355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики » Текст книги (страница 18)
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Текст добавлен: 12 октября 2016, 02:02

Текст книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"


Автор книги: Алекс Беллос


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 18 (всего у книги 24 страниц)

Некоторые игроки предпочитают игровые автоматы с низкой волатильностью, тогда как другие – с высокой. Основная задача проектировщика игр – обеспечить достаточные выплаты для того, чтобы поддерживать в играющем желание продолжать игру, ведь чем дольше данный игрок играет, тем больше он в среднем проигрывает. Игры с высокой волатильностью вызывают большой азарт – особенно в казино, где машины, на которых выпал джекпот, привлекают всеобщее внимание, разражаясь вызывающими мурашки трезвоном и вспышками света. Однако создание хорошей игры не ограничивается разработкой изощренных графических элементов, насыщенных звуков и завлекательных видеороликов. Хорошая игра предполагает еще и создание правильного баланса вероятностей. Я спросил Бэрлокера, можно ли, по-разному настраивая волатильность, придумать машину с низким процентом возврата, которая для игроков была бы более привлекательной, чем машины с высоким возвратом.

– Мы с коллегами провели больше года, пытаясь в этом разобраться и выписывая всякие формулы, и нам удалось придумать метод, позволяющий скрывать, каков же в машине настоящий процент возврата, – сказал он. – Из некоторых казино до нас теперь доходят сведения, что там запускают машины с более низким процентом возврата, но игроки не вполне это осознают. То была непростая задача.

Я поинтересовался, как тут обстоит дело с этикой.

– Это – необходимость, – ответил он. – Нам нужно, чтобы игроки не теряли азарта, но при этом требуется, чтобы и те, кто покупает у нас автоматы, не оставались в убытке.

* * *

Составленные Бэрлокером таблицы выигрышей полезны не только для понимания внутреннего устройства одноруких бандитов, но и в качестве наглядного пособия на тему о том, как работает индустрия страхования. Работа страховой компании во многом очень похожа на работу игровых автоматов. Обе системы построены на основе теории вероятностей, когда потери, приходящиеся почти на каждого, используются для выплат лишь немногим. При этом обе эти системы могут приносить фантастический доход тем, в чьих руках находится контроль величины процента возврата.

Покупка страхового полиса ничем не отличается от азартной игры. Вы делаете ставку, например, на то, что ваш дом обворуют. Если вас действительно ограбили, вы получаете выплату – возмещение того, что было украдено. Если же ограбления не случилось – к счастью, вы, конечно, не получаете ничего. Актуарии, специалисты по страховой математике, ведут себя в точности как Энтони Бэрлокер из IGT. Им известно, каковы в целом должны быть выплаты клиентам, знают они и вероятности каждого события, предполагающего выигрыш (грабеж, пожар, серьезная болезнь и т. д.), так что они вычисляют, какие выплаты должны приходиться на одно такое событие, да так, чтобы сумма ожидаемых вкладов равнялась полной сумме выплат. Хотя составление страховочных таблиц представляет собой дело куда более сложное, чем проектирование игровых автоматов, принцип там тот же. Страховые компании выплачивают меньше, чем они получают в виде взносов, то есть процент возврата у них меньше ста. Покупка страхового полиса – это ставка с отрицательным ожиданием, и потому предприятие это весьма невыгодное.

Так почему же люди страхуются, несмотря на то что это невыгодно? Отличие страхования от игры в казино состоит в том, что в казино вы (будем надеяться) играете на деньги, проигрыш которых можете себе позволить. Но в страховании вы делаете ставку, чтобы защититься от потери, которую вы позволить себе не можете. Да, страхуясь, вы неизбежно будете терять небольшие суммы денег (взносы), зато вы предохраните себя от потерь катастрофического масштаба (например, всех ценностей в вашем доме). Страховщики обеспечивают нам душевный покой за очень неплохую цену.

Отсюда следует, однако, что страхование чего-то, что вам не очень дорого, – занятие бессмысленное. В качестве примера рассмотрим страхование мобильного телефона. Мобильные телефоны относительно дешевы (скажем, по цене 100 долларов), но их страхование дорогое (скажем, 7 долларов в месяц). В этом случае выгоднее не приобретать страховку, а просто при потере старого мобильника покупать новый. Таким способом вы оставляете себе прибыль, которая иначе пошла бы страховой компании.

* * *

Одна из причин наблюдающегося в последнее время роста рынка игровых автоматов состоит во введении «прогрессивных» машин. Прогрессивные игровые автоматы предлагают большие джекпоты, чем обычные, потому что они объединены в сеть, где каждая машина вносит свой вклад в общий джекпот, величина которого постоянно растет. В «Перечнице» меня поразили ряды связанных друг с другом автоматов, предлагающих призы в десятки тысяч долларов.

Прогрессивные машины обладают высокой волатильностью, то есть на коротких периодах времени казино могут проигрывать заметные деньги. «Если мы выпускаем игру с прогрессивным джекпотом, то примерно один из каждых двадцати владельцев казино принимается писать нам письма, утверждая, что наша игра – неправильная. Дело в том, что там выпадают два или три джекпота за первую неделю, и эти автоматы залетают на 10 000 долларов в минус, – сказал Бэрлокер, усматривая горькую иронию в том, что люди, старающиеся заработать на вероятностях, не вполне разбираются в теории вероятностей на базисном уровне. – Тогда мы проводим анализ и видим, что вероятность подобного события составляет, скажем, 1 к 200. Им достался расклад, который должен выпадать лишь в полпроцента случаев, – но должен же он кому-то достаться. И мы говорим им: не беспокойтесь, все нормально».

Самые популярные из производимых в IGT прогрессивных игровых машин – «Мегабакс», сотни связанных друг с другом игровых автоматов по всей Неваде. Когда компания только предложила «Мегабакс» лет десять тому назад, минимальный джекпот составлял 1 миллион долларов. Исходно казино не желали брать на себя обязательства по выплате столь крупной суммы, поэтому IGT застраховала всю сеть целиком за некоторый процент с каждого автомата и взяла на себя обязательство по выплате джекпотов. Несмотря на то что компания уже выплатила сотни миллионов долларов призовых денег, «Мегабаксы» остаются прибыльным делом. Закон больших чисел на редкость надежен: чем больший кусок вы схватите, тем лучше все получится.

Сейчас джекпот на «Мегабаксах» начинается с 10 миллионов долларов. Если никто его не выигрывает к тому времени, как размер джекпота достигает 20 миллионов долларов, в казино выстраиваются очереди у «Мегабаксов», а IGT заваливают заявками на установку дополнительных автоматов. «Люди полагают, что раз джекпот так долго не выпадал, то он должен вот-вот выпасть и уж тут-то им точно должно повезти», – объясняет Бэрлокер.

Но это рассуждение ошибочно. Каждая отдельная игра – случайное событие. Имеется одна и та же вероятность выиграть, когда джекпот составляет 10 долларов, 20 долларов или даже 100 миллионов долларов, хотя инстинкт, казалось бы, говорит, что если в течение столь долгого периода никто не выигрывал, то вероятность того, что автоматы в казино раскошелятся, повышается. Вера в то, что джекпот «назрел», известна как «заблуждение игрока».

«Заблуждение игрока» – побудительный мотив невероятной силы. С его помощью игровые автоматы манипулируют человеком с особой жестокостью, из-за чего, возможно, люди попадают в сильнейшую зависимость от них – гораздо более сильную, чем от других азартных игр. Если вы играете много игр, одну за другой, то представляется совершенно естественным полагать, что после долгого периода потерь «в следующий раз мне обязательно повезет». Игроки в азартные игры нередко говорят, что машина «горяча» или «холодна» – имея в виду, что она сейчас выплачивает много или, наоборот, мало. Но и это, опять же, – ерунда, потому что вероятности выигрыша всегда одни и те же. Тем не менее понятно, почему механизму из пластика и металла размером примерно с человека и иногда называемому «одноруким бандитом» можно приписать даже наличие некоторых человеческих черт. Игра с игровым автоматом – напряженное, глубоко лично переживание: вы устраиваетесь в непосредственной близости от него, тыкаете в него пальцами и отключаетесь от всего остального мира.

* * *

Поскольку наши мозги плохо приспособлены к восприятию случайности, теория вероятностей – это область математики, полная парадоксов и неожиданностей. Мы инстинктивно усматриваем закономерность даже в тех ситуациях, про которые мы знаем, что никаких закономерностей там нет. Легко посматривать свысока на игрока, полагающего, что после полосы проигрышей он вскоре начнет выигрывать, но на самом деле психология заблуждения игрока не обошла стороной и тех, кто в азартные игры не играет.

Рассмотрим следующий фокус, который можно показывать в компании. Пригласим двух людей поучаствовать в этом мероприятии, а затем объясним им, что один из них должен подбросить монету 30 раз и записать последовательность орлов и решек, а второй должен подбросить монету 30 раз, но только в своем воображении, и также записать последовательность орлов и решек, исходя из того, что он или она себе вообразит. Не сообщая вам о своем выборе, два игрока решают между собой, кто из них что будет делать; потом вы получаете от них два списка. Я попросил свою маму и отчима проделать это и получил от них такое:

Список 1

ОРРОРОРРРООРООРООООРОРРОРОРРОО

Список 2:

РРООРРРРРООРРРОРРОРООООРООРОРО

Смысл забавы в том, что очень легко понять, какой список – результат подбрасывания настоящей монеты, а какой – воображаемой. В приведенном выше примере мне было ясно, что второй список – настоящий, и я не ошибся. Во-первых, я выяснил, какова максимальная серия выпадающих подряд одних орлов или одних решеток. Во втором списке максимальная серия – 5 решек. В первом списке максимальная серия – 4 орла. Вероятность серии из 5 одинаковых исходов в 30 подбрасываниях составляет почти две трети, так что намного более вероятно, что за 30 бросаний серия из 5 одинаковых результатов действительно наступит. Исходя уже из этого, второй список оказывается подходящим кандидатом на то, чтобы отражать результаты подбрасывания настоящей монеты. Во-вторых, мне было известно, что большинство людей никогда не напишут серию из 5 одинаковых исходов при 30 подбрасываниях, потому что это кажется им недостаточно случайным. Для проверки того, что я не ошибся, отнеся второй список к реальному эксперименту, я решил проверить, сколь часто в этих списках происходят переходы между орлами и решками. Из-за того, что каждый раз при подбрасывании монеты шансы выпадения орла и решки одинаковы, следует ожидать, что за каждым данным исходом примерно в половине случаев следует противоположный исход, а в половине случаев – тот же самый исход. Во втором списке переходы совершаются 15 раз, а в первом – 19, что свидетельствует о человеческом вмешательстве. Представляя себе подбрасывание монеты, наш мозг склонен чередовать исходы гораздо чаще, чем это происходит на самом деле в истинно случайной последовательности: после пары орлов наш инстинкт хочет внести компенсацию и воображает исход в виде решки, несмотря на то что шансы выпадения орла остаются равными 1:2. Здесь-то и проявляется заблуждение игрока. Истинная случайность не помнит, что было раньше.

Для человеческого ума оказывается невероятно сложно, если не невозможно, имитировать случайность. А при столкновении со случайностью мы часто интерпретируем ее как неслучайную. Например, на айподе есть опция воспроизведения песен «вразброс». При этом песни проигрываются в случайном порядке. Но когда компания «Apple» поставила эту программу, пользователи стали жаловаться, что она предпочитает определенных исполнителей, потому что их песни часто следовали одна за другой. Слушатели здесь впадают в заблуждение игрока. Если опция «вразброс» на айподе по-настоящему случайна, то выбор каждой следующей песни не зависит от предыдущей. Как показывает эксперимент с подбрасыванием монеты, противоречащие интуиции длинные последовательности одного и того же исхода являются скорее нормой. Если композиции выбираются случайно, то вполне возможно, или даже весьма вероятно, что будут появляться кластеры песен одного и того же исполнителя. Генеральный директор компании «Apple» Стив Джобс говорил абсолютно всерьез, когда комментировал высказывания недовольных пользователей: «Мы сейчас делаем опцию „вразброс“ менее случайной, чтобы она воспринималась как более случайная».

Почему же заблуждение игрока – столь сильный мотив? Все дело в контроле. Нам нравится ощущение контроля за тем, что вокруг нас происходит. Если события совершаются случайно, мы не можем их контролировать. Наоборот, если нам удается контролировать события, то они не случайны. Именно поэтому мы предпочитаем усматривать закономерности даже там, где никаких закономерностей нет. Тем самым мы пытаемся восстановить чувство контроля. Потребность осуществления контроля представляет собой глубокий человеческий инстинкт, связанный с выживанием. В 1970-х годах в весьма впечатляющем (если не сказать жестоком) эксперименте исследовалось, насколько ощущение контроля важно для пожилых пациентов, живущих в интернатах для престарелых. Некоторым пациентам предоставили возможность самим решать, как будут обставлены их комнаты, а также выбрать растение, за которым они будут ухаживать. Других же просто поселили в уже готовые комнаты и выделили комнатное растение. По прошествии 18 месяцев результат оказался просто устрашающим. У тех пациентов, кому была предоставлена возможность принятия решений, смертность составляла 15 процентов, а у тех, кто был этого лишен, – 30 процентов. Ощущение, что мы контролируем ситуацию, поддерживает в нас жизнь.

* * *

Случайность – нечто очень далекое от плавности и спокойствия. Она создает области пустоты и области сгущений.

Случайность позволяет объяснить, почему в некоторых небольших деревнях процент врожденных заболеваний выше нормального, почему на некоторых дорогах происходит больше несчастных случаев и почему в некоторых баскетбольных матчах оказываются забитыми все штрафные. А также почему в 7 из 10 последних финалов чемпионата мира по футболу по крайней мере у двух игроков совпадали дни рождения:


2006Патрик Виера, Зинедин Зидан (Франция), 23 июня
2002Никого
1998Эммануэль Пети (Франция), Рональдо (Бразилия), 22 сентября
1994Франко Барези (Италия), Клаудио Таффарель (Бразилия), 8 мая
1990Никого
1986Серхио Батиста (Аргентина), Андреас Бреме (Западная Германия), 9 ноября
1982Никого
1978Рене ван де Керкхоф, Вилли ван де Керкхоф (Голландия), 16 сентября; Джонни Реп, Ян Йонгблед (Голландия), 25 ноября
1974Джонни Реп, Ян Йонгблед (Голландия), 25 ноября
1970Пьацца (Бразилия), Пьерлуиджи Чера (Италия), 25 февраля

С первого взгляда это воспринимается как удивительный набор совпадений, однако с точки зрения математики в этом списке нет ничего выдающегося, потому что стоит только случайно выбрать группу из 23 человек, как окажется, что совпадение дней рождения у двух людей в группе будет более вероятным, чем отсутствие таких совпадений. Это явление известно как парадокс дней рождения.В нем нет никаких противоречий, однако же он бросает вызов здравому смыслу: число 23 кажется абсурдно малым для такого совпадения.

Доказательство парадокса дней рождения похоже на те доказательства, что мы использовали в начале главы, изучая комбинации, выпадающие при бросании костей. На самом деле можно переформулировать парадокс дней рождения в виде следующего утверждения: если взять кость с 365 сторонами, то после 23 бросаний более вероятно, что одна и та же грань выпадет два раза, чем что такого не случится.

Шаг 1

Вероятность того, что у двух человек в группе окажется одна и та же дата рождения, равна единице минус вероятность того, что ни у каких двух людей в этой группе дни рождения не совпадут.

Шаг 2

Вероятность того, что в группе из двух человек их дни рождения не совпадут, равна 365/ 365× 364/ 365. Так получается, потому что первый человек может родиться в любой день (365 возможностей из полного числа 365), а для второго остается любой из дней за исключением того, когда родился первый (364 возможности из полного числа 365). Для простоты не будем обращать внимания на лишний день в високосные годы.

Шаг 3

Вероятность того, что ни у кого в группе из трех человек даты рождения не попадут на один и тот же день, равна 365/ 365× 364/ 365× 363/ 365. В группе из четырех человек она оказывается равной 365/ 365× 364/ 365×  363/ 365× 362/ 365и т. д. Каждое следующее умножение делает результат все меньше и меньше. Когда в группе оказывается 23 человека, результат наконец пересекает отметку в 0,5 (точное значение равно 0,493).

Шаг 4

Если вероятность того, что ни у каких двух человек даты рождения не попадут на один и тот же день, меньше чем 0,5, то вероятность того, что по крайней мере у двух дни рождения совпадут, оказывается больше 0,5 (из шага 1). Так что в группе из 23 человек скорее окажется, что какие-то два человека родились в один и тот же день, чем наоборот.

Футбольные матчи предоставляют нам идеальную выборку, демонстрирующую, что реальные факты отвечают предсказаниям теории, потому что на поле всегда имеется 23 человека – две команды из и игроков и судья. Впрочем, рассмотрение с этой точки зрения финалов чемпионата мира показывает, что парадокс дней рождения работает чуть-чуть слишкомхорошо. Вероятность, что у двух людей в группе из 23 человек окажется один и тот же день рождения, равна 0,507, что лишь едва больше 50 процентов. Однако же, судя по нашему списку, такое случилось в семи из десяти случаев (даже если исключить близнецов ван де Керкхоф), что дает 70 процентов [58]58
  В заявкена каждый матч указаны 23 игрока, и на поле даже могут выйти 14 (ранее 1994 года – как правило, 13) человек из каждой команды. ( Примеч. перев.)


[Закрыть]
.

Частично это следует отнести на счет закона больших чисел. Если бы я анализировал всематчи, сыгранные на чемпионатах мира, то можно было бы пребывать практически в полной уверенности, что результат окажется близким к 50,7 процента. Однако имеется и еще одна переменная. Равномерно ли распределены дни рождения футболистов на протяжении всего года? Возможно, нет. Исследования показывают, что для футболистов выше вероятность рождения в определенные времена года – вероятностное предпочтение оказывается у тех, кто родился сразу после даты, которая разделяет тех, кого записывают в школу на текущий год или на следующий. Дело в том, что родившиеся вскоре после этой даты будут самыми старшими в своем классе, а потому и самыми крупными, и будут показывать лучшие результаты в спорте. А если в распределение дат рождения вносится какая-то систематическая поправка, то можно ожидать более высокой вероятности совпадения дней рождения. Например, в наше время значительное число детей появляются на свет посредством кесарева сечения или искусственных родов. Это чаще случается по рабочим дням (поскольку сотрудники родильных отделений предпочитают отдыхать по выходным), и в результате оказывается, что дни рождения распределены по календарным датам не самым случайным образом. Если взять выборку из 23 людей, рожденных за один и тот же 12-месячный период, – скажем, детей в классе начальной школы, – то окажется, что вероятность одного и того же дня рождения у двух из них существенно превосходит 50,7 процента.

Если у вас под рукой нет группы из 23 человек, чтобы проверить это, займитесь своими ближайшими родственниками. При наличии четырех человек имеется 70-процентная вероятность, что у двух из них дни рождения придутся на один и тот же месяц. Всего лишь семь человек требуется, чтобы вероятным оказался факт рождения двоих из них в одну и ту же неделю, а в группе из 14 человек имеется пятидесятипроцентная вероятность, что два дня рождения отстоят друг от друга не более чем на один день. По мере роста группы вероятность растет на удивление быстро. В группе из 35 человек шансы на наличие совпадающего дня рождения составляют 85 процентов, а в группе из 60 – уже более 99 процентов.

А вот другой вопрос по поводу дней рождения, ответ на который настолько же противоречит интуиции, как и парадокс дней рождения: сколько людей должно быть в группе, чтобы с более чем 50-процентной вероятностью чей-нибудь день рождения совпадал с вашим? Это совсем не то же самое, что парадокс дней рождения, потому что вы задаете конкретную дату. При рассмотрении парадокса дней рождения нас не волнует, у кого именно и с кем совпадут дни рождения; надо найти всего лишь совпадающий день рождения. А наш новый вопрос можно переформулировать так: при заданной фиксированной дате сколько раз надо бросать нашу кость с 365 сторонами, чтобы выпала указанная дата? Ответ: 253 раза! Другими словами, придется собрать группу из 253 человек всего лишь для того, чтобы с вероятностью больше 50 процентов у кого-то из них день рождения совпал с вашим. Это число кажется абсурдно большим – заметим, что оно обитает заметно дальше середины отрезка между единицей и числом 365. И тем не менее именно случайность обеспечивает появление этих совпадений – такой размер группы необходим потому, что дни рождения людей не распределены регулярным образом. Среди этих 253 человек окажется много тех, у кого дни рождения совпадают (не совпадая при этом с вашим!), и все это тоже надо учесть.

Урок, извлекаемый из парадокса дней рождения, состоит в том, что совпадения происходят намного чаще, чем нам кажется. В немецкой лотерее «Lotto» у каждой комбинации чисел имеется один из 14 миллионов шанс на выигрыш. И однако же, в 1995 и в 1986 годах выиграла одна и та же комбинация: 15-25-27-30-42-48. Насколько невероятно такое совпадение? Не слишком, если разобраться. Между двумя появлениями одной и той же выигрышной комбинации лотерея разыгрывалась 3016 раз. Вычисление, позволяющее найти, сколько раз в розыгрыше должна появляться одна и та же комбинация, эквивалентно вычислению шанса на то, что найдутся совпадающие дни рождения в группе из 3016 человек, если всего имеется 14 миллионов возможных дней рождения. Искомая вероятность получается равной 0,28. Другими словами, имеется более чем 25-процентная вероятность того, что две выигрышные комбинации за этот период окажутся одинаковыми, так что произошедшее «совпадение» – не слишком нереалистичное событие.

Вот еще один случай. В 1985–1986 годах некая дама из Нью-Джерси дважды за четыре месяца стала победительницей лотереи, проводимой в ее родном штате. Повсюду говорили, что шансы такого исхода – один из 17 триллионов. Однако хотя вероятность купить выигрышный билет в каждой из двух лотерей и оба раза сорвать джекпот действительно равна единице на 17 триллионов, это не означает, что вероятность того, что кто-то где-то победит в двух лотереях, столь же мала. На самом деле такое вполне вероятно. Стивен Сэмюелс и Джордж Маккейб из Университета Пэрдью вычислили, что за период в семь лет вероятность двойного выигрыша в лотерею в Соединенных Штатах превосходит 50 процентов. Даже за период в четыре месяца имеется более одного шанса из 30 на появление двойного выигрыша в пределах страны. Перси Диаконис и Фредерик Мостеллер назвали это законом очень больших чисел:«При достаточно большой выборке может произойти любая сколь угодно несуразная вещь».

* * *

С математической точки зрения лотереи – без сомнения наихудший вариант из всех ставок во всех азартных играх, дозволяемых законом. Даже самый наискупой игровой автомат предлагает вам процент возврата около 85 процентов. А в лотерее «Мега-Миллионс» процент возврата равен примерно 50. Лотереи – занятие, не представляющее никакого риска для организаторов, поскольку призовые деньги – это просто перераспределенные деньги, уже полученные ими. Или, как в случае лотереи «Мега-Миллионс», это распределение половины полученного.

В редких случаях, однако, лотереи могут оказаться наилучшим способом получить хороший выигрыш. Такое происходит, когда из-за «переходящего» джекпота заявленный выигрыш становится больше, чем цена покупки всех возможных комбинаций чисел. В таких случаях вы можете быть уверены, что получите выигрышную комбинацию. Риск состоит только в том, что могут найтись люди, у которых уже есть выигрышная комбинация, – и тогда вам придется разделить главный выигрыш с ними. Впрочем, подход «купи-все-комбинации» подразумевает способность сделать именно это, что может оказаться делом нелегким как с теоретической, так и с логистической точки зрения.

Игроки в «Мега-Миллионс» должны выбрать пять чисел от 1 до 56 и одно от 1 до 46. Имеется около 175 миллионов возможных комбинаций. Как перечислить все эти комбинации таким образом, чтобы каждая из них встречалась только один раз, без дублирования? В начале 1960-х годов румынский математик Стефан Мандел задался этим вопросом относительно румынской лотереи, которая по масштабу гораздо меньше американских. Получить ответ оказалось совсем непросто. Мандел, однако, в конце концов решил задачу, правда потратив на нее несколько лет, и стал победителем в румынской лотерее 1964 года. (Он не скупил все комбинации, потому что это было бы слишком дорого, а применил вспомогательный метод, называемый «уплотнением», который гарантирует, что по крайней мере 5 из 6 чисел будут правильными. Обычно за угадывание 5 чисел полагается второй приз, но ему повезло, и он сразу же выиграл главный.) Записанный на бумаге алгоритм Мандела, позволяющий определить те комбинации, которые надо покупать, занял 8000 страниц. Вскоре после получения выигрыша он эмигрировал в Израиль, а затем в Австралию.

Уже в Мельбурне Мандел основал международный синдикат по лотерейным ставкам, собрав с его участников достаточно денег для того, чтобы при желании иметь возможность скупить все комбинации в лотерее. Он следил за проводимыми по всему миру лотереями с переходящими джекпотами, как минимум в три раза превышающими суммарную цену покупки всех комбинаций. В 1992 году в поле его зрения попала лотерея штата Виргиния, в которой было семь миллионов комбинаций, а каждый билет стоил 1 доллар, при том что джекпот достиг почти 28 миллионов долларов. Тогда Мандел принялся за дело. Он печатал купоны в Австралии, заполнял их на компьютере так, чтобы они охватили все семь миллионов комбинаций, а затем отправлял самолетом в Соединенные Штаты. И – получил главный приз, а заодно и 135 000 вторых призов!

Лотерея в Виргинии была самым большим из сорванных Манделом джекпотов, доведя счет его побед, одержанных после отъезда из Румынии, до 13. Служба внутренних доходов США (The U.S. Internal Revenue Service), ФБР, и ЦРУ проявили интерес к синдикату Мандела и попытались расследовать его методы участия в лотерее, но ничего противоправного эти уважаемые организации не нашли. Ведь нет ничего незаконного в том, чтобы скупить все комбинации, хотя это и слегка отдает аферой. Мандел в настоящее время отошел от дел, связанных с лотереями, и наслаждается жизнью на одном из тропических островов южной части Тихого океана [59]59
  В марте 2011 года житель штата Нью-Йорк выиграл в лотерею «Мега-Миллионс» рекордный джекпот в размере 319 миллионов долларов. За всю историю лотереи это самая большая сумма, которая будет выплачена по одному выигрышному билету. ( Примеч. перев.)


[Закрыть]
.

* * *

Особенно выразительное и наглядное представление случайности изобрел в 1888 году Джон Венн (1834–1923). Венн, быть может, – наименее яркий из всех математиков, имя которых постоянно на слуху. Он был кембриджским профессором и англиканским клириком и провел большую часть жизни, занимаясь составлением сборника биографий 136 000 выпускников Кембриджа, получивших дипломы до 1900 года. Никаких революционных прорывов в своей науке он не совершил, но тем не менее разработал замечательный способ для объяснения логических рассуждений с помощью пересекающихся окружностей. Хотя в предшествующие столетия и Лейбниц, и Эйлер рассматривали нечто очень похожее, диаграммы были названы в честь Венна [60]60
  В России распространено название «диаграммы Эйлера – Венна». ( Примеч. перев.)


[Закрыть]
. Гораздо меньше известно, что Венн придумал блестящий способ для иллюстрации случайности.

Представим себе точку, поставленную в центре белого листа бумаги. Из этой точки выходят восемь возможных направлений: на север, северо-восток, восток, юго-восток, юг, юго-запад, запад и северо-запад. Припишем этим направлениям числа от 0 до 7. Случайным образом выберем число от 0 до 7 и проведем отрезок прямой в направлении, отвечающем полученному числу. Будем делать так снова и снова, в результате чего на бумаге появится некая кривая. Венн проделал такое для самой непредсказуемой из известных ему числовых последовательностей – десятичного разложения числа π(откуда исключил восьмерки и девятки) [61]61
  См. главу 4. ( Примеч. перев.)


[Закрыть]
. Результат, писал он, представлял собой «очень правильное наглядное представление случайности».

Построенный Венном чертеж стал, по-видимому, самой первой диаграммой «случайного блуждания». То же самое нередко называют «блужданием пьяницы», апеллируя к более выразительной картинке, на которой вместо исходной точки – фонарный столб, а вместо числа π– человек в состоянии сильного опьянения, совершающий неуверенные движения. Один из самых очевидных вопросов, которые здесь напрашиваются, – насколько далеко пьяница сумеет отойти от столба, пока еще стоит на ногах? В среднем, чем дольше он будет блуждать, тем дальше от столба окажется. Выяснилось, что расстояние между пьяницей и фонарем растет как квадратный корень из времени прогулки. Итак, если за один час наш пьянчужка в среднем проходит один квартал, то, если дать ему четыре часа, он пройдет два квартала, а через девять часов – три.

Во время своего случайного блуждания наш подвыпивший герой будет иногда ходить кругами, повторяя собственные шаги. Какова вероятность, что он в конце концов снова набредет на фонарный столб? Как ни странно, ответ таков: 100 процентов! Он может блуждать годами в самых отдаленных уголках, но будьте уверены – если дать ему достаточно времени, он в конце концов обязательно вернется в исходную точку.

Представим себе, что пьяница блуждает в трех измерениях. Назовем это «полетом одурелого шмеля». Шмель стартует из некоторой точки в трехмерном пространстве и летит в случайном направлении на фиксированное расстояние по прямой. Затем он останавливается, переводит дух и снова, жужжа, срывается с места в другом случайном направлении, пролетая то же самое расстояние. И так далее. Какова вероятность, что в конце концов он вернется в точку своего старта? Ответ: всего 0,34, то есть около трети. Не правда ли, довольно странно, что в двух измерениях возвращение пьяницы к фонарному столбу представляло собой абсолютную определенность, но еще более странно то, что шмель, жужжащий в воздухе неограниченно долго, с высокой вероятностью никогда не вернется домой.

Первый в мире пример случайного блуждания. Из книги Джона Венна «Логика шанса» (1866). Траектория задается цифрами из разложения числа π, начиная с 1415


    Ваша оценка произведения:

Популярные книги за неделю