355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Вебер » Когда приходит ответ » Текст книги (страница 12)
Когда приходит ответ
  • Текст добавлен: 5 октября 2016, 03:38

Текст книги "Когда приходит ответ"


Автор книги: Юрий Вебер



сообщить о нарушении

Текущая страница: 12 (всего у книги 28 страниц)

7

Как-то в Казанском университете во время длинного и довольно бесполезного ученого совета в большом зале, где на заседавших хмуро глядел портрет Лобачевского, двое преподавателей, Васильев и Порецкий, пристроившись в сторонке, тихо переговаривались друг с другом на тему, не имеющую отношения ни к учебным планам, ни к проступкам студентов.

Васильев рассказывал: ему попалась в руки книжка. Английский автор. Буль по фамилии. Вероятно, столь же распространенное там, как у нас Иванов. Очень оригинальное сочинение. Своеобразное толкование алгебры. Логика по существу, математика по методу.

Он набрасывал значки на обороте визитной карточки и показывал собеседнику. Символы основных операций. Логическое сложение, умножение, отрицание. А также парадоксаль ные равенства, в которых икс плюс икс все равно икс, а икс помножить на икс также икс. Не правда ли, забавно? Нет коэффициентов, нет степеней.

– Как вам нравится?

Порецкий с любопытством засматривал в карточку. Как и другие, впервые встретившись с этим, он не мог все сразу переварить, но и не поспешил сказать: «Чушь!»

– Не откажите мне на память, – попросил он под конец беседы и сунул карточку в жилетный кармашек.

Внешне как будто ничто не изменилось после той беседы, состоявшейся в начале восьмидесятого года прошлого века. Штатный преподаватель и астроном-наблюдатель Казанского университета Платон Сергеевич Порецкий продолжал по-прежнему выполнять свои обязанности, учил студентов, глядел по ночам в трубу. Но он частенько заглядывал еще в один мир, пожалуй еще более призрачный и неясный, чем далекие туманности. В мир символической логики.

Он отыскивал все то немногое, что было ей посвящено. Читал самого Буля, восхищаясь его идеями и досадуя на его форму изложения. Знакомился с его комментаторами, которые очищали булевскую систему от сумбурности, отрабатывали более удобную символику, всячески перетряхивая его идеи и шлифуя математический аппарат, который он бросил в первозданном виде на суд всякого, кто пожелает. Под пером некоторых толкователей Буля восемьдесят страничек его книжки превращались иногда в многотомное сочинение, подавляющее своей крайней обстоятельностью и такой бесконечной цепью условных приемов, за которой и вовсе пропадал всякий смысл. Исчисление превращалось в эквилибристику. Порецкий не только изучал и анализировал накопленные премудрости – он искал свою, собственную точку зрения.

Два года прошло. Два года блужданий по лабиринтам символов. Наконец весной восемьдесят второго года, когда тронулся лед на Волге, тронулся и покров молчания над разысканиями Порецкого. Он объявил свой доклад в Обществе естествоиспытателей при Казанском университете.

Два вечера слушало ученое собрание то, что говорил им Порецкий «О способах решения логических равенств и об обратном способе математической логики».

У него был дар не только ясно мыслить, но и ясно излагать. Все туманности, облекавшие алгебру логики, рассеивались в свете его критического ума. И символические обозначения, и основные законы, и правила действия приобретали в его устах и под его мелком на доске четкую, простую форму. Казалось, даже жалко, что эта блистательная способность логического выражения должна быть втиснута в рамки бездушных формул. Но мысль человека тем и велика, что она сама себе ищет остроумную замену.

По правде говоря, только читая Порецкого, и начал Мартьянов что-то понимать в методе алгебры логики.

Порецкий говорил ученому собранию: формы алгебры – количественные, – а формы логики – качественные. Этим они существенно отличаются друг от друга. Но можно приспособить приемы алгебры так, что они будут вполне точно отражать и качественные отношения. И замечательно то, что для этой цели приходится не усложнять, а, наоборот, очень упрощать приемы алгебры. Алгебра логики проста, как ясный день.

Он говорил: ее приемы позволяют переводить словесные условия задачи в символическую форму, – составляются формулы. Но сила метода не столько в символических обозначениях, сколько в выборе правильных соотношений, действительно существующих в логике, – отношений, которые выражаются определенными операциями. Алгебра логики – алгебра отношений.

Он показывал, как можно выражать разные суждения в виде равенств. Например, «если не будет дождя, то мы отправимся в сад и будем там пить чай», – а на языке алгебры это всего лишь a1 = bc. И как, решая такие равенства, можно значительно облегчить тот мыслительный процесс, который именуется в классической логике качественным умозаключением. Опять-таки словесная форма переводится в форму математическую. Равенства можно между собой и складывать и перемножать. Заменять целую систему равенств одним равенством. Исключать отдельные классы из равенства. Определять один класс через все прочие… Словом, открывается путь ко всяким преобразованиям и упрощениям.

Преобразования и упрощения! Алгебра логики настойчиво предлагала эту возможность, которая, между прочим, больше всего и пленит когда-нибудь инженера Мартьянова.

Порецкий в своем докладе уверял, что применение правил преобразования логических равенств «может быть только приятным». Буль, помнится, говорил об удовольствии, хотя его книгу и упрекали в недостатке изящества. Кто же скажет, что эстетика – сфера не математическая?

Подчеркивал Порецкий и важность того, что выражения алгебры логики можно разлагать на элементарные составные части – атомы речи. Подобно тому, как алгебраические выражения разлагаются на простые сомножители. Звучное слово «конституенты» эхом прокатывалось по залу казанского собрания.

Собрание слушало и… не знало, как ко всему этому отнестись. Забавное увлечение или заявка новой науки?

Но Порецкий и не думал выдавать ее за шкатулку чудес. Он говорил:

– Было бы слишком неосмотрительно полагать, что операции над классами в логике ничем не отличаются от операций над числами. Позвольте напомнить. В самой математике сложение с положительным числом совсем не то, что с отрицательным. Умножение целых чисел совсем не то, что умножение дробей. Умножение линий совсем не то, что чисел… То же между логикой и алгеброй. Это не одно и то же. Нам вполне достаточно, что здесь имеется известная аналогия. Аналогия, и не больше. Но эта аналогия открывает нам большие возможности.

Отступив к доске, он предложил аудитории с легкой усмешкой логическую задачу. О девицах, приехавших на дворянский бал. О них известно следующее. Во-первых, каждая из девиц была или благовоспитанна, или весела, или молода, или красива. Во-вторых, когда начались танцы, то оказалось, что все нетанцующие девицы были некрасивы и что каждая из танцующих была или молода, или весела, или благовоспитанна. В-третьих… Так выписывал он об этих девицах четырнадцать разных суждений, или посылок, как говорят в логике. Четырнадцать всевозможных вариантов из понятий «веселая», «молодая», «красивая», «благовоспитанная», вместе с их отрицаниями, соединенных между собой то словечком «и», то словечком «или». Хватит ли доски? Написав последнее, четырнадцатое условие, по которому, «когда уехали все неблаговоспитанные, все немолодые, все невеселые и все некрасивые, никаких девиц на балу более не осталось», – Порецкий спросил, не желает ли кто-нибудь решить эту логическую задачу, построив соответствующие умозаключения? Установить прежде всего, возможна ли подобная задача и нет ли между ее посылками противоречий. А потом уж описать точным образом «весь мир девиц бала», выражаясь по-булевски: определить отношения между их категориями. Пожалуйста, кто хочет?

Аудитория молчала, пока докладчик окидывал ряды насмешливым взглядом. Никто не вызвался. Все понимали, проходившие логику еще в классических гимназиях, что за такую задачу с обычным приемом словесных рассуждений лучше и не браться.

Насладившись замешательством собрания, Порецкий тут же провел сеанс алгебры логики. Быстро перекроил девиц на буквенные знаки. Составил на каждое из условий свое уравнение, приравнивая к единице, если оно утвердительное, и к нулю, если оно отрицательное, – и, проделав у всех на глазах еще некоторые операции сложения, умножения, вынесения за скобки, получил ответ. Задача возможна. И вот какой следует вывод…

Он поклонился, как бы представляя своих девиц и подтверждая кстати, что алгебра логики вовсе не убивает чувства юмора.

Было в докладе Порецкого и нечто такое, чего не знали еще ни сам Буль и никто из его усердных комментаторов. Обычно в логике ищут: какие умозаключения можно вывести из данных первоначальных посылок? Как, например, с этими девицами. Порецкий обнаружил, что алгебра логики обладает и обратной силой: можно находить, из каких же посылок выведено то или иное умозаключение. Пожалуйста, показал он на доске, надо сделать только некоторые преобразования в формулах. Обратный метод решения логических равенств – оригинальное открытие Порецкого.

Начав с ученического освоения незнакомой, едва пробивающейся области, казанский астроном-математик уже на второй год сумел открыть в ней новую страницу.

Заканчивая перед несколько смущенной аудиторией доклад, он выразил свою убежденность в той мягкой манере, какая принята в хорошем ученом обществе:

– Мне думается, что юная отрасль знания имеет несомненное право на существование. Потому именно, что она позволяет решать задачи, ответа на которые нет ни в математике, ни в логике. Благодарю вас, господа!

8

«Булевский курьез» становился наукой или, точнее, некой научной областью, подталкиваемой усилиями одиночек.

Печать математики лежала на ней так явно, что понятия и суждения, обозначаемые буквами, стали называть запросто логическими переменными, а сложные выражения, составляе мые из них, – логическими функциями. Пограничная наука говорила на смешанном языке.

Ясно проступала и ее важнейшая особенность: алгебра логики – алгебра двух величин. Алгебра одного из двух. Или алгебра альтернативы. Понятие может быть взято либо в своем полном объеме («весь мир речи» по Булю), – и тогда его можно приравнять к единице, либо, в противоположность ему, понятие невозможное («пустой класс»), – и тогда его следует считать за нуль. Итак, нуль или единица. Одно из двух.

То же и в исчислении высказываний. Всякое суждение может быть либо ложным, либо истинным. Одно из двух. «Снег, выпадающий летом, черный» – ложно. «Снег, выпадающий зимой, белый» – истинно. Первое предложение надо приравнять нулю, а второе, в противоположность ему, единице. Алгебра альтернативы.

Но ложность или истинность сложных выражений зависит от того, ложны или истинны входящие в них составные части, – эти самые неуловимые в обычной человеческой речи конституенты, Алгебра логики дает приемы, как разлагать на составные части: длинные суждения на простейшие, классы на подклассы. И приверженцы новой науки старательно упражнялись этой игре в конституенты, которую они назвали по-ученому «разложением нуля и единицы». Они видели в ней сильнейший метод логического анализа, как увидит впоследствии Мартьянов роль конституентов и в анализе релейных схем. Уж ему-то придется всласть поиграть, до седьмого пота, с нулями и единицами!

Нуль и единица. Между ними танцует вся алгебра логики. И закономерность такого двоичного счета прекрасно обосновал профессор математики Московского университета Иван Иванович Жегалкин.

Быть может, логика служила ему утешением в то мрачное время царской реакции, когда вместе с Тимирязевым, Лебедевым и другими покинул он в знак протеста университет. Занятия логикой «на досуге»! Лишь после революции, вернувшись снова в университетские стены, смог он опубликовать свое выдающееся исследование.

Иван Иванович Жегалкин… Сколько раз, вероятно, раздавался его отчетливый голос, читающий лекцию в той самой аудитории с широким амфитеатром, где пришлось Мартьянову услышать впервые голос математической логики. А Жегалкин заложил один из прочных камней в ее основание.

Он писал, что предназначает свою работу «для тех, кто привык пользоваться законами логики при доказательствах». И сам строго логически, с прозрачно чистым лаконизмом доказал главное: алгебра логики – алгебра двух чисел. Свою задачу он видел скромной: «Дать правила, с помощью которых, применяя их вполне механически, можно было бы убедиться в истинности или ложности всякого произвольно-заданного элементарного предложения».

Нуль и единица твердо закрепились на позициях пограничной науки. И тем самым мысль новейшего века удивительным образом обратилась к тому, с чего когда-то начинало человечество. Двоичная система – одна из древнейших систем исчисления. Она родилась из непосредственного общения с природой. День и ночь. Холодное и горячее. Ничего не зная еще о числах, человек уже разделял мир по принципу «одно из двух». Он разводил дым костра или глушил его, желая передать первые сигналы на расстояние: опасность, победа! Логические «да» и «нет» в их простейшей форме.

Двумя знаками можно выразить очень многое. Есть игра, очень веселая и не такая уж бессмысленная: отвечайте только «да» или «нет», и я отгадаю все, что вы задумаете. Современный телеграф, говорящий на азбуке Морзе, изъясняется лишь точками и тире. Но с помощью точки и тире можно передать любую мысль и даже написать, если угодно, «Войну и мир».

Выбор одного из двух – первое, что делает логика. И в ее алгебре вполне достаточно иметь только два числа. Древнейший счет испытывал в колыбели математической логики свое второе рождение. Для новых целей – для того, что можно было бы назвать, выражаясь по-современному, моделированием мыслей.

Кстати, с развитием естествознания мысль все больше привыкала и к идее различных интерпретаций. Казалось бы, самые далекие друг от друга явления обнаруживали поразительное сходство в своих внутренних отношениях и закономерностях. Одинаковые приемы исследования становились годными и в теории чисел, и в геометрии, и в оптике, и в механике материальных тел. Одни ученые изучали, скажем, движение небесных светил, другие – поведение корабля на волнах, третьи – колебания маятника, четвертые – электромагнитные волны… Каждый описывал математически свои явления, выводил свои дифференциальные уравнения. А когда их сличали, оказывалось, что уравнения одинаковы.

Природа заявляла о своем единстве. О том единстве, о котором еще смутно грезили греки, размышлял Лейбниц, строя свои «универсалии», возвещал Буль в своих стихах, в своей системе и о котором с полной научной ясностью заявил диалектический материализм.

Почти в то же время, как из ирландского городка Корк выходят идеи булевой алгебры, тронувшие лишь умы одиночек, в Лондоне Фридрих Энгельс набрасывает общий план своей «Диалектики природы», которой суждено было совершить переворот в мировоззрении поколений. Пункт третий этого плана: «Диалектика, как наука о всеобщей связи…» И еще раз о том же: «4. Связь наук. Математика, механика, физика, химия, биология…»

Время раздвигает этот диалектический ряд. Физики моделируют различные процессы, изображая, например, потоки жидкости в виде электротоков или уподобляя ход времени быстрому вращению в центрифугах. Математики находят способы изучать свойства одной математической системы с помощью свойств другой системы, служащей как бы ее моделью. Все тот же метод различного толкования одних и тех же знаков, формул, соотношений.

Но продолжить связь наук от математики… до логики решался далеко не всякий. Хотя робким умам сам Энгельс подсказывал возможный шаг, говоря о сходстве, о родстве математики постоянных величин с логикой. И все же иным казалось, что в булевом методе таится какое-то посягательство на самое сокровенное, что отличает человека, – на его мысль. Как?! Свести все богатство мышления к каким-то формулам, подменить язык слов, живой, трепетный язык, – бездушными значками! Недоумения и недоразумения шли рука об руку.

Когда-то во владения логики были допущены так называемые «круги Эйлера», помогающие изображать пересечение классов. То была графическая символика. Но символика алгебры – нет, это уж что-то чересчур! И логика упорно обходила ее и обходилась без нее. И, вопреки надеждам Лейбница, человечество продолжало спорить, все также яростно бросаясь словами.

Алгебра логики была использована для других целей. Ее подхватили математики – ее уже основательно разработанный аппарат, ее формулы и приемы. Ухватились за нее, как за верный инструмент строго логических доказательств. Тень Лобачевского стояла над всей математикой, звала критически взглянуть в самые основы.

Взяв под сомнение знаменитый пятый постулат геометрии Евклида – «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной», – и, выдвинув вместо него другой – «…можно провести не одну, а по крайней мере две параллельные ей прямые», – Лобачевский построил новую геометрию. Геометрию, гораздо более широкую и объемлющую, в которой и сама тысячелетняя геометрия Евклида стала лишь частным случаем. И доказал, что его новая геометрия свободна от противоречий.

Всего лишь небольшая замена в одной исходной точке – и полный пересмотр!

Казанский переворот Лобачевского, дойдя наконец до сознания ученого мира, потряс устои математики. И заставил на многое посмотреть заново, более строго отнестись к тому, что издавна казалось таким непреложным и твердо установленным. К аксиомам, к этим «очевидным истинам», которые кладутся в фундамент всякой теории или системы. К тем следствиям, которые из этих аксиом выводятся. И прежде всего к тем способам доказательства, которыми при этом пользуются.

А доказательство – это логика, это цепочка связанных понятий, суждений, умозаключений. Тут-то и могла пригодиться алгебра логики с ее разработанным аппаратом, с правилами вывода и преобразований. Математиков абстракция не пугает. Вложив определения аксиом и теорем в знаки и связки между ними, они проделывают затем по строгим правилам разные операции, не задумываясь на каждой ступеньке о содержании. Лишь в конце смотрят: отвечает ли полученный вывод истине или нет? Не показывает ли конечная формула противоречий? Недаром математики любят говорить о полезном и продуктивном формализме. В отличие от пустого формализма, когда идет бессмысленная игра в символы без всякого содержания и в конце и в начале.

Математическая логика стала теорией математических доказательств.

Многие рассуждения могут претендовать на право называться доказательством. Но немногие из них, даже самые умные с виду, являются действительно доказательством. Математическая логика это резко обнажала – без лишних слов, с холодным бесстрастием алгебраических выкладок. Аккуратнее! Аккуратнее обращаться с тем, с чего мы начинаем, – как бы призывала ее бессловесная сдержанность. И часто оказывалось, что самое простое является самым запутанным.

Трудно бывает решить какую-нибудь задачу, иногда кажется, что и невозможно. А что такое решить задачу? – спрашивала математическая логика и пыталась дать свое строго логическое, свободное от всяких околичностей определение. Все так называемые «азбучные истины» в математике подвергались ее дотошному расследованию. Даже такую вещь, как элементарную арифметику, нашу простушку школьную арифметику, не удавалось обосновать без противоречий под бдительным оком математической логики.

А что такое число? Даже такой вопрос загонял мысль в тупик и оказывался для некоторых трагическим. Профессор Иенского университета Готлоб Фреге, много занимавшийся математической логикой, потратил всю жизнь на то, чтобы обосновать понятие «число». И когда работа была уже завершена, он получает письмо из Англии от Бертрана Рассела, который, пользуясь аппаратом математической логики, доказывает, что Фреге допустил где-то в исходных положениях ошибку, приводящую к противоречию. Все здание, возведенное иенским профессором, рушится – дело всей жизни!

Математическая логика не знает пощады. Она не терпит, когда мысль не сводит концы с концами.

9

Ну хорошо, а практическое применение? Как ни назойлив бывает для науки подобный вопрос, он все же напрашивался. В самом деле, к какому бы реальному делу приспособить алгебру логики?

Она нашла себе пристанище в теории вероятностей – область, где бушуют множества случайных событий. А событие – категория логическая. Как в логике всякое суждение может быть либо истинным, либо ложным, так и о всяком событии имеет смысл говорить, что оно либо происходит, либо не происходит. Одно из двух. Знакомый двоичный выбор. А если так, то исчисление событий можно строить по законам булевой алгебры. Обозначать символами. Складывать, умножать. Связывать в равенства. Приравнивать единице или нулю. Преобразовывать по знаменитым тринадцати правилам Буля. Разлагать на конституенты…

Словом, еще одна из возможных интерпретаций, о которых задумывался школьный учитель из городка Корк. Отношения в логике и отношения в теории вероятностей оказались изоморфными – схожими по форме.

Но в общем-то все тот же круг: теория для теории. А чтонибудь более практическое, поближе к жизни, к техническим делам?

Никто еще не мог дать ответа. Необычная наука продолжала вариться в собственном соку – в той камерно замкнутой атмосфере, которая так поразила Мартьянова на университетском семинаре. Между тем хотя бы маленький факт практического применения не повредил бы новой науке. Как укрепилось бы ее довольно шаткое положение на белом свете!

Впрочем, подземный толчок уже раздавался.

В 1909 году в Одессе издательство «Матезис», известное в свое время всем любителям науки, выпустило книжку в русском переводе «Алгебра логики». Ее автор француз Луи Кутюра, увлекавшийся всякой логической эквилибристикой и поднявший, между прочим, со дна сундуков опыты математической логики Лейбница, изложил на немногих страницах то, что было сделано в этой области со времени Буля и Порецкого. С типично французским изяществом раскрывал Кутюра метод алгебры логики, как чистейший формалист, избегая всего, что могло бы касаться смысла и содержания тех значков и операций, которыми он так ловко жонглировал. Даже о возможности различных интерпретаций он не упомянул ни словом – недостойно внимания! Формализм, доведенный до совершенства. Милый француз, вероятно, ужаснулся бы, если бы ему задали грубый, «неприличный» вопрос: ну, а практическое применение?

Напрасно! Именно его книга и заставила задать такой вопрос. Она была так хорошо написана, что ее трудно было не заметить. В журнале Русского физико-химического общества на нее появилась рецензия. И не то важно, была ли эта рецензия большой или короткой, на видном месте или на журнальных задворках среди прочих заметок, а то важно, что была она подписана: «П. Эренфест».

Молодой магистр наук смело мыслящий, глотнувший уже знаменитый «воздух физики» в Геттингене, обаятельный настолько, что сам Эйнштейн писал ему: «В твоей дружбе я нуждаюсь больше, чем ты в моей», – Эренфест преподавал в тот год в Петербурге, образуя там передовой кружок ученых и находясь, конечно, под подозрением у столичной полиции, как лицо нежелательное, «не исповедующее никакой религии».

Эренфест соглашался с тем, – что для выражения всех типов суждений и умозаключений в логике обычный язык – «слишком тяжеловесный и неточный инструмент». Он приветствовал попытки использовать символический метод, но подчеркивал, что подход Кутюра к алгебре логики чрезвычайно абстрактный. «Она написана для французского читателя-математика», – не без лукавства заметил Эренфест. А в конце рецензии он написал следующее: «К счастью, уже отвыкли требовать от каждой математической спекуляции прежде всего «практической пользы». Тем не менее, быть может, уместно коснуться вопроса о том, не встречаются ли в физике или в технике в самом деле такие сложные системы посылок. Мне думается, что на этот вопрос следует ответить утвердительно. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Нужно определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений.

Каждая такая комбинация является «посылкой», каждый маленький коммутатор есть логическое «или – или», воплощенное в эбоните и латуни; всё вместе – система чисто качественных (в сети слабого тока именно не количественных); «посылок», ничего не оставляющая желать в отношении сложности и запутанности.

Следует ли при решении этих вопросов раз навсегда удовлетвориться гениальным, а по большей части просто рутинным способом пробования на графике?

Правда ли, что, несмотря на существование уже разработанной «алгебры логики», своего рода «алгебра распределительных схем» должна считаться утопией?»

Мысль, хотя и выраженная в форме вопросов, но явно похожая на утверждение. Мысль, которую подбрасывал крупный физик математикам или инженерам – каждому, кто пожелал бы ее поднять. Вот так мимоходом, в маленькой рецензии, где-то на последних страницах журнала оброненная мысль – одна из тех, что бескорыстно рассыпал вокруг себя этот широкий живой ум.

Для алгебры логики можно найти применение: в электрических распределительных схемах, в частности в автоматической телефонии, где работают маленькие коммутаторы, под названием реле, – вот что означали в переводе на современную терминологию заключительные фразы рецензии Эренфеста.

Но эта мысль так и осталась лежать в толще томов ученого общества, затерянная среди обширных статей, толковавших на острые тогда темы о природе радиоактивности или существования эфира. Не нашлось никого, кто захотел бы и смог бы поднять эту мысль, дать ей развитие. Может быть, не раскусили ее смысл. Может быть, не созрело время.

Что такое релейные устройства того времени? Простейшие, примитивные наборы, которые показались бы теперь детской игрушкой и которые, в сущности, не требовали никакой науки. Да и где они встречались? Пожалуй, одна телефония начинала еще только испытывать нашествие реле. А во всем остальном… Мысль Эренфеста не имела почвы, где она могла бы взойти. Пыль книжного времени покрыла ее постепенно, когда один год издания ложится на другой, том за томом, одна тысяча страниц на другую тысячу…

Десятками, сотнями выходят ежедневно всякие ученые издания, в разных странах, на разных языках. Журналы, сборники, бюллетени, отчеты, труды и рефераты… Ежедневный поток мыслей, догадок, наблюдений. А сколько из них так и проскальзывает мимо, не найдя нужного глаза! И где-то потом оседает на дне забвения.

И надо было, чтобы прошли еще десятилетия, и война, и революция, чтобы началось великое строительство и небывалый подъем техники, чтобы открылась эпоха пятилеток, чтобы разрасталась всякая автоматизация, чтобы повсюду в производство и в управление входили маленькие коммутаторы из эбонита и латуни, под названием реле, чтобы все больше людей склонялось над их сложными, запутанными схемами, чтобы над ними в отчаянии билась мысль инженеров и исследователей – таких, как Мартьянов, чтобы, наконец, новая наука математической логики поварилась как следует в таких очагах, как университетский семинар, – все это, очевидно, надо было, чтобы та же идея снова появилась на свет. Алгебра логики может стать алгеброй релейных схем.

И высказал ее Василий Игнатьевич Шестопалов. Вовсе не знаменитый, начинающий кандидат физико-математических наук, из семейства университетских. Не только высказал, но и обосновал свою идею по всем правилам, облачив ее в строгий математический мундир.

Шестопалову было что преподнести на том семинаре своим старшим коллегам. Все-таки более трехсот страниц его собственной диссертации давали ему право выйти к доске.

К нему-то, к Василию Игнатьевичу, и собирается сейчас Мартьянов, сложив записи в папку и покидая свой смотр героям прошлого.

Первый натиск Мартьянова в тот вечер университетского семинара Шестопалов встретил сдержанно и суховато. Не очень сердечной была и первая их беседа через несколько дней в лаборатории физического факультета. Там, в длинных узких катакомбах под сводчатым потолком, с массивными стенами, с застекленными шкафами такой старинной солидности, что кажется, приборы в них стоят еще со времен самого Ломоносова, – там Шестопалов также не проявил особого радушия. На расспросы поддавался с трудом. И взгляд его, прячущийся за стеклами очков, усталый, отсутствующий, казалось, говорил: «Ну что тебе еще?»

Нужно было все мартьяновское желание не замечать этого холодка, чтобы его преодолеть. Постепенно университетский крот выползал из норки, убеждаясь, что коренастый напористый инженер с большим портфелем, видно, взялся за теорию всерьез и действительно знает релейные тонкости. Ему не то чтобы схватить просто на лету готовенькую математическую шпаргалку. Нет, он вгрызается в новый метод до самых корней, хочет обо всем судить. И любит, несомненно любит всякие комбинированные построения, что Шестопалову должно было быть особенно по вкусу.

Но стоило Мартьянову немножко осмотреться в новой области, как он уже норовил вставить свое: «А мне кажется…» И они в разгар беседы начинали уже покрикивать друг на друга: Шестопалов резким, обидчивым голосом, а Мартьянов со своей упрямо звенящей ноткой – признак того, что они, пожалуй, друг с другом сойдутся.

Приезжал Шестопалов и в институт к Мартьянову. Но что-то ему было там не по себе, этому университетскому затворнику. То ли от шумливой деловитости, заметной в институте, то ли еще от чего. Рассеянно окинул он в лаборатории монтажный стенд. Вычисления на бумаге явно вдохновляли его больше, чем материальная картина техники. Да и во время беседы с Мартьяновым университетский гость косился недоверчиво на соседние, близко придвинутые столы, где сидели другие сотрудники.

А все же им было о чем поговорить.

И они предпочитали иногда встречаться, что называется, на нейтральной почве. Особенно когда поближе познакомились.

…Дом ученых в будний день совсем другой, чем по субботним вечерам. Нет того яркого освещения, залы и гостиные хранят чинное спокойствие, в мягких креслах сидят больше с газетами и журналами. В ресторанчике за стеклянной стеной все заняты прозаическими обедами или чаем. И сами посетители здесь как бы другие. Словно они никогда и не веселились здесь и не шаркали дружно под музыку. Вежливо, но несколько церемонно раскланиваются друг с другом, соблюдая достоинство и помня, вероятно, что они кандидаты и доктора наук, заведующие кафедрами, лабораториями, члены ученых советов, председатели и заместители председателей.

Только секция туризма, собирающаяся на свое заседание и всегда более оживленная и громкая, чем это вызывается необходимостью, вносит некоторое разнообразие в эту сдержанную атмосферу.


    Ваша оценка произведения:

Популярные книги за неделю