355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Кириллин » Страницы истории науки и техники » Текст книги (страница 30)
Страницы истории науки и техники
  • Текст добавлен: 30 марта 2017, 15:00

Текст книги "Страницы истории науки и техники"


Автор книги: Владимир Кириллин



сообщить о нарушении

Текущая страница: 30 (всего у книги 34 страниц)

Уже упоминавшийся выдающийся американский ученый Морган сформулировал хромосомную теорию наследственности. Большинство растительных и животных организмов являются диплоидными[356]356
  Исключение составляют гаплоидные организмы: грибы, некоторые водоросли, иногда высшие растения, клетки которых состоят из наборов непарных хромосом.


[Закрыть]
, т. е. их клетки (за исключением половых) имеют наборы парных хромосом, однотипных хромосом от женского и мужского организмов. Хромосомная теория наследственности сделала более понятными явления расщепления в наследовании признаков.

Важным событием в развитии генетики стало открытие мутаций – возникающих внезапно изменений в наследственной системе организмов и потому могущих привести к устойчивому изменению свойств гибридов, передаваемых и далее по наследству. Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спонтанными мутациями), либо искусственно вызываемым воздействиям (такие мутации часто именуют индуцированными). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации. Это явление – внезапное возникновение новых, передающихся по наследству свойств – известно в биологии давно. Однако систематическое изучение мутаций было начато уже известным читателю голландским ученым Хуго де Фризом, установившим и сам термин «мутации». Было обнаружено, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867–1940) вместе со своими коллегами и учениками установил в 1925 г. воздействие радиоизлучения на наследственную изменчивость у грибов. Известный американский генетик, один из основоположников радиационной генетики, Герман Джозеф Мёллер (1890–1967), работавший в течение 1933–1937 гг. в СССР, обнаружил в 1927 г. в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей. В дальнейшем было установлено, что не только рентгеновское, но н любое ионизированное облучение вызывает мутации.

Советские ученые-генетики Максим Николаевич Мейсель (р. 1901), Владимир Владимирович Сахаров (1902–1969), Михаил Ефимович Лобашев (1907–1971) обнаружили в период 1928–1934 гг. мутагенное воздействие на организмы некоторых химических веществ. Эти работы были успешно продолжены советским учеиым-генетиком Иосифом Абрамовичем Рапопортом (р. 1912) и другими советскими и иностранными учеными.

Уместно теперь задать такой вопрос: нужно ли с учетом установленных законов генетики и особенно открытия мутаций вносить какие-либо уточнения или изменения в теорию эволюции Дарвина, и если нужно, то какие именно?

Мы слегка касались этого вопроса раньше, но теперь требуется дать на него обстоятельный ответ. Современная паука, во всяком случае большинство биологов, как думает автор настоящей книги, дали бы на этот вопрос следующий ответ. Да, конечно, требуется. Достижения генетики (и биологии в целом) за прошедшее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую теорию эволюции. Два фактора: изменчивость и наследственность, – которым Дарвин придавал большое значение, получили более глубокое толкование.

Изменчивость растительного или животного организма может быть достигнута двумя путями: либо непосредственным воздействием внешней среды, в результате которого наследственный аппарат организма не изменяется, либо посредством мутаций, характерных тем, что они вызывают изменения наследственного аппарата (генов, хромосом), и поэтому происходящие в этом случае изменения организма являются уже наследственными.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепило дарвиновскую теорию эволюции живого мира и, во-вторых, дало более глубокое толкование (соответствующее достигнутым успехам в биологии) понятиям изменчивость и наследственность, а следовательно, всему процессу эволюции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естествознания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молекулярном уровне.

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря, как уже говорилось, технике физических методов анализа скорость его резко возросла. На основе полученных данных о структуре вещества удалось воссоздать строение ряда белков и полипептидных гормонов, а также синтезировать некоторые менее сложные вещества. Химия белков, которая несколько лет назад казалась малообещающей областью, сегодня выдвинулась на передний край науки, а раскрытие структуры дезоксирибонуклеиновой кислоты (ДНК) послужило началом интенсивных исследований в химии и биологии. Являясь носителем и передатчиком наследственных качеств и играя основную роль в синтезе клеточных белков, нуклеиновые кислоты образуют группы веществ, важность которых трудно переоценить.

Уже к началу 40-х годов в распоряжении ученых имелись надежные методы выделения и фракционирования биополимеров, в том числе метод фракционирования белков, предложенный А. Тизелиусом, и методы очистки нуклеиновых кислот, разработанные Е. Кей, А. Даунсом и др. Методы рентгеноструктурного анализа были разработаны в основном благодаря усилиям английских ученых, среди которых можно назвать Л. Брегга, У. Бергга, Д. Бернала и др. К этой группе принадлежит также и У. Астбери, который ввел в науку и сам термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 г. О. Эвери, К. Маклеод и М. Маккарти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте). В 1956 г. Г. Шрамм (ФРГ) и X. Френкель-Конрат (США) независимо друг от друга выделили РНК из вируса табачной мозаики и показали, что при заражении табака этой РНК в нем происходит развитие вируса. Таким образом, было убедительно доказано, что РНК содержит всю необходимую информацию для синтеза вирусного белка. Год спустя Френкель-Конрат осуществил реконструкцию вируса табачной мозаики с помощью РНК и белка.

40-е годы ознаменовались коренным изменением взгляда на структуру нуклеиновых кислот; до этого предполагалось, что все кислоты построены из одинаковых тетрануклеотидных блоков и потому лишены специфичности. Отказ от этого представления произошел в результате детального исследования структуры нуклеиновых кислот, в которых первые крупные достижения принадлежали Д. Гуланду (Англия) и Э. Чаргаффу (США). Чаргаффу в 1949–1951 гг. удалось показать, что нуклеиновые кислоты обладают специфичностью, т. е. что кислоты, полученные из разных биологических источников, различаются по своему составу. Кроме того, Чаргафф установил важное правило относительно содержания пуриновых и пиримидиновых оснований в молекуле ДНК. Изучая различные ДНК, он открыл, что во всех ДНК независимо от происхождения количество пуринов (аденина и гуанина) равно количеству пиримндинов (цитозина и тимина), что является следствием равенства количества аденина и тимина (А = Т) и равенства количества гуанина и цитозина (Г – Ц), в то время как специфичность ДНК определяется величиной отношения А + Т/Г+Ц. Результаты, полученные Чаргаффом, создали предпосылку расшифровки молекулы ДЙК, которую произвели в 1953 г. Ф. Крик (Англия) и Д. Уотсон (США).

Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль. Если эту спираль развернуть в плоскость, то полученная структура будет напоминать лестницу, у которой перекладины представляют собой пурино-пиримидиновые пары, а направляющие – чередование молекул сахара и фосфатных групп. Правила Чергаффа ограничили число возможных комбинаций пар оснований, поскольку аденин всегда должен соединяться с тимином, а гуанин – с цитозином. Таким образом, оказалось, что строение одной ветви молекулы ДНК целиком определяет строение другой ветви, поскольку последовательность оснований, примыкающих к одной из направляющих, однозначно определяет последовательность оснований, примыкающих к другой направляющей. Это важное свойство молекулы ДНК, названное комплементарностыо (дополнительностью), определяет генетическую функцию молекулы.

Для дальнейшего процесса становления молекулярной биологии большое значение имела работа по расшифровке механизмов репликации ДНК и транскрипции, Уотсон и Крик предположили, что репликация (воспроизведение) молекулы происходит следующим образом: двойная спираль раскручивается и составляющие ее нити расходятся, разделяясь в местах соединения оснований. Затем на каждой из нитей в соответствии с правилами комплементарности образуется новая молекула. В 1957 г. американский биохимик А. Кронберг провел биосинтез ДНК с помощью репликации, подтвердив тем самым гипотезу Крика и Уотсона. Для того чтобы осуществить этот процесс, Кроибергу понадобилось выделить фермент, катализирующий его. За открытие этого фермента – полимеразы – и синтез ДНК Кропберг в 1959 г. получил Нобелевскую премию по медицине (он разделил ее с С. Очоа, который провел биосинтез РНК).

Генетическая информация кодируется в ДНК с помощью четырех символов (оснований), располагающихся в определенной последовательности. Однако, поскольку существует 20 основных белковых аминокислот, следующей задачей было выяснить, каким образом запись на четырехбуквенном алфавите в ДНК переводится в запись на двадцатибуквенном алфавите в белках.

Решающий вклад в решение этой проблемы был сделан Г. А. Гамовым в 1954 г. Он предположил, что каждая аминокислота кодируется сочетанием из трех нуклеотидов (нуклеотид представляет собой элементарный мономер ДНК, состоящий из сахара, фосфата и основания). Доказательство этого предположения было получено лишь в 1961 г. в результате работ Ф. Крика, Л. Барнета, С. Бреннера и Р. Баттс-Тобина (Великобритания), а также работ М. Нириберга и Дж. Маттеи (США).

М. Нирнберг и Дж. Маттеи, а также О. Очоа (США) в своих исследованиях проводили биосинтез белка в присутствии РНК-матрицы. Эти РНК были искусственно синтезированы, и их состав был известен; затем, меняя сочетания оснований в РНК и определяя вид аминокислот в получающемся белке, оказалось возможным установить, какие тройки нуклеотидов (кодоны) соответствуют данным аминокислотам. К середине 60-х годов был определен порядок оснований практически для всех кодонов; однако эти достижения стали возможными лишь после выяснения механизма синтеза белка.

Уже в 40-е годы рядом исследователей высказывалось мнение, что нуклеиновые кислоты (РНК) играют существенную роль в синтезе белка, поскольку в тканях с активным белковым синтезом наблюдалось увеличение содержания РНК. Это мнение полностью подтвердилось в работах последующего десятилетия. В это же время (50-е годы) было выдвинуто представление о двух видах РНК – информационной (или матричной) и транспортной. Представление об информационной РНК было высказано Ф. Криком, С. Шпигеяьманом, А. Н. Белозерским и др. и разработано Ф. Жакобом и Ж. Моно в 1961 г. В том же году было экспериментально доказано существование информационной РНК. Что касается транспортной РНК, то еще в 1954 г., Ф. Криком была выдвинута гипотеза, согласно которой должны существовать особые молекулы нуклеиновых кислот, выполняющие функцию перевода языка нуклеиновых кислот на язык белков. Спустя три года эта гипотеза получила экспериментальное подтверждение.

К 1958 г. стало уже известно, что белковый синтез протекает в три основные стадии. Сначала аминокислота активируется ферментом, затем активированная кислота присоединяется к специфической транспортной РНК, и, наконец, аминокислота включается в белок, а РНК высвобождается.

В 60-е годы фундаментальная роль РНК в синтезе белка представлялась неоспоримой, и поэтому усилия исследователей сосредоточились на поисках методов фракционирования и определения нуклеотидной последовательности РНК. Выдающихся результатов на этом пути добился в 1965 г. американский биохимик Р. Холли, расшифровавший структуру аланиновой РНК из дрожжей. Холли разработал специальную методику, которая позволяла получать крупные фрагменты молекул РНК, в то время как другие исследователи умели получать только мелкие фрагменты. Это дало Холли возможность собрать из фрагментов всю молекулу целиком, соблюдая требуемую последовательность нуклеотидов. За эту работу Р. Холли получил в 1968 г. Нобелевскую премию по медицине. Разработанный им метод оказался чрезвычайно плодотворным – в последующие годы была расшифрована структура ряда РНК и создана предпосылка синтеза ДНК. Синтез гена – молекулы ДНК, кодирующей аланиновую РНК – был осуществлен Г. Кориной (США) в 1970 г. и явился завершением его 15-летних исследований по химическому синтезу олигонуклеотидов. В соответствии с последовательностью нук» леотидов в РНК, описанной Холли, Корана сначала синтезировал короткие фрагменты молекулы, которые с помощью специального фермента, ДНК-лигазы, соединял в более длинные участки. По такой же методике проводятся работы по синтезу других генов.

До самого последнего времени считалось, что перенос генетической информации может происходить только от ДНК к РНК. Однако в 1970 г. американские биохимики Д. Балтимор и Г. Темин доказали, что может происходить обратная транскрипция – синтез ДНК на РНК, причем был выделен соответствующий фермент – ревертаза.

В процессе осуществления синтеза белка важно было понять, какая часть клетки ответственна за этот процесс. В середине 50-х годов считалось, что областями синтеза являются фракции мелких гранул, которые в 1949 г. были названы микросомами. Позднее выяснилось, что синтез проходит в еще более мелких частицах мик-росом, названных в 1958 г. рибосомами. Классические исследования бактериальных рибосом были проведены А. Тисьером и Дж. Уотсоном в конце 50-х годов. Было показано, что рибосомы состоят из двух неравных частей, включающих различные белки, а в 60-е годы строение рибосом было уточнено – оказалось, что это система, состоящая из двух клубков нитей (тяжей), неравных но своим размерам.

К началу 60-х годов сложилось уже четкое понимание основных процессов передачи информации в клетке при синтезе белка. К понятию репликации прибавились понятия транскрипции и трансляции. При раздвоении молекулы ДНК последовательность ее оснований переводится в комплементарную последовательность оснований информационной РНК (РНК, как и ДНК построена с помощью четырех оснований, лишь вместо тимина в ней используется урацил – вещество, близкое ему по свойствам). Этот процесс передачи информации от гена к матричной РНК называется транскрипцией. Затем РНК перемещается из ядра в цитоплазму, где она соединяется с рибосомой – субмикроскопической структурой, в которой происходит белковый синтез. В рибосоме происходит считывание генетической информации, т. е. последовательность оснований, содержащихся в РНК, переводится в последовательность аминокислот. Этот процесс называется трансляцией. Аминокислоты захватываются небольшими участками транспортной РНК и переносятся в нужное место к информационной РНК, находящейся в рибосоме. Для каждой аминокислоты есть своя транспортная РНК, состоящая приблизительно из 80 нуклеотидов. Так как насчитывается 20 аминокислот, то существует и 20 транспортных РНК, каждая из которых соответствует кодону – тройке нуклеотидов в кодовой последовательности информационной (матричной) РНК. Когда все кодовые элементы информационной РНК соответствуют своим дополнительным элементам, аминокислоты располагаются в требуемом порядке, соединяясь через пептидные связи в цепь. Образовавшийся белок сходит с матрицы, и процесс повторяется.

В результате исследований, проведенных в 1936–1970 гг. рядом ученых, стало известно, что в процессе трансляции принимает участие множество разнообразных компонент, помимо рибосом, а сам процесс трансляции включает три стадии – инициацию, собственно трансляцию и терминацию. При наличии всех необходимых компонент, синтез белка может протекать и вне клетки, причем с помощью меченых атомов удалось показать, что белки синтезируются именно постадийно; начало синтеза приходится на свободные аминоокончания, а конец – на свободные карбоксильные группы в последней аминокислоте.

Наряду с изучением нуклеиновых кислот и процесса синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Здесь следует отметить открытие Л. Полингом в 1940 г. дефектного гемоглобина S, выделенного из эритроцитов людей, страдающих наследственной болезнью – серповидной анемией. Полинг выдвинул предположение, что эта ненормальность имеет молекулярную природу, и его догадка была подтверждена в 1961 г., когда было обнаружено, что дефектный гемоглобин полностью аналогичен нормальному, за исключением того, что в его молекуле глутаминовая кислота заменена валином. Открытие Полинга, указавшее исключительную важность молекулярных представлений в биологии, в значительной степени обусловило расширение фронта исследований, и к настоящему времени определена структура многих белков.

В 1953 г. в результате десятилетних исследований Ф. Сенгер расшифровал аминокислотную последовательность инсулина, разработав для этого эффективный метод определения N-концевых аминокислотных остатков содержащих свободную аминогруппу, Этот метод оказался весьма плодотворным в процессе дальнейшего развития анализа белков, и в 1958 г. Сегнеру была присуждена Нобелевская премия но химии. Дальнейший прогресс аналитических методов был обусловлен созданием в 1957 г. автоматического анализатора аминокислот. Создатели анализатора – американские биохимики В. Стейн и С. Мур занялись с его помощью определением структуры рибонуклеазы, которая и была расшифрована в 1960 г, – она представляет собой полипептидную цепь из 124 аминокислотных остатков. За раскрытие строения рибонуклеазы В. Стейну и С. Муру была присуждена в 1972 г. Нобелевская премия по химии (совместно с К. Анфинсеном).

Рибонуклеаза была первым ферментом, строение которого было расшифровано, однако то, что ферменты имеют белковую природу, было известно еще с довоенных лет. В 1940 г. М. Куниц получил РНК в кристаллическом виде, особенно удобном для исследования рентгеноструктуриыми методами, а к концу 50-х годов химики располагали сотнями препаратов ферментов, полученных как в кристаллическом, так и в некристаллическом виде.

Мощное развитие аналитических методов в биохимии привело к расшифровке строения многих белков – к началу 60-х годов была определена аминокислотная последовательность белка вируса табачной мозаики, миоглобина, α– и β-цепей гемоглобина человека, а также ряда других белков.

Параллельно с расшифровкой аминокислотного состава белков проводились исследования их пространственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разработанную к 1951 г. Л. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плоской, а свернута в спираль, характеристики которой были также определены. Крупным достижением 50-х годов было определение пространственной структуры миоглобина (Дж. Кендрью) и гемоглобина (М. Перутц). Особенпо трудоемкой оказалось построение трехмерной модели гемоглобина – первые данные о структуре гемоглобина были получены Перутцем в 1937 г. За работы по определению пространственной структуры белков Кендрью и Перутцу была присуждена в 1962 г. Нобелевская премия но химии.

В начале 60-х годов на пути прогресса синтеза белков встретились серьезные трудности, связанные с тем, что выход конечного продукта был ничтожным. Путь резкого увеличения выхода конечного продукта (вплоть до 100 %) был указан работами американского биохимика Р. Меррифилда, который разработал метод синтеза белков на твердофазном носителе – в его методе растущая полипептидная цепь оставалась все время связанной с шариком полистирольной смолы, к которой присоединялась первая аминокислота. С помощью своего метода Меррифилду удалось синтезировать инсулин, а затем и рибонуклеазу, строение которой было к тому времени известно благодаря работам Стейна и Мура. Синтез рибо-нуклеазы проходил в 11931 этап, включавший 369 химических реакций – эти характеристики дают представление о сложности проблем, с которыми имеет дело современная молекулярная биология.

Как пишет известный советский биолог Ю. А. Овчинников, «наибольших успехов биологическая наука достигла в последние 20–25 лет, когда она сумела заглянуть внутрь живой клетки и понять биологические механизмы на уровне молекулярных взаимодействий»[357]357
  Овчинников 10. А. Биотехнология, ее место в научно-техническом прогрессе. – Вести. АН СССР, 1982, № 4, с. 4.


[Закрыть]
. Многие биологи считают, что особенно большое значение будет иметь генная инженерия, к достижениям которой уже теперь можно отнести создание новых микроорганизмов (бактерий и вирусов). Путем направленного изменения наследственного аппарата получены многие десятки микроорганизмов с заранее заданными свойствами.

В Советском Союзе проводится большая работа в области селекции, являющейся, с одной стороны, разделом агрономии и зоотехники, в котором рассматриваются методы создания новых сортов и гибридов сельскохозяйственных растений и пород животных, а с другой стороны, отраслью сельского хозяйства. Широко известны имена селекционеров, достигших в своем деле больших успехов. К их числу относятся: И. В. Мичурин (1855–1935), создавший более 300 сортов плодово-ягодных культур, широко использовавший методы отдаленной гибридизации; П. П. Лукьяненко (1901–1973) и В. Н. Ремесло (1907–1983), сумевшие создать высокопродуктивные сорта пшеницы; В. II. Мамонтова (р. 1895) – один из создателей метода ступенчатой гибридизации яровой пшеницы и автор ценных сортов ее; М. И. Хаджинов (1899–1980), создавший высокоурожайные гибридные сорта кукурузы; В. С. Пустовойт (1886–1972), разработавший высокоэффективную систему селекции и семеноводства подсолнечника, и др.

Надо надеяться, что генетика будет в дальнейшем использоваться гораздо шире в селекционных сельскохозяйственных работах.


    Ваша оценка произведения:

Популярные книги за неделю