравится бросать вызов геологическим образованиям ничуть не меньше, чем покорять образования из чисел.

По мнению Слоуна, сходство между изучением последовательностей и скалолазанием состоит в том, что оба этих занятия требуют умения решать головоломки. Я бы добавил, что есть и другая параллель: подобно тому, как скалолаз, покорив одну вершину, уже готов сразиться с новой, так и любитель последовательностей, дойдя до n-го члена, тут же начинает искать ( n+ 1)-й. При этом у скалолазов есть естественный ограничитель – географический фактор, зато последовательности, уходя в бесконечность, часто никаких ограничений не имеют.

Как истинный коллекционер, который складывает в одну коробку своих старых любимцев рядом с колоритными раритетами, Слоун принимает в «Энциклопедию» как обыкновенное, так и экстравагантное. В его коллекции, например, имеется «нулевая последовательность», состоящая из одних только нулей. (Каждой последовательности в «Энциклопедии» присвоен идентификационный номер, перед которым стоит буква А. Нулевая последовательность – четвертая в собрании Слоуна, и потому известна как А4):

(А4)0, 0, 0, 0, 0…

Будучи простейшей из возможных бесконечных последовательностей, она в то же время наименее динамичная в слоуновской коллекции, хотя и не лишена определенного нигилистического очарования.

Поддержание «Онлайн-Энциклопедии» – основная работа Слоуна, параллельная другой настоящей работе – занятию математикой в лабораториях компании AT&T в Нью-Джерси. Однако сейчас ему больше не нужно тратить время на поиски новых последовательностей. После того как к «Энциклопедии» пришел успех, Слоан постоянно получает новые – от профессиональных математиков, но по больше части от людей, одержимых числами. У Слоуна есть всего один критерий, на основе которого новой последовательности разрешается вступить в клуб: она должна быть «корректно определенной и интересной». Первое означает попросту, что каждый член в последовательности можно описать или алгебраически, или риторически. Удовлетворяет ли последовательность второму требованию – решает он сам, хотя обычно в случае сомнения он склонен решить вопрос скорее в пользу той или иной последовательности. Правда, из требований «корректной определенности» и «интересности» вовсе не следует, что последовательность обязательно должна быть математической. И история, и фольклор, и причуды также играют роль в его решении.

Среди последовательностей, включенных в «Энциклопедию», имеется и вот такая довольно древняя:

(А100000)3, 6, 4, 8, 10, 5, 5, 7.

Числа в этой последовательности представляют собой перевод на язык цифр отметок, сделанных на самом старом из известных математических объектов – на кости Ишанго, артефакте возрастом 22 000 лет, найденном на территории нынешней Демократической Республики Конго [47]47
  Кость Ишанго(эпоха верхнего палеолита) – берцовая кость бабуина, покрытая рядами насечек. Некоторые ученые полагают, что это примитивный лунный календарь. ( Примеч. перев.)


[Закрыть]
. Эта обезьянья кость сначала считалась инструментом для определения длины (попросту говоря, линейкой), однако потом ученые высказали идею, что поскольку насечки на кости хитро сгруппированы – тройка, ее удвоение, затем четверка, ее удвоение, десятка, за которой следует ее половина, – то эта последовательность может выражать какой-то более замысловатый ход мыслей, возможно связанный с выполнением арифметических действий.

В коллекции имеется также дьявольская последовательность:

(А51003)666, 1666, 2666, 3666, 4666, 5666, 6660, 6661…

Она составлена из так называемых Чисел Зверя – чисел, содержащих фрагмент 666.

Ради забавы Слоун также включил и такую последовательность:

(А38674)2, 2, 4, 4, 2, 6, 6, 2, 8, 8, 16.

Это числа из латиноамериканской детской песенки «La Farolera»: «Dos у dos son quatro, cuatro у dos son seis. Seis у dos son ocho, у ocho dieciseis» (Два и два – четыре, четыре и два – шесть, шесть и два – восемь и т. д.).

Но самая, быть может, классическая из всех последовательностей – это последовательность простых чисел:

(А40)2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37…

Простые числа – это натуральные числа большие единицы, которые делятся только на себя и на единицу. Их очень просто описать, но их последовательность демонстрирует весьма впечатляющие, а временами и таинственные свойства. Во-первых, как доказал Евклид, простых чисел бесконечно много. Какое бы число вы ни взяли, всегда найдется простое число большее, чем данное. Во-вторых, каждое натуральное число больше 1 записывается – причем существует только один вариант – как произведение простых чисел. Другими словами, каждое число равно результату перемножения определенного набора простых чисел. Например, 221 есть 13 × 17. Следующее число, 222, есть 2 × 3 × 37. Идущее за ним – 223 – простое, так что можно записать только 1 × 223, а 224 есть 2 × 2 × 2 × 2 × 2 × 7. И так можно продолжать до бесконечности. Например, миллиард равен 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5. Это свойство чисел известно как фундаментальная теорема арифметики,и именно оно определяет, почему простые числа рассматриваются как неделимые кирпичики всей системы натуральных чисел.

Однако, несмотря на свою особенность, простые числа не обладают монополией на производство последовательностей, несущих в себе специальные секреты математического порядка (или беспорядка). Все последовательности так или иначе способствуют нашему лучшему пониманию того, как устроены числа. «Онлайн-энциклопедию целочисленных последовательностей» можно также рассматривать как собрание разнообразных примеров, справочное руководство по численному порядку, лежащему в основании мира. Возникнув из личного пристрастия Нила Слоуна, этот проект оказался действительно важным научным ресурсом.

Слоун считает «Энциклопедию» математическим эквивалентом хранящейся в ФБР базы данных по отпечаткам пальцев. «Взяв отпечатки пальцев на месте преступления, их затем проверяют по базе с целью опознать подозреваемого, – говорит он. – То же самое и с „Энциклопедией“. Математики, столкнувшись с какой-то последовательностью чисел, которая естественным образом возникла в ходе их работы, смотрят в базе, – и страшно радуются, если оказывается, что их последовательность там уже есть». Такая база данных приносит пользу не только чистым математикам. Инженеры, химики, физики и астрономы также искали и находили свои последовательности в «Энциклопедии», таким образом обнаруживая неожиданные междисциплинарные связи и глубже проникая в суть своей собственной области знания. Если люди работают в области, постоянно изрыгающей недоступные для понимания числовые последовательности, которым они надеются придать некий смысл, то такая база данных – настоящая золотая жила.

«Энциклопедия» позволяет Слоуну быть в курсе множества новых математических идей, а кроме того, он проводит часть времени, рождая свои собственные. В 1973 году он предложил концепцию «продолжительности жизни» числа. Она измеряется числом шагов, которое требуется сделать, чтобы получить однозначное число, перемножая все цифры предыдущего числа, затем перемножая все цифры полученного числа, что даст третье число, и т. д., пока не получится однозначное число. Например, 88 → 8 × 8 = 64 → 6 × 4 = 24 → 2 × 4 = 8. Таким образом, говорит Слоун, число 88 имеет продолжительность жизни, равную 3, поскольку требуются три шага, чтобы добраться до одной цифры. Кажется, что чем больше число, тем выше его продолжительность жизни. Например, 679 имеет продолжительность жизни, равную 5: 679 → 378 → 168 → 48 → 32 → 6. Подобным же образом, слегка потрудившись, можно узнать, что число 277 777 788 888 899 имеет продолжительность жизни, равную 11. Однако Слоуну не удалось найти числа, продолжительность жизни которого была бы больше 11, даже после того, как он перебрал все числа до 10 233, что есть единица с 233 нулями. Другими словами, какое бы 233-значное число вы ни выбрали, применив к нему правила перемножения цифр для определения продолжительности жизни, вы непременно доберетесь до одной-единственной цифры за 11 шагов или ранее.

Этот результат восхитительным образом противоречит нашей интуиции. Казалось бы, если взять число, состоящее из 200 или около того цифр, причем по большей части из большихцифр, скажем восьмерок и девяток, то произведение всех этих цифр окажется достаточно большим, и для того, чтобы в конце концов добраться до однозначного числа, потребуется существенно больше и шагов. Однако, как оказалось, большие числа схлопываются под собственным весом. Дело в том, что если в числе хоть раз появится нуль, то произведение всех его цифр окажется равным нулю. Если в числе, с которого вы начали, нет нулей, то нуль непременно появится на 11-м шаге, если только число уже не свелось к этому моменту к единственной цифре. Слоун считает свой алгоритм необычайно эффективным убийцей чисел-гигантов.

Не останавливаясь на достигнутом, Слоун составил последовательность, в которой n-й член есть наименьшее число с продолжительностью жизни, равной n.(Мы рассматриваем только числа, имеющие по крайней мере две цифры.) Первый такой член равен 10, потому что 10 → 0, так что 10 – это наименьшее двузначное число, которое претерпевает редукцию за один шаг.

Второй член равен 25, потому что 25 → 10 → 0 и 25 есть наименьшее число, которое редуцируется за два шага.

Третий член равен 39, потому что 39 → 27 → 14 → 4 и 39 есть наименьшее число, которое редуцируется за три шага.

Приведем всю последовательность:

(А3001)10, 25, 39, 77, 679, 6788, 68 889, 2 677 889, 26 888 999, 3 778 888 999, 277 777 788 888 899

На мой взгляд, эта последовательность странным образом завораживает. В ней одновременно присутствуют и некая отчетливая структура, и малая толика асимметричного беспорядка. Продолжительность жизни – это нечто вроде автоматической линии по выпуску сосисок, которая выдает связки своеобразных сосисок длиной не более 11 штук.

Друг Слоуна профессор Джон Хортон Конуэй из Принстона тоже любит нестандартные математические концепции. В 2007 году он изобрел понятие степенной трансмиссии. Степенная трансмиссия числа, записанного в виде abcd…, —это abc d… В случае чисел с нечетным числом цифр его последней цифре не во что возводиться, так что abcdeпереходит в abc d e.Возьмем 3462. Из него получаем 3462 = 81 × 36 = 2 91 6. Будем применять степенную трансмиссию повторно, пока не останется однозначное число:

3462 → 2916 → 2 91 6= 512 × 1 = 512 → 5 12 = 10 → 1 0= 1.

Конуэй пожелал узнать, имеются ли какие-либо неразрушаемые числа – те, которые не сводятся к однозначному числу при применении степенной трансмиссии. Ему удалось найти только одно:

2592 → 2 59 2= 32 × 81 = 2592.

Но не такой человек Нил Слоун, чтобы сидеть сложа руки, глядя на то, как другие изобретают числа! Он открыл второе такое число [48]48
  Здесь используется соглашение 0 0= 1, потому что если 0 0= 0, то число схлопнется мгновенно. (Итак, 2 4× 5 4× 7 2× 8 4× 2 8× 4 8× 6 6× 5 6= 24547284284866560000000000. Таким образом, безсоглашения 0 0= 1 второго «неразрушаемого» числа нет. – Примеч. перев.)


[Закрыть]

24 547 284 284 866 560 000 000 000.

Слоун в настоящее время уверен, что других неразрушаемых чисел нет.

Задумаемся об этом на минутку: конуэевская степенная трансмиссия – это смертоносная машина, убивающая каждое число во Вселенной, за исключением 2592 и 24 547 284 284 866 560 000 000 000 – двух с виду никак не связанных неподвижных точек в безграничном мире чисел. «Это потрясающий результат», – говорит Слоун. Большие числа при применении степенной трансмиссии умирают достаточно быстро по тем же причинам, по которым они умирают при вычислении их продолжительности жизни, – появляется нуль, и все становится ничем. Я спросил Слоуна, может ли устойчивость этих двух чисел по отношению к степенной трансмиссии найти какое-либо применение в реальном мире. Он думает, что нет. «Это просто забавно. И ничего плохого в этом нет – надо же иногда просто развлечься».

И Слоун развлекается вовсю. Он исследовал так много последовательностей, что развил свою собственную числовую эстетику. Одну из его любимых последовательностей изобрел математик из Колумбии Бернардо Рекаман Сантос, и называется она последовательностью Рекамана:

(А5132)0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 42, 17, 43, 16, 44, 15, 45…

Давайте взглянем на эти числа и постараемся углядеть закономерность. Смотрите внимательно. Они скачут вроде бы без всякого порядка.

На самом же деле эти числа получаются применением следующего простого правила: «вычитайте, если возможно, а если невозможно – то складывайте». Чтобы получить n-й член, мы берем ( n– 1)-й и либо прибавляем к нему, либо вычитаем из него n.Правило гласит, что следует применять вычитание во всех случаях кроме тех, когда результат оказался бы или отрицательным числом, или числом, уже присутствующим в последовательности. Вот как вычисляются первые четыре члена, если начать с нуля (нулевого члена):

Первый член равен нулевому члену плюс 1.

Результат: 1.

Мы должны складывать, потому что вычитание 1 из 0 дало бы -1, что запрещено.

Второй член равен первому члену плюс 2.

Результат: 3.

Мы снова должны складывать, потому что вычитание 2 из 1 дало бы -1, что запрещено.

Третий член равен второму члену плюс 3.

Результат: 6.

Мы должны складывать, потому что вычитание 3 из 3 дало бы 0, который уже присутствует в последовательности.

Четвертый член равен третьему члену минус 4. Результат: 2.

Мы должны вычитать, коль скоро это возможно.

И так далее.

Во время всего этого довольно занудливого процесса мы имеем дело с целыми числами и получаем ответы, которые выглядят совершенно бессистемными. Однако закономерность, которая здесь возникает, можно увидеть, если изобразить последовательность в виде графика. По горизонтальной оси отложим номер члена, так что n-й член будет расположен над числом n,а по вертикальной оси – значение этого члена. График для первой тысячи членов последовательности Рекамана не похож, наверное, ни на один из ранее виденных вами графиков. Он подобен брызгам из садового распылителя, или же рисунку ребенка, пытающегося соединить точки друг с другом. (Толстые линии на графике – это скопления точек, выглядящие так из-за неподходящего масштаба.) «Интересно посмотреть, сколь много порядка можно привнести в хаос, – заметил Слоун. – Последовательность Рекамана находится ровно на границе между хаосом и изящной математикой, поэтому-то она так и захватывает».

Последовательность Рекамана

Столкновение порядка и беспорядка в последовательности Рекамана можно выразить и музыкально. В «Энциклопедии» имеется функция, позволяющая прослушать любую последовательность, как если бы она была записана с помощью нот. Представим себе, что имеется фортепиано с 88 клавишами (что составляет диапазон чуть меньше восьми октав). Число 1 соответствует самой нижней ноте, число 2 – второй ноте снизу, и так далее, до числа 88, которое соответствует самой верхней ноте. Когда ноты заканчиваются, мы опять начинаем снизу, так что число 89 возвращает нас к первой клавише. Натуральные числа 1, 2, 3, 4, 5 звучат как восходящая гамма, повторяющаяся без конца. Но музыка, создаваемая последовательностью Рекамана, леденит кровь. Она подобна саундтреку из фильма ужасов. Она звучит негармонично, однако не воспринимается как нечто совершенно хаотичное. Можно различить отчетливые музыкальные фразы, как если бы за какофонией скрывалось творение таинственной человеческой руки [49]49
  См. http://oeis.org/play?seq=A005132. ( Примеч. перев.)


[Закрыть]
.

Вопрос, который интересует математиков, – все ли числа встречаются в последовательности Рекамана. Были изучены 10 25членов последовательности, и оказалось, что наименьшее из не присутствующих чисел – это 852 655. Слоун подозревает, что в конце концов в этой последовательности появятся все числа, включая и 852 655, но это его предсказание пока не доказано. Нет ничего удивительного в том, что Слоун находит последовательность Рекамана столь увлекательной.

Другой фаворит Слоуна – это последовательность Гийсвийта [50]50
  Ее определение дается в приложении 4 на сайте, посвященном книге.


[Закрыть]
. В отличие от многих последовательностей, которые растут с победоносной быстротой, последовательность Гийсвийта растет с тягучей неторопливостью, способной свести с ума. Она представляет собой прекрасную метафору идеи «никогда не сдаваться»:

(А90822)1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2…

Первая тройка появляется на девятом месте. Четверка первый раз возникает на 221-м месте. Появление пятерки ожидается не раньше, чем ад замерзнет – она возникнет на месте с номером 10 100000000000000000000000.

Это экстремально большое число. Например, вся Вселенная содержит только 10 80элементарных частиц. В конце концов появится и шестерка, но на таком расстоянии от начала, которое разумно можно описать только как степень степени степени степени степени: . Остальные числа тоже рано или поздно возникнут, хотя – и это следует подчеркнуть – не выказывая при этом решительно никакой спешки. «Земля умирает, даже океаны умирают, – замечает Слоун с поэтическим пафосом, – но приют и спасение можно найти в абстрактной красоте последовательности типа А090822 Диона Гийсвийта».

* * *

Древние греки уделяли простым числам серьезное внимание. Но еще больше они были очарованы числами, которые называли совершенными. Рассмотрим число 6: числа, на которое оно делится, его делители, – это 1, 2 и 3. Если сложить 1, 2 и 3 – voilà, снова получается 6. Совершенное число – это любое число, которое, подобно шестерке, равно сумме своих делителей. (Строго говоря, у 6 есть еще делитель 6, но при рассмотрении совершенных чисел имеет смысл включать только те делители, которые меньше данного числа.) Следующее за шестеркой совершенное число – это 28, потому что числа, на которые оно делится, – это 1, 2, 4, 7 и 14, а их сумма равна как раз 28. Не только греки, но и евреи и христиане приписывали космологическое значение такому численному совершенству. Живший в XI веке выдающийся богослов и писатель Рабан Мавр писал: «Шесть не потому совершенно, что Бог сотворил мир за 6 дней, но Бог совершил акт творения за 6 дней потому, что число это совершенно».

Греки обнаружили также неожиданную связь между совершенными и простыми числами, которая породила многочисленные связанные с ними приключения. Рассмотрим последовательность удвоений, начинающуюся с 1:

(А 79)1, 2, 4, 8, 16…

В своих «Началах» Евклид показал, что всегда, когда сумма удвоений есть простое число, можно найти совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят. Это звучит как малопонятная тирада, так что давайте начнем складывать удвоения, чтобы увидеть, что же все это означает.

1 + 2 = 3. Число 3 простое, так что мы умножим 3 на старшее из наших удвоений, то есть на 2: 3 × 2 = 6, а число 6 совершенно.

1 + 2 + 4 = 7. Число 7 снова простое. Поэтому умножим 7 на 4, что даст еще одно совершенное число, а именно 28.

1 + 2 + 4 + 8 = 15. Это число не простое. Не появится здесь и совершенного числа.

1 + 2 + 4 + 8 + 16 = 31. Это число простое, а 31 × 16 = 496 – совершенное число.

1 + 2 + 4 + 8 +16 + 32 = 63. Это число не простое.

1 + 2 + 4 + 8 + 16 + 32 + 64 = 127. Это число также простое, а 127 × 64 = 8128 – совершенное число.

Доказательство Евклида было, конечно, геометрическим. Он не записывал его в терминах чисел, а использовал отрезки прямых. Однако если бы он мог позволить себе роскошь современных алгебраических обозначений, то заметил бы, что сумму удвоений 1 + 2 + 4 +… можно выразить как сумму степеней двойки, 2 0+ 2 1+ 2 2+… (Заметим, что любое число в степени 0 есть 1 и что любое число в степени 1 есть само это число.) Тогда становится понятным, что любая сумма удвоений равна следующему удвоению за вычетом единицы. Например:

1 + 2 = 3 = 4 – 1, или 2 0+ 2 1= 2 – 1

1 + 2 + 4 = 7 = 8–1, или 2 0+ 2 1+ 2 2= 2 3 – 1.

Это можно обобщить в виде формулы 2 0+ 2 1+ 2 2+… + 2 n-1= 2 n– 1. Другими словами, сумма первых  nудвоений равна 2 n– 1.

Итак, используя исходное заявление Евклида о том, что «когда сумма удвоений есть простое число, можно построить совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят» и добавляя к этому современные алгебраические обозначения, мы можем получить намного более четкое утверждение:


    Ваша оценка произведения:

Популярные книги за неделю