355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (НА) » Текст книги (страница 74)
Большая Советская Энциклопедия (НА)
  • Текст добавлен: 26 октября 2016, 22:57

Текст книги "Большая Советская Энциклопедия (НА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 74 (всего у книги 75 страниц)

Начальное условие

Нача'льное усло'вие при математическом анализе процесса, состояние этого процесса в какой-либо момент времени, принятый за начальный. Если процесс описывается дифференциальным уравнением, то задача об отыскании решений по Н. у. называется Коши задачей . Для уравнения

  Н. у. состоит в задании

при значении t = t Если n = 2 и y = y (t ) – закон движения материальной точки, то в Н. у. задаётся положение точки и её скорость в момент t = t . Н. у. для дифференциального уравнения с частными производными ставится аналогично. Так, для уравнения свободных колебании струны

где u (t, x ) – отклонение точки х струны в момент t от её положения покоя на оси Ox , Н. у. состоит в задании начальной формы струны

и начальных скоростей точек струны

Роль времени может играть какой-либо другой аргумент; тогда Н. у. задаётся при некотором значении этого аргумента.

Начертательная геометрия

Начерта'тельнаягеоме'трия , раздел геометрии, в котором пространственные фигуры изучаются при помощи построения их изображений на плоскости, в частности построения проекционных изображений, а также методы решения и исследования пространственных задач на плоскости.

  Потребность в изображениях пространственных предметов на плоскости возникла в связи с решением различных практических вопросов (например, строительство зданий и других инженерных сооружений, развитие живописи и архитектуры, техники и т.п.). Особенно большое значение имеют чертежи, получаемые проектированием (проецированием) данной фигуры на плоскость (проекционные чертежи). Практика предъявляла к таким чертежам ряд требований; важнейшие из них: 1) наглядность изображения, т. е. свойство чертежа вызывать пространственное представление изображаемой фигуры; 2) «обратимость» чертежа, т. е. возможность точного определения изображенной фигуры по чертежу; 3) простота выполнения требуемых построений; 4) точность графических решений. В способах построения изображений применяются центральное и параллельное проектирование фигуры (натуры, объекта, оригинала) на плоскость проекций (см. Проекция ). Наибольшей наглядностью обладают чертежи, полученные способом центрального проектирования, который соответствует геометрической схеме возникновения изображений на сетчатке человеческого глаза. Однако наиболее употребительными в Н. г. являются параллельные проекции, которые более просты в построении изображений и более удобны для определения по ним натуральной фигуры. Существуют различные виды параллельных проекций; самым распространённым является способ ортогональной проекции на две или три плоскости (комплексный чертёж). Сущность этого способа заключается в следующем. Выбирают две взаимно перпендикулярные плоскости проекций П1 и П2 в пространстве. Плоскость П1 располагают горизонтально; её называют горизонтально и плоскостью проекций, а плоскость П2 фронтальной плоскостью проекций. Произвольную точку А пространства проектируют ортогонально на эти плоскости (рис. 1 ); получают горизонтальную проекцию A1 (AA1 (плоскости П1 ) и фронтальную проекцию A2 (AA2 ^ плоскости П2 ). Три точки А , A1 и A2 лежат в одной (проектирующей) плоскости, перпендикулярной к линии p12 пересечения плоскостей проекций. Горизонтальную проекцию какой-либо фигуры получают, проектируя ортогонально все точки этой фигуры на плоскость П1 , фронтальную проекцию – на плоскость П2 . Часто бывает полезно добавить третью проекцию фигуры – на плоскость П3 , перпендикулярную к плоскостям П1 и П2 . Плоскость П3 , а также и проекцию на неё называют профильной. Две проекции точки А (например, A1 и A2 ) вполне определяют третью проекцию (A3 ).

  Чтобы получить чертёж, состоящий из трёх указанных проекций (комплексный чертёж), плоскости П1 и П3 совмещают с плоскостью П2 («главной» плоскостью) путём вращения их вокруг линий p12 и p23 пересечения этих плоскостей с плоскостью П2 (рис. 2 ). Обычно на практике не указывается положение осей проекций p12 и p13 , то есть положение плоскостей проекций определяется с точностью до параллельного переноса.

  Комплексный чертёж обратим, так как по нему можно определить расстояние между любыми двумя точками натуральной фигуры. Действительно, отрезок AB (рис. 3 ) в натуре является гипотенузой прямоугольного треугольника ABB*, в котором AB* = A1 B1 , а В*В есть разность высот точек В и А, выражаемая на чертеже отрезком B2 *B2 . Отсюда можно получить простое построение натурального отрезка

(рис. 4 ); для этого нужно построить

  Для увеличения наглядности комплексного чертежа на проекциях фигуры устанавливают «условия видимости»: из двух точек А и В, проекции которых на какой-либо из плоскостей проекций совпадают, например A1 º B1 , видимой считается та, которая расположена ближе к зрителю; «невидимые» линии фигуры условно изображаются штриховыми линиями. Пример такого изображения пространственной фигуры в трёх проекциях, называется «вид спереди» (фронтальная проекция), «вид сверху» (горизонтальная проекция) и «вид слева» (профильная проекция), дан на рис. 5 .

  Комплексный чертёж (из двух или трёх ортогональных проекций) является наиболее распространённым видом технического чертежа. По нему легко определяются все необходимые размеры изображаемого предмета. Недостаток таких чертежей – их малая наглядность.

  Для построения более наглядных обратимых изображений в Н. г. применяется другой способ, называемый аксонометрией.

  При аксонометрии изображаемую фигуру относят к системе Oxyz осей координат в пространстве (см. Аналитическая геометрия ). Эту систему координат называют натуральной. На рис.6 построена координатная ломаная OMx M1 M для произвольной точки М. Длины координатных отрезков OMx , Mx M1 , M1 M являются координатами х, у, z точки М. Если спроектировать натуральную систему осей Охуz на плоскость П', то получается так называемая аксонометрическая система осей О'х'у'z' (рис. 6 ). Проекция O'M'x M'1 M' координатной ломаной состоит из отрезков O'M'x , M'x M'1 , M'1 M', длины которых x', y', z' в аксонометрической системе координат называется аксонометрическими координатами точки М. Отношения

выражают величины искажения координатных отрезков при проектировании; их называют показателями (коэффициентами) искажения. Если все три показателя искажения равны, то аксонометрию называют изометрией, если хотя бы два из них равны – диметрией, если же все показатели искажения неравны – триметрией.

  Чтобы при помощи аксонометрического способа построить изображение точки М на плоскости П' в данной параллельной проекции, необходимо иметь: а) натуральные координаты этой точки М (х, у, z ); б) аксонометрическую систему осей О'х'у'z' на плоскости проекций П'; в) показатели искажения u, v, w.

  Тогда по формулам (*) находят аксонометрические координаты точки М' (х', у', z' ) и строят по ним точку M', являющуюся искомой проекцией точки М. Аксонометрическое изображение пространственной фигуры строят по точкам, определяющим последнюю. Аксонометрический чертёж обратим: если на аксонометрическом чертеже дана точка M' (х', у', z' ), то можно по формулам (*) найти натуральные координаты х, у, z точки М.

  Если задать произвольную аксонометрическую систему осей O'x'y'z' на плоскости проекций П' (не сводящуюся, однако, к одной прямой) и отношение показателей искажения u: v: w, то, согласно основной теореме аксонометрии (Польке теореме ), существует такое положение натуральной системы осей координат относительно плоскости проекций П' и такое направление проектирования, при которых на плоскости П' реализуются ранее выбранная аксонометрическая система осей и отношений показателей искажения.

  Для упрощения аксонометрического способа построения изображений пользуются «приведённой» аксонометрией, в которой аксонометрические координаты стремятся по возможности заменить натуральными без искажения вида чертежа. Так, например, на рис. 7 дана ортогональная изометрия объекта, изображенного на комплексном чертеже (рис. 5 ), с использованием натуральных координат вместо аксонометрических. При этом происходит изменение масштаба аксонометрического чертежа, но вид его сохраняется, т. е. чертёж изменяется подобно. Аксонометрические изображения предметов, не имеющих большого протяжения, обладают достаточной наглядностью. Этого нельзя сказать об изображениях крупных объектов, таких, как здания, плотины и др. сооружения. В этих случаях предпочтительнее применять изображения, выполненные в центральной проекции (перспективе ).

  Чтобы перспективный чертёж был обратимым, на плоскости проекций П' строят центральную проекцию A' (перспективу) изображаемой точки А и перспективу A1 ' ортогональной проекции A1 точки на горизонтальную плоскость П1 , называемую предметной (рис. 8 ). Плоскость проекций П' (картинную плоскость) выбирают преимущественно перпендикулярной к предметной. Точка A1 называется основанием точки А. В частности, S1 есть основание центра проекций («глаза») S . Зная положение центра S относительно картинной плоскости П', можно по данным перспективе A' точки А и перспективе A'1 её основания найти положение натуральной точки А в пространстве. Для этого нужно провести SA1 ' и найти A1 . Затем построить A1 A ^ плоскости П1 и найти точку А пересечения прямых SA' и A1 A. Большое значение при построении перспективных изображений имеют т. н. точки схода, являющиеся перспективными изображениями бесконечно удалённых точек пространства, и линия горизонта – перспективное изображение бесконечно удалённой прямой предметной плоскости П1 .

  На рис. 9 показано перспективное изображение комнаты. На нём видна главная точка y’¥, которая является точкой схода для всех прямых, перпендикулярных (в натуре) картинной плоскости, и линия горизонта h. Точки схода др. параллельных прямых, лежащих в предметной плоскости, располагаются на линии горизонта h (например, D'¥ ).

  Используя координатный метод, можно выполнить построение перспективного изображения по способу центральной аксонометрии, аналогично описанной выше параллельной аксонометрии.

  Наряду с построениями перспективных изображений на плоскости (линейная перспектива) на практике употребляются и др. виды центрально-проекционных изображений.

  При построении чертежей, изображающих какую-либо часть земной поверхности, удобно пользоваться так называемыми проекциями с числовыми отметками. В этом случае на чертеже должно быть задано достаточное число точек поверхности (рис. 10 ). Проектируя ортогонально точки поверхности на плоскость проекций, записывают около проекции каждой точки её высотную отметку, т. е. число, выражающее высоту точки над плоскостью проекций в избранных единицах длины. Благодаря этому такой чертёж является обратимым. Для увеличения его наглядности и удобства пользования, проекции точек, имеющих одинаковую высоту, соединяют линией, которую называют линией уровня. Если изображена земная поверхность, то плоскость проекций считается горизонтальной; линии уровня называют в этом случае горизонталями. По форме и расположению горизонталей можно (с известной степенью точности) судить о рельефе изображенного участка земной поверхности, построить её сечение заданной на чертеже плоскостью s (рис. 10 ), а также решать другие задачи. Такой способ изображения поверхности и саму поверхность, заданную системой горизонталей, называют топографическими.

  Историческая справка. Первые попытки проекционных изображений можно встретить у древних народов ещё до нашей эры. Так, римский архитектор Витрувий в своём сочинении «Десять книг об архитектуре» (1 в. до н. э.) даёт понятие о плане (горизонтальной проекции) и фасаде (фронтальной проекции) сооружения. Итальянский архитектор и учёный Л. Альберти (15 в. н. э.) уже применяет «точки схода» и даёт важный для практики способ построения перспективы при помощи сетки. В «Трактате о живописи» (опубликован 1651) Леонардо да Винчи имеются многочисленные указания о практических применениях перспективных изображений, в частности о «наблюдательной» перспективе. Немецкий художник А. Дюрер в труде «Руководство к измерению...» (1525) предложил способ построения перспективы по горизонтальной и фронтальной проекциям объекта. Особенно полное изложение приёмов построения перспективы были даны итальянским учёным Г. Убальди (1600). Научные основы Н. г. были разработаны Ж. Дезаргом и главным образом Г. Монжем , который считается создателем научной Н. г.

  В Древней Руси при возведении сооружений применялись изображения, в которых можно заметить элементы геометрического проектирования. Так, изображение города Пскова (1581) было выполнено с соблюдением некоторых законов перспективы. Чертежи изобретателя-самоучки И. П. Кулибина , зодчего Д. В. Ухтомского и др. являются геометрически правильными проекционными изображениями. Курс Н. г. был впервые введён в 1810 в Петербургском институте корпуса инженеров путей сообщения. Первым русским профессором Н. г. был Я. А. Севастьянов, написавший ряд сочинений по различным вопросам Н. г. Научному развитию Н. г. содействовали геометрические работы Е. С. Федорова , который предложил метод изображения точек пространства на плоскости при помощи векторов. Метод Е. С. Федорова был успешно применен в многомерной Н. г., которая используется в физико-химическом анализе (школа Н. С. Курнакова). Советские геометры (А. К. Власов, Н. А. Глаголев, Н. Ф. Четверухин и др.) выполнили ряд исследований в области основной теоремы аксонометрии.

  Лит.: Рынин Н. А., Материалы к истории начертательной геометрии, [Библиография, биографии, эпизоды, факты, хронология], Л., 1938; Монж Г., Начертательная геометрия, пер. с [франц.], М., 1947; Фёдоров Е. С., Новая начертательная геометрия, «Изв. АН», 1917, № 10; Глаголев Н. А., Начертательная геометрия, 3 изд., М., 1953; Вольберг О. А., Лекции по начертательной геометрии, М. – Л., 1947; Курс начертательной геометрии, под ред. Н. Ф. Четверухина, М., 1956; Вопросы современной начертательной геометрии. Сб. ст., под ред. Н. Ф. Четверухина, М. – Л., 1947; Глазунов Е. А. и Четверухин Н. Ф., Аксонометрия, М., 1953: Методы начертательной геометрии и её приложения. Сб. ст., под ред. Н. Ф. Четверухина, М., 1955; Добряков А. И., Курс начертательной геометрии, 3 изд., М. – Л., 1952.

  Н. Ф. Четверухин.

Рис. 10 к ст. Начертательная геометрия.

Рис. 3 к ст. Начертательная геометрия.

Рис. 6 к ст. Начертательная геометрия.

Рис. 9 к ст. Начертательная геометрия.

Рис. 8 к ст. Начертательная геометрия.

Рис. 7 к ст. Начертательная геометрия.

Рис. 4 к ст. Начертательная геометрия.

Рис. 2 к ст. Начертательная геометрия.

Рис. 5 к ст. Начертательная геометрия.

Рис. 1 к ст. Начертательная геометрия.

Начёт денежный

Начёт де'нежный, по советскому трудовому праву одна из форм возмещения имущественного ущерба, причинённого государству, кооперативными или общественными организации неправильными действиями или нераспорядительностью должностных лиц. Право наложения Н. д. предоставлено комитетам народного контроля. Порядок производства Н. д. определён Правилами производства денежных начётов комитетами народного контроля от 4 августа 1969 (СП СССР, 1969, № 19, ст. 109). Должностные лица несут ответственность в порядке Н. д. за ущерб, причинённый ими, в случаях: незаконных выплат денежных средств вследствие неправильного применения расценок, приписок в нарядах фактически невыполненных работ, переплат по счетам и расчётам; незаконных выплат вознаграждений, премий, пособий, пенсий; незаконного расходования средств на празднества, юбилеи и банкеты и т.д. Н. д. налагается в размере причинённого ущерба, но не свыше 3-мес. оклада должностного лица, на которое производится Н. д. Взыскание Н. д. осуществляется бухгалтерией предприятия (учреждения) из заработной платы должностного лица ежемесячно в размере не свыше 20% его заработной платы. Основанием для такого взыскания служит выписка из постановления комитета народного контроля.

Начи

На'чи, начезы, в прошлом самое сильное и многочисленное из мускогоязычных (см. Мускоги ) индейских племён Ю.-В. Северной Америки, жившее в низовьях р. Миссисипи. Н. были мотыжными земледельцами и находились на стадии раннеклассового общества с теократическим устройством. В начале 18 в. их земли были включены в состав французской колонии Луизиана. Восстание Н. (1729) было жестоко подавлено, большинство Н. истреблено. Уцелевшие нашли убежище у криков и чироков и ассимилировались с ними.

Начики

Начи'ки, бальнеологический курорт в Камчатской области РСФСР, в 105 км от Петропавловска-Камчатского. Лето умеренно прохладное (средняя температура июля 12 °С), зима холодная (средняя температура января —19 °С); осадков 780 мм в год. Лечебные средства: минеральный источник, вода которого с химическим составом

используется для ванн. Лечение больных с заболеваниями органов движения и опоры, гинекологическими, нервной системы. Санаторий, ванное здание.

«Наш путь»

«Наш путь», легальная ежедневная большевистская газета. Издавалась в Москве с 25 августа (7 сентября) по 12 (25) сентября 1913. Вышло 16 номеров, из них 12 были конфискованы. Закрыта царским правительством. Официальным редактором был Ф. А. Соколов, издателем – И. Д. Барщевский. Идейное руководство осуществлял В. И. Ленин, в «Н. п.» было опубликовано 10 его статей. В редакции работали И. И. Скворцов-Степанов, В. В. Оболенский, Н. Н. Яковлев, В. Н. Максимовский и др. В газете сотрудничали Демьян Бедный, М. С. Ольминский, М. Горький и большевики-депутаты 4-й Государственной думы. Тираж достигал 17—20 тыс. экз.

  Лит.: Ленин В. И., Полн. собр. соч., 5 изд., т. 23, 24, 48; Очерки истории московской организации КПСС, М., 1966; Большевистская периодическая печать. (Декабрь 1900 – октябрь 1917), М., 1964; Рачков Л. И., «Наш путь» – боевой орган московского пролетариата, «Уч. зап. Московского областного педагогического института», т. 127, История СССР, в. 7, М., 1963.

«Наш современник»

«Наш совреме'нник», ежемесячный литературно-художественный и общественно-политический журнал, орган СП РСФСР. Издаётся в Москве с 1964. Возник как продолжение альманаха «Год...», основанного М. Горьким в 1933, и альманаха «Наш современник» (1956—63). В журнале печатаются повести, рассказы, стихи, репортажи о текущих событиях и др. Главный редактор – С. В. Викулов (с 1968). Тираж (1974) 110 тыс. экз.

  Лит.: Сурганов Вс., Да, название обязывает... «Литературная газета», 1971, 13 окт.

«Наша заря»

«На'ша заря'», ежемесячный легальный общественно-политический журнал, орган меньшевиков-ликвидаторов. Издавался в Петербурге с января 1910 по сентябрь 1914. Всего вышло 57 номеров. Закрыт правительством. Сотрудники: П. Б. Аксельрод, Ф. И. Дан, Л. Мартов, А. С. Мартынов, А. Н. Потресов и др. Журнал «Н. з.» выступал против сохранения подпольных социал-демократических организаций в России, за создание легальной рабочей партии. В 1912 6-я (Пражская) Всероссийская конференция РСДРП в резолюции, составленной В. И. Лениным, признала сторонников «Н. з.» стоящими вне партии, как защитников «... течения, признанного всей партией продуктом буржуазного влияния на пролетариат» («КПСС в резолюциях», 8 изд., т. 1, 1970, с. 341). В начале 1-й мировой войны 1914—18 журнал занял оборонческую позицию. В январе 1915 заменен журналом «Наше дело» .

«Наша нива»

«На'ша ни'ва», еженедельная белорусская общественно-политическая и литературная иллюстрированная газета. Издавалась в Вильнюсе в 1906—15. Редактор и издатель – А. Власов, с 1914 – И. Луцевич (Я. Купала). «Н. н.» – массовая легальная газета общедемократического направления, предназначенная главным образом для крестьян и провинциальной интеллигенции. Выступала против социального и национального гнёта, отстаивала право белорусского народа на самостоятельное национально-историческое развитие. Однако в решении основных вопросов общественно-политической жизни «Н. н.» занимала просветительские, либерально-реформистские позиции. Как единственная легальная газета на белорусском языке была центром литературной жизни Белоруссии. На её страницах печатались Я. Купала, Я. Колас, М. Богданович, З. Бядуля, Т. Гартный, Ш. Ядвигин и др. белорусские писатели.

Наша эра

На'ша э'ра, новая эра, система летосчисления (см. Календарь ), в которой в качестве начального момента отсчёта годов взято «рождество Христово». Принята в большинстве государств. См. Эра .


    Ваша оценка произведения:

Популярные книги за неделю