355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики » Текст книги (страница 22)
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Текст добавлен: 12 октября 2016, 02:02

Текст книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"


Автор книги: Алекс Беллос


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 22 (всего у книги 24 страниц)

* * *

Финальный аккорд в исследования пятого постулата Гаусс сделал незадолго до своей смерти. Будучи уже серьезно больным, он выбрал для одного из своих самых способных учеников, 27-летнего Бернхарда Римана (1826–1866) – такую тему пробной лекции: «О гипотезах, лежащих в основании геометрии». Риман – болезненно застенчивый сын лютеранского пастора, готовясь к лекции, поначалу испытывал довольно серьезные затруднения, зато страдания были не напрасны – его лекции было суждено произвести революцию в математике. Впоследствии он способствовал перевороту и в физике – предложенные им новаторские идеи оказались теми ценнейшими семенами, из которых потом выросла общая теория относительности Эйнштейна.

Лекция Римана, прочитанная им в 1854 году, ознаменовала собой тектонический сдвиг в понимании геометрии, возникающий в результате низвержения постулата о параллельных – Риман дал описание всеобъемлющей теории, включающей как Евклидовы, так и не Евклидовы идеи. Ключевой концепцией, лежавшей в основе теории Римана, была кривизна пространства. Когда поверхность имеет нулевую кривизну, она является плоской, или евклидовой, и тогда выполняется все, что получено в «Началах». Когда же поверхность искривлена,то есть имеет положительную или отрицательную кривизну, она – неевклидова, и применительно к ней написанное в «Началах» неверно.

Простейший способ понять, что такое кривизна, учит нас Риман, – рассмотреть то, что происходит с треугольниками. На поверхности нулевой кривизны сумма углов треугольника – 180 градусов. На поверхности положительнойкривизны эта сумма превышает180 градусов. На поверхности отрицательной кривизны углы треугольника дают в сумме менее180 градусов.

Сфера имеет положительную кривизну. Это можно понять, рассматривая сумму углов треугольника в левой части приведенного ниже рисунка: треугольник там составлен из отрезков экватора, Гринвичского меридиана и линии, идущей по 73-му градусу долготы к западу от Гринвича (эта долгота проходит через Нью-Йорк). Оба угла, под которыми линии долготы пересекают экватор, равны 90 градусам, так что сумма всех трех углов должна быть больше 180 градусов.

А поверхности какого типа имеют отрицательную кривизну? Другими словами, где искать те треугольники, углы которых в сумме дают меньше 180 градусов? Откройте пачку картофельных чипсов «Принглс», и вы поймете где. Нарисуйте треугольник на седловой части чипса (для чего можно использовать тюбик с нежной французской горчицей) – треугольник будет выглядеть как «вогнутый» в сравнении с «выпуклым» треугольником, который мы наблюдали на сфере. Ясно, что его углы в сумме дают менее 180 градусов.

Поверхность отрицательной кривизны называется гиперболической. Итак, поверхность чипса «Принглс» – гиперболическая. Впрочем, чипс – это всего лишь первый шаг к пониманию гиперболической геометрии, потому что у него есть край. Стоит только показать математику край, как он тут же захочет выйти за его пределы.

Можно посмотреть на это и другим способом. Проще всего представить себе поверхность нулевой кривизны без края: взять хотя бы ту страницу, что сейчас перед вами, разгладить ее, положить на стол, а потом продолжить по всем направлениям до бесконечности. Если бы мы жили на подобной поверхности и отправились на прогулку вдоль прямой линии в любом направлении, то никогда не добрались бы до края. Аналогичным образом, у нас есть очевидный пример поверхности положительной кривизны без края: это сфера. Если бы мы жили на сфере, то могли бы идти, никогда не останавливаясь и нигде не встречая края. (Конечно, мы и в самом деле живем на том, что представляет собой грубое приближение к сфере. Если бы Земля была совершенно гладкой, без всяких океанов и гор, встающих у нас на пути, и мы бы отправились в путь, в конце нашего путешествия мы снова вернулись бы к исходной точке – на самом деле мы двигались бы по окружности.)

А как же выглядит поверхность отрицательной кривизны без края? Она не может выглядеть как чипс, потому что если мы бы жили на чипсе «Принглс» размером с Землю и начали бы шагать в одном направлении, то в конце концов свалились бы за край. Математики долго гадали, как могла бы выглядеть «бескрайняя» гиперболическая поверхность – такая, по которой можно было бы путешествовать так далеко, как только захочется, и никогда не достигать края, но которая при этом не теряет своих гиперболических свойств. Понятно, что такая поверхность должна быть постоянно изогнута как чипс; так может, попробовать склеить ее из множества чипсов указанной формы? Увы, так у нас ничего не получится, потому что чипсы «Принглс» плохо состыковываются один с другим, а если заполнять образующиеся пустоты какой-то другой поверхностью, то эти добавленные области не будут гиперболическими. Другими словами, чипсы позволяют представить себе лишь локальные гиперболические свойства. Вещь, которую необычайно сложно представить – и которая требует напряжения мысли у даже самых блестящих математических умов, – это гиперболическая поверхность, которая продолжается без конца и без края.

Сферические и гиперболические поверхности – это математические противоположности. Покажем на примере, почему это так. Вырежем кусок из сферической поверхности – скажем, из баскетбольного мяча. Когда мы надавим на вырезанный кусок, чтобы он плотно прижался к земле и сделался плоским, он или растянется, или же разорвется просто потому, что в нем недостаточно материала для того, чтобы точно лечь на плоскость. А теперь представим себе резиновый чипс. Когда мы попробуем разложить его на плоскости, в нем окажется слишком многоматериала, и он сложится в складки. В то время как сферическая поверхность сворачивается, гиперболическая поверхность все время расширяется.

Вернемся к постулату о параллельных, который дает нам весьма точный способ классификации поверхностей на плоские, сферические и гиперболические. Для любой заданной прямой и точки вне ее:

На плоской поверхностиимеется одна и только однапараллельная прямая, проходящая через эту точку.

На сферической поверхностинет ни однойпараллельной линии, проходящей через эту точку [71]71
  Можно было бы подумать, что линии постоянной широты параллельны экватору. Это не так, потому что линии широты (за исключением экватора) – это не прямые линии, а лишь прямые линии могут быть параллельны друг другу. Прямая – это кратчайшее расстояние между двумя точками; вот почему самолет, летящий из Нью-Йорка в Мадрид – при том, что эти две точки находятся на одной широте, – не летит по линии постоянной широты, а выбирает траекторию, которая на двумерной карте выглядит искривленной. ( Примеч. авт.)


[Закрыть]
.

На гиперболической поверхностиимеется бесконечно многопараллельных линий, проходящих через эту точку.

Поведение параллельных линий на плоской или сферической поверхности можно понять интуитивно, потому что нам легко представить себе плоскую поверхность, которая продолжается до бесконечности, и потому что все мы знаем, что такое сфера. Гораздо более сложная задача – понять поведение параллельных линий на гиперболической поверхности, потому что совершенно не ясно, как будет выглядеть такая поверхность, когда она продолжается до бесконечности. Параллельные линии в гиперболическом пространстве расходятся все дальше и дальше друг от друга. При этом, отклоняясь одна от другой, они не изгибаются, потому что, раз мы говорим о параллельных линиях, они должны быть прямыми, и тем не менее они расходятся из-за того, что гиперболическая поверхность постоянно искривляется, уходя сама от себя, а по мере того, как поверхность расширяется, между любыми двумя параллельными линиями появляется все больше и больше места. Да уж, такая картина кого угодно сведет с ума, и неудивительно, что, несмотря на всю свою гениальность, Риман не сумел придумать никакой поверхности, которая имела бы заданные свойства.

* * *

В последние десятилетия XIX века проблема представления гиперболической плоскости возбуждала многих математиков. Одна из таких попыток, предпринятая Анри Пуанкаре, захватила воображение голландского художника-графика М. К. Эшера (1898–1972). Его знаменитая серия гравюр «Предел круга» возникла как результат знакомства с предложенной французским математиком «дисковой моделью» гиперболической поверхности. На гравюре «Предел круга IV» двумерная вселенная помещена на круг (диск), где ангелы и демоны уменьшаются по мере приближения к краю. Сами ангелы и демоны, однако, и не подозревают о том, что уменьшаются, потому что по мере того, как они сами становятся меньше, то же самое происходит и с их измерительными приборами. С точки зрения обитателей диска все они сохраняют свои размеры, а их вселенная продолжается до бесконечности.

«Предел круга IV»

Изобретательность, воплощенная в дисковой модели Пуанкаре, состоит в том, что она восхитительным образом иллюстрирует, как параллельные линии ведут себя в гиперболическом пространстве. Прежде всего, нам надо определиться с тем, что такое прямая линия на диске. Аналогично тому, как прямые на сфере линии выглядят искривленными, когда их изображают на плоской карте (например, маршруты самолетов являются прямыми, но на карте выглядят искривленными), линии, являющиеся прямыми в диско-мире, также кажутся нам искривленными. Пуанкаре определил прямую линию на диске как сечение диска окружностью, которая входит в него под прямым углом.

На левой картинке внизу изображена прямая линия между точками А и В, для нахождения положения которой надо построить окружность, проходящую через точки А и В и входящую в диск под прямым углом. Гиперболический вариант постулата о параллельных утверждает, что для каждой прямой Lи точки  Pвне этой прямой имеется бесконечно много прямых, параллельных L, которые проходят через P.Это показано на рисунке внизу справа, где отмечено три прямых – L', L''и L''', – которые проходят через точку P, но при этом все параллельны прямой L. Линии L', LL''и L'''представляют собой части различных окружностей, которые входят в диск под прямыми углами. Глядя на рисунок, можно понять, как может получиться, что имеется бесконечно много прямых, параллельных Lи проходящих через P, – просто потому, что можно нарисовать бесконечное число окружностей, которые входят в диск под прямыми углами и проходят через P. Модель Пуанкаре, кроме того, помогает нам понять смысл утверждения о том, что две параллельные линии расходятся: Lи L'параллельны, но становятся все дальше и дальше друг от друга по мере приближения к краю диска.

Диско-мир Пуанкаре позволяет понять многое, но не все. При том что он снабжает нас концептуальной моделью гиперболического пространства, искаженного за счет взгляда через довольно странную линзу, он не показывает, как же гиперболическая поверхность будет выглядеть в нашем мире. Поиску более реалистичных гиперболических моделей – предприятию, которое подавало большие надежды в последние десятилетия XIX столетия, – нанес в 1901 году удар выдающийся немецкий математик Давид Гильберт (1862–1943): он доказал, что невозможно описать гиперболическую поверхность, используя какую-либо формулу. Математическое сообщество приняло доказательство Гильберта без энтузиазма, поскольку математики решили, что если нет никакого способа описать поверхность с помощью формулы, то, значит, такая поверхность и не существует. Интерес к производству моделей гиперболических поверхностей стал угасать.

* * *

Что и возвращает нас к Дайне Таймине, с которой я встретился в Лондоне на южном берегу Темзы, представляющем собой набережную-променад, вдоль которой располагаются театры, художественные галереи и кинотеатры. Она кратко напомнила мне историю гиперболических пространств – предмет, который она преподавала в качестве ассистента в Корнеллском университете. Из Гильбертова доказательства невозможности описания гиперболического пространства с помощью формулы, сообщила она мне, имелось следствие: компьютеры также оказались не в состоянии создавать образы гиперболических поверхностей, потому что компьютеры могут создавать только образы, основанные на формулах. Однако в 1970-х годах геометр Уильям Тёрстон (р. 1946) предложил подход, хоть и не основанный на высоких технологиях, но оказавшийся весьма плодотворным. Не обязательно обладать формулой для создания гиперболической модели, говорит Тёрстон, все, что требуется, – это бумага и ножницы. Тёрстон, которому в 1981 году была присуждена Филдсовская медаль (высшая награда для математика) и который теперь был коллегой Дайны в Корнеллском университете, предложил модель, состоявшую в соединении друг с другом бумажных кусочков, имеющих форму подковы.

Дайна использовала модель Тёрстона на занятиях со студентами, но модель оказалась столь хрупкой, что неизменно рассыпалась на части, и Дайне каждый раз приходилось делать новую. «Ненавижу склеивать бумагу. Это занятие сводит меня с ума», – жаловалась она. И тут ей пришла в голову свежая идея – что, если вместо бумаги попробовать связатьмодель гиперболической плоскости?

Идея ее была проста: наберем один ряд петель, а затем в каждом следующем ряду будем прибавлять некоторое заданное количество петель. Например, можно прибавлять по одной петле через каждые две. В таком случае, если мы начали с ряда из 20 петель, то во втором ряду их будет 30 (мы добавили 10), в третьем – 45 (мы добавили 15) и т. д. (В четвертом должно оказаться 22,5 дополнительные петли, но, поскольку полпетли связать невозможно, будем округлять до большего или меньшего их целого числа.) По замыслу Дайны должен был получиться кусок вязаного полотна, который будет становиться все шире и шире, как будто он гиперболически расширяется сам из себя. Однако вязание на спицах – дело довольно хлопотное, из-за одной ошибки порой приходится распускать весь ряд. Поэтому вместо спиц Дайна взяла вязальный крючок. Если вязать крючком, то легче исправить ошибку, потому что в процессе вязания на крючке всего одна петля. Так что она довольно быстро приноровилась. Помогла еще и настойчивость в овладении рукоделием – привычка, приобретенная в детстве, которое она провела в 1960-х годах в Латвии.

В своей первой вязаной модели она добавляла в каждом ряду по одной петле через каждые две, как и в нашем примере, упомянутом выше. В результате, однако, получился кусок с большим количеством плотных сборок. «Как-то он слишком сильно скручивался, – объяснила она, – и не удавалось толком разглядеть, что же там происходит». Поэтому для второй модели она решила попробовать другой вариант, прибавляя в каждом ряду одну петлю через каждые пять. Результаты превзошли ожидания. Теперь получившееся полотно фалдило как надо. Дайна выбрала и отметила прямые линии, входящие в расширяющиеся «складки» и выходящие из них, и сразу увидела, что удается проследить за тем, как эти исходно параллельные линии расходятся друг от друга. «Именно такую картину я всегда и хотела увидеть, – сияла она от радости. – Давно не получала такого удовольствия. Разве это не здорово – сделать своими руками то, чего не удается сделать на компьютере».

Дайна показала модель гиперболического кроше своему мужу, и он пришел в такой же восторг. Дэвид Хендерсон – профессор геометрии в Корнеллском университете, специализирующийся на топологии, про которую Дайна, по ее словам, вообще ничего не знает. Он объяснил ей, что топологам давно известно, что, когда на гиперболической плоскости нарисован восьмиугольник, его можно сложить таким образом, что он будет напоминать штаны. «Надо построить восьмиугольник!» – сказал он ей, и именно так они и сделали. «Никто раньше никогда не видел гиперболических штанов!» – воскликнула Дайна, открыла спортивную сумку, достала оттуда связанный ею гиперболический восьмиугольник и показала мне, как он складывается. Получилось нечто, очень похожее на детские вязаные штанишки.

Новость о связанных Дайной моделях разлетелась по математическому факультету Корнеллского университета. Дайна рассказала мне, как она показала свою модель одному из коллег, который, как ей было известно, пишет работы о гиперболических плоскостях. «Он рассмотрел модель и начал складывать ее так и сяк. Вдруг лицо его просияло. „Так вот как выглядит ороцикл!“ – воскликнул он, имея в виду очень сложный тип кривых, которые до того ему никак не удавалось изобразить. На протяжении всей своей научной карьеры он писал о них, – поясняет Дайна, – но они так и оставались лишь в его воображении».

Не будет преувеличением сказать, что гиперболические модели Дайны способствовали более глубокому пониманию концепций, которые относятся к довольно неблагодарной области математики. Ее модели дали студентам возможность почувствовать гиперболическую плоскость, потрогать и пощупать поверхности, которые прежде подлежали только абстрактному пониманию. Эти модели, однако, не идеальны. Одна из проблем состоит в том, что из-за толщины пряжи и неровности петель вязаные модели – лишь грубое приближение к тому, что в идеале должно быть гладкой поверхностью. И тем не менее они намного универсальнее и точнее, чем чипсы «Принглс». Если бы кусок вязаной гиперболической поверхности имел бесконечное число линий, то теоретически на ней можно было бы жить, и более того – отправиться в бесконечно долгое путешествие в выбранном направлении и никогда не дойти до края.

* * *

Одно из достоинств моделей, связанных Дайной, состоит в том, что они, как оказалось, неожиданным образом выглядят вполне естественно, если учесть, насколько формальны они по своей сути. Если в каждом ряду прибавлять по петле через относительно большие промежутки, то модель будет похожа на капустный лист. При большем же увеличении числа прибавляемых петель (то есть если прибавлять петли чаще) полотно естественным образом будет складываться в нечто, напоминающее коралл. Дайна прилетела в Лондон по причине открытия инспирированной ее моделями выставки «Вязаный гиперболический коралловый риф», цель которой состояла в привлечении внимания к уничтожению морской среды. Благодаря своему математическому новаторству Дайна нечаянно породила глобальное движение любителей вязания крючком.

За последние десять лет Дайна связала более сотни гиперболических моделей. Самую большую из них она привезла с собой в Лондон. Она розового цвета, на нее пошло 5,5 километра пряжи, ее вес 4,5 килограмма. Дайна вязала ее шесть месяцев. Завершающие этапы работы были настоящим испытанием. «По мере того как она тяжелела, поворачивать ее становилось все труднее». Замечательное свойство модели – это ее невероятно большая поверхность, площадь которой составляет 3,2 квадратных метра (что в два раза превосходит площадь поверхности самой Дайны). Гиперболические поверхности дают максимальные площади при минимальном объеме, и именно поэтому их так любят некоторые растения и морские организмы. Когда организму требуется большая площадь поверхности – скажем, как в случае с кораллами, для поглощения пищи, – он растет гиперболическим образом.

Маловероятно, что Дайна пришла бы к идее связать гиперболическую поверхность, если бы она родилась мужчиной, и это делает ее изобретения заметным событием в культурологической истории математики, где женщины в течение долгого времени были представлены в весьма малой степени. На самом деле вязание крючком – лишь один из немногих примеров традиционно женских рукоделий, вдохновляющих математиков на исследование новых подходов. Математическое вязание, производство килтов, вышивка и ткачество – все это даже составляет университетский курс, известный как «математика и текстильные ремесла».

* * *

Когда гиперболическое пространство впервые предстало перед мысленным взором ученых, казалось, что оно устроено наперекор всякому чувству реальности, но со временем оно заняло свое место как явление ничуть не менее «реальное», чем плоская или сферическая поверхность. Каждая поверхность имеет свою собственную геометрию, и нам следует выбрать ту из них, которая окажется самой подходящей, – или, как однажды заметил Анри Пуанкаре, «одна геометрия не может быть более истинной, чем другая; она может лишь быть более удобной». Евклидова геометрия, например, лучше всего подходит для школьников, вооруженных линейками, циркулями и плоскими листами бумаги, в то время как сферическая геометрия больше годится для авиапилотов, прокладывающих маршрут для своего самолета.

Физики также проявляли интерес к выяснению того, какая геометрия более всего подходит для их целей. Идеи Римана о кривизне поверхностей снабдили Эйнштейна средствами для совершения одного из величайших интеллектуальных прорывов. Ньютоновская физика предполагала, что пространство является евклидовым, или плоским. Общая теория относительности Эйнштейна, однако, утверждает, что геометрия пространства – времени (трехмерное пространство плюс время, рассматриваемое как четвертое измерение) – не плоская, а искривленная. В 1919 году британская научная экспедиция, направившаяся в Собрал – город на северо-востоке Бразилии, – сфотографировала во время солнечного затмения звезды, находящиеся позади Солнца, и обнаружила, что они немного смещены относительно своих реальных положений. Объяснение этому дала теория Эйнштейна, согласно которой свет от звезд, прежде чем достигнуть Земли, искривляется вблизи Солнца. Траектория луча света кажется изогнутой вблизи Солнца, если рассматривать луч в трехмерном пространстве (а это единственный доступный нам способ наблюдений), но на самом деле он следует по прямой линии, определяемой искривленной геометрией пространства – времени. Тот факт, что теория Эйнштейна правильно предсказала положение звезд, послужил доказательством верности общей теории относительности, а сам Эйнштейн стал мировой знаменитостью. Лондонская «Таймс» пестрела заголовками: «Революция в науке. Новая теория Вселенной. Ньютоновские идеи ниспровергнуты».

* * *

Эйнштейн был занят выяснением вопроса о пространстве – времени, которое, как он показал, искривлено. А что насчет кривизны нашей Вселенной, если не рассматривать время как еще одно измерение? Чтобы узнать, какая же геометрия более всего отвечает поведению наших трех пространственных измерений на больших масштабах, надо понять, как линии и формы ведут себя на экстремально больших расстояниях. Ученые надеются узнать это из данных, которые в настоящее время собирает спутник «Планк», запущенный в мае 2009 года и измеряющий реликтовое излучение космоса – так называемый «последний отблеск» Большого взрыва, – и делает это с более высоким разрешением и чувствительностью, чем были доступны когда-либо ранее. Среди рассматриваемых возможностей обсуждается Вселенная или плоская, или сферическая (но достаточно плоская), хотя все еще не исключено, что она может оказаться гиперболической. Есть немалая доля иронии в том, что геометрия, исходно считавшаяся лишенной смысла, оказалась пригодной для описания самого что ни на есть реального положения вещей.

* * *

Примерно в то же самое время, когда математики исследовали противоречащие здравому смыслу неевклидовы пространства, великий немецкий ученый Георг Кантор (1845–1918) перевернул вверх ногами наше понимание другого математического понятия – бесконечности. Кантор преподавал в Университете Галле-Виттенберг в Германии, где он и развил новаторскую теорию чисел, в которой бесконечность может иметь более одного размера. Идеи Кантора были столь необычны, что поначалу вызывали лишь насмешки. Многие математики того времени их совершенно не воспринимали. Анри Пуанкаре, например, отзывался о работах Кантора как о «заболевании, позорной болезни, от которой математика когда-нибудь излечится», а Леопольд Кронекер – профессор математики в Берлинском университете, учитель Кантора, – отвергал его как «шарлатана» и «развратителя юношества». Эта словесная война, надо думать, не прошла для Кантора даром и во многом обусловила нервный срыв, случившийся с ним в 1884 году, когда ему было 39 лет. То был первый из многочисленных эпизодов в его жизни, связанных с глубокой депрессией и пребыванием в клиниках. В своей книге о Канторе «Всё и более» Дэвид Фостер Уолис пишет: «В наши дни Психически Больной Математик занимает, по всей видимости, место, в предыдущие эпохи зарезервированное за Странствующим Рыцарем, Святым Мучеником, Терзающимся Художником и Сумасшедшим Ученым, представляя собой некое подобие Прометея, который отправляется в запретные края и возвращается с дарами, которыми готовы воспользоваться все, но за которые платит он один». Литература и кино во многом ответственны за придание связи между математикой и безумием этакого налета романтизма. Подобное клише удовлетворяет сюжетно-тематическим требованиям, предъявляемым к голливудскому сценарию (основной пример – «Игры разума»), но, конечно, представляет собой некорректное обобщение; и тем не менее великим математиком, стоящим за этим архетипом, вполне мог бы быть Кантор. Данный стереотип подходит к нему особенно хорошо, поскольку он вступил в схватку с бесконечностью – концепцией, связывающей математику, философию и религию. Он не только бросал вызов математическим доктринам, но и создавал основы абсолютно новой теории познания, которая для него была еще и способом понять Бога; неудивительно, что в процессе этих свершений он серьезно задел некоторых людей.

Бесконечность – это одна из самых головоломных концепций в математике. Мы уже видели ранее, при обсуждении парадоксов Зенона, что попытка представить себе бесконечное число все уменьшающихся расстояний полна математических и философских ловушек. Греки изо всех сил старались избегать бесконечностей. Евклид выражал идеи математической бесконечности через отрицательные утверждения. Например, его доказательство того, что имеется бесконечное число простых чисел, есть по существу доказательство отсутствия самого большого простого числа. Древние стеснительно избегали обращаться с бесконечностью как с самодостаточной концепцией, и именно поэтому бесконечный ряд, неизменно присутствующий во всех парадоксах Зенона, до такой степени ставил их в тупик.

К XVII столетию математики возжелали освоить операции, включающие бесконечно много шагов. Работы Джона Уоллеса, который в 1655 году ввел символ ∞ для бесконечности, чтобы использовать его в своей работе о бесконечно малых, расчистил дорогу для математического анализа Исаака Ньютона. Открытие полезных соотношений, включающих в себя бесконечное число членов, например, π/4 = 1 – 1/ 3+ 1/ 51/ 7+ …, показало, что бесконечность не так уж враждебна, и тем не менее ученые все равно относились к ней с осмотрительностью и подозрением. В 1831 году Гаусс проявил житейскую мудрость, заметив, что бесконечность – это «просто способ говорить» о пределе, который никогда не достигается, просто идея, выражающая потенцию продолжать действия бесконечно. Канторова же ересь состояла в рассмотрении бесконечности как вещи в себе.

Причина, по которой математиков до Кантора нервировало отношение к бесконечности как к любому другому числу, состояла в том, что здесь скрывалось множество головоломок, о самой знаменитой из которых Галилей писал в «Двух новых науках» и которая известна как парадокс Галилея:

1. Некоторые числа являются полными квадратами, такими как 1, 4, 9 и 16, а некоторые – не являются полными квадратами, например 2, 3, 5, 6, 7 и т. д.

2. Общее количество чисел должно быть больше количества полных квадратов, поскольку среди всех чисел присутствуют как квадраты, так и неквадраты.

3. Однако же каждое число можно поставить во взаимно-однозначное соответствие со своим квадратом:

4. Итак, полных квадратов в действительности столько же, сколько и всех целых чисел. Что есть противоречие, потому что в пункте 2 мы заметили, что целых чисел вообще больше, чем квадратов.

Вывод Галилея состоял в том, что, когда дело доходит до бесконечности, такие числовые концепции, как «больше чем», «равно» и «меньше чем», теряют смысл. Эти термины могут быть понятны и осмысленны в приложении к конечным количествам, но не к бесконечным. Утверждения, что чисел вообще больше, чем квадратов, или что чисел столько же, сколько квадратов, лишены смысла, поскольку вся совокупность как чисел вообще, так и квадратов бесконечна.

* * *

Георг Кантор придумал новый способ осмысления бесконечности, который устранил парадокс Галилея. Вместо того чтобы рассматривать отдельные числа, Кантор рассмотрел группы чисел, которые назвал «множествами». Кардинальное число всякого множества есть число членов в этой группе. Так, {1, 2, 3} – множество с кардинальным числом 3, а {17, 29, 5, 14} – множество с кардинальным числом 4. «Теория множеств» Кантора заставляет сердце биться чаще, когда рассматриваются множества с бесконечным числом членов. Он ввел новый символ для бесконечности – ℵ 0(произносится «алеф-нуль»), используя первую букву древнееврейского алфавита, снабженную нижним индексом, и сказал, что это есть кардинальное число множества натуральных чисел, то есть {1, 2, 3, 4, 5…}. Каждое множество, члены которого можно поставить во взаимно-однозначное соответствие с натуральными числами, также обладает кардинальным числом ℵ 0. Таким образом, поскольку имеется взаимно-однозначное соответствие между натуральными числами и их квадратами, множество квадратов {1, 4, 9,16, 25…} имеет кардинальное число ℵ 0. Подобным же образом, множество нечетных чисел {1, 3, 5, 7, 9…}, множество простых чисел {2, 3, 5, 7, 11…} и множество чисел, внутри которых содержится 666, то есть {666, 1666, 2666, 3666…}, – все они имеют кардинальное число ℵ 0. Если имеется множество с бесконечным числом членов и если возможно пересчитать члены один за другим, так что в конце концов каждый будет посчитан, то кардинальным числом такого множества является ℵ 0. По этой причине ℵ 0стал известен как «счетная бесконечность». Причина же, по которой все это представляется столь замечательным, состоит в том, что Кантор показал, что можно двигаться и дальше. Сколь бы большим ни было ℵ 0, это сущее дитя в семье канторовских бесконечностей.

Я введу бесконечность большую чем ℵ 0, используя историю, которую, как говорят, Давид Гильберт приводил на своих лекциях. История эта – о гостинице со счетно-бесконечным (то есть ℵ 0) числом номеров. Это хорошо известное и весьма любимое математиками заведение иногда называют Гильбертовым отелем.

В Гильбертовом отеле имеется бесконечное число номеров, на дверях которых прибиты таблички 1, 2, 3, 4…. Однажды у регистрационной стойки отеля появляется путешественник и к своему разочарованию узнает, что в гостинице нет свободных мест. Он спрашивает, есть ли хоть какой-нибудь способ найти для него номер. Администратор отеля отвечает, что, конечно, есть. Все, что надо проделать, – это расселить уже имеющихся постояльцев по номерам следующим способом: того, кто жил в номере 1, – переселить в номер 2, того, кто жил в номере 2, – переселить в номер 3 и так далее, переселяя гостя из каждого номера  nв номер  n+ 1. Как только это будет сделано, у каждого из старых постояльцев по-прежнему будут свои собственные апартаменты, а номер с табличкой 1 освободится для вновь приехавшего. Вот и отлично!


    Ваша оценка произведения:

Популярные книги за неделю