355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Зигуненко » Величайшие загадки человека » Текст книги (страница 2)
Величайшие загадки человека
  • Текст добавлен: 31 октября 2016, 04:00

Текст книги "Величайшие загадки человека"


Автор книги: Станислав Зигуненко



сообщить о нарушении

Текущая страница: 2 (всего у книги 31 страниц)

ЖИЗНЬ РОДИЛАСЬ ВОВСЕ НЕ ТАК…

В наши дни научные исследования настолько специализированы, что дилетантам в науке, кажется, делать нечего. Но вспомните, как делаются открытия по словам А. Эйнштейна: «Все знают, что этого не может быть. Наконец, находится кто‑то, кто этого не знает– он‑то и делает открытие…» Очередным подтверждением данного афоризма и стала научная концепция, выдвинутая германским юристом Гюнтером Векстерсхойзером и опубликованная журналом «Сайнс».

Впрочем, справедливости ради отметим, что скромный юрист–патентовед из Мюнхена вовсе не такой уж невежда. В свое время он начал изучать органическую химию в Магдебургском университете и даже защитил докторскую диссертацию. И лишь потом, разочаровавшись в мире формул, стал заниматься юриспруденцией. Но тяга к непознанному, как видим, у него осталась.

Как осознает сам исследователь, многое в его труде противоречит традициям. Так, например, он начал не со сбора фактов, на которых должна, по идее, базироваться его концепция, а прямо с ее изложения, отложив экспериментальное подтверждение на потом.

История, впрочем, знает еще одного патентоведа, поступившего сто лет назад точно таким же образом. Альберт Эйнштейн сначала изложил на бумаге пришедшие в его голову мысли, предложив уже своим последователям искать им подтверждение в реальной жизни. И то сказать, тем он в значительной степени облегчил поиски. Ведь было уже известно, что именно надо искать.

Аналогичным образом рассуждал и известный английский философ Карл Попер. «Истинная наука, – говорил он, – развивается так. Сначала она конструирует теорию, а уже вслед затем доказывает ее, пытаясь опровергнуть опытом». Таким образом, любая теория должна нести в себе возможность ее опровержения. А коли так, рассудил Векстерсхойзер, то и нечего время терять на поиски фактов. Тем более что реально исследовать зачатки жизни, которая, по словам некоторых исследователей, зародилась на Земле порядка двух миллиардов лет тому назад, в действительности не представляется возможным. Все теории опять‑таки зиждятся на логических рассуждениях, уже потом подтверждаемых кое–какими опытами.

Если помните, до сих пор большинство ученых полагало, что родоначальником жизни на нашей планете стал еще не остывший океан. Над ним нависала богатая кислородом атмосфера, а в качестве катализатора служили электрические разряды бесконечных гроз.

Методом проб и ошибок авторы теории «бульона», например академик А. И. Опарин, создавали в своих лабораториях более или менее точные модели. Они наливали в колбы растворы различных веществ, пропускали через них электрические разряды, имитировавшие молнии, и смотрели, что из этого получается. Иногда у них выходило, что в результате реакций в «бульоне» образовывались более–менее сложные органические соединения. «Ага! – ликовали исследователи. – Именно так и зародилась жизнь на нашей планете…»

Герой нашей истории и сам долгое время верил в теорию «первичного бульона». Однако познакомившись с Карлом Везе, микробиологом из Иллинойского университета, ознакомившего его с некоторыми деталями подобных работ, понял, что теория «не звучит»; многие ее аспекты далеки от реальности.

Тогда Векстерсхойзер решил сам попытать счастья и в конце концов разработал некую логическую концепцию. Теория «первичного бульона» предполагает, что первые органические соединения зародились в среде, имеющей три измерения, рассуждал исследователь. Однако вещества, свободно перемещающиеся в воздухе или воде, не остаются вместе надолго. Обычно реакции происходят на какой‑нибудь поверхности. Это знают все экспериментаторы, старающиеся обеспечить именно наибольшую поверхность реагирующим веществам, ввести какие‑то катализаторы, обеспечивающие эффективность соединения.

Поверхность, на которой формировались предшественники жизни, полагал исследователь, должна была омываться водой. Кроме того, она должна была нести на себе положительный заряд – в противном случае вещества жизни, заряженные чаще всего отрицательно, просто на ней не удержались бы. Вещество же самой поверхности должно представлять собой сульфит некоего металла, соль сероводородной кислоты, обеспечивающей хорошие исходные условия для протекания реакций.

«Все гипотезы о происхождении жизни можно разделить на три класса, – пишет сам исследователь. – Одни считают, что жизнь началась с клеточных мембран, но тогда нужно пояснить, как питательные вещества проходили через такие мембраны. Другие полагают, что первоосновой всего стали нуклеиновые кислоты; но тогда надо разобраться, как могли образоваться столь сложные соединения. Я полагаю, что жизнь началась с метаболизма, обмена веществ…»

Другими словами, он уповает на повторяющиеся циклы химических влияний. Проходя раз за разом, эти реакции потом и потребовали усовершенствования механизма их происхождения. Так появились и мембраны, и нуклеиновые кислоты… Участвовали же в обмене веществ прежде всего атомы углерода, весьма распространенного на Земле элемента. При метаболизме они соединялись попарно – в науке это называется циклом фиксации углерода.

Побочным и поначалу бесполезным продуктом этого метаболизма и оказались аминокислоты – строительные блоки будущих белков. Накапливаясь, со временем они стали служить катализаторами – ускорителями тех химических перемен, которые творились вокруг. Нуклеиновые кислоты тоже появились как побочные продукты, но, обладая опять‑таки способностями самокатализа, они также стали быстро накапливаться. И в конце концов вышли в передовики самопроизводства…

Рано или поздно они еще повысили интенсивность производства, отгородившись от мешавшей им среды специальной пленкой – мембраной. Вот тогда‑то и родилась первая клетка.

* * *

Такова схема. Ну а как она выглядит при проверке экспериментом? Оказалось, что гипотеза Векстерсхойзера получила экспериментальную поддержку в опытах биохимиков. Причем они подтвердили реальность самого главного элемента – возможности фиксации углерода при описываемых исследователем условиях.

Так скажем, современные бактерии до сих пор сохраняют редкую способность, родившуюся вместе с ними – они умеют синтезировать уксусную кислоту – простое вещество, охотно вступающее в различные химические реакции. В основе же уксусной кислоты лежат как раз два атома углерода, соединенные в молекулу. Но может ли где‑нибудь и сегодня идти такой синтез прямо в природе? Да, может. Он происходит в горячих серных газах, вырывающихся из подводных вулканов…

Как, стало известно относительно недавно, именно там, при температуре в сотни градусов, привольно обитают бактерии, питающиеся серой. И там же полным–полно всевозможных сульфидов металлов. Таким образом, именно подводные вулканы претендуют сегодня на роль тех реакторов, где когда‑то впервые родилась жизнь. «Первичный бульон», получается, действительно родился в океане, но отнюдь не на его поверхности, как полагали еще недавно большинство исследователей.

Векстерсхойзер вспомнил молодость, раздобыл пробы вулканических газов и стал помешивать их в присутствии железных и никелевых сульфидов. И что же: синтез уксусной кислоты не заставил себя ждать! А она, как уже говорилось, самый вероятный кандидат для возникновения метаболизма – предшественника жизни. Уксусная кислота – весьма активное вещество, и значит, вероятность реакции куда выше, чем при теории «первичного бульона», где действуют вещества достаточно пассивные. Не случайно они могут вступать в реакцию лишь при молниевых разрядах.

Впрочем, сторонники традиционной теории вовсе не намерены складывать оружие вот так запросто. Например, уже упоминавшийся нами Стенли Миллер – патриарх теории «первичного бульона», еще в 1953 году проведший эксперимент, который показал, как в первичном океане могли бы образоваться первичные аминокислоты, ехидно намекает, что вот в экспериментах Векстерсхойзера таких аминокислот пока не видно. По мнению Миллера, возможность происхождения органических реакций и самой жизни в высокотемпературной среде подводных вулканов – попросту чушь!

Кстати, Миллер не хочет знать и о тех бактериях, которые обнаружены при подводных исследованиях донных вулканов. Ему, видимо, уже поздно менять свою точку зрения.

А вот ученые помоложе относятся к идее химика–юриста довольно спокойно. Скажем, Норман Рейд из Калифорнийского университета в Беркли считает, что Векстерсхойзер сделал полезное дело уже тем, что создал альтернативу «бульонщикам». «Данная работа, – полагает он, – дает возможность сменить парадигму, а это уже хорошо…»

Надеется ли исследователь воспроизвести более полный цикл своих исследований экспериментально? Такой вопрос Векстерсхойзеру задают нередко. «Все дело в определении, что такое жизнь, – рассуждает ученый. – Цикл метаболических реакций на поверхности не может остановиться, не может умереть. А значит, есть возможность проследить за ходом механизма и далее…»

ОТКУДА ПОСЫЛКА?

Еще в 60–е годы XX столетия Дж. Оро из Хьюстонского университета высказал предположение, что на поверхности некоторых «небесных камней» – метеоритов – можно обнаружить органические соединения, аминокислоты, которые затем и стали основой жизни на нашей планете. Поначалу на эту гипотезу никто не обратил внимания. Однако позднее она подтвердилась экспериментально: на поверхности так называемых углистых хондритов, составляющих около 5% падающих на Землю метеоритов, действительно были обнаружены подобные соединения.

Найдены ответы и на вопросы такого рода: «Как именно аминокислоты уцелели, когда метеорит «продирался» сквозь атмосферу?» Одна из наиболее распространенных версий гласит, что эти вещества попросту сдуло с поверхности метеорита в самых верхних слоях атмосферы и они уж потом самостоятельно «парашютировали» на поверхность Мирового океана, где и получили надлежащие условия для дальнейшего развития. Те же соединения, которые остались на поверхности самого метеорита (где потом и были обнаружены), могли уцелеть, прикрытые толстым слоем льда, которым был первоначально покрыт метеорит.

Таким образом, полагает исследовательница внеземной жизни Анна Ткачева, мы неожиданно для себя получили доказательство существования во Вселенной еще неких источников разума, кроме нашей Земли. Ведь согласно этой гипотезе, само наше существование является доказательством наличия такого разума. Мы – его порождение; те существа, которые выросли, развились из «семян», посланных некогда со звезд.

* * *

В октябре 2000 года один из самых авторитетных в мире научных журналов «Нейчур» опубликовал сообщение, что исследователи обнаружили и без особых затруднений пробудили к активной жизни споры бактерий, пролежавшие в соляном кристалле 250 миллионов лет.

Получается, что микроорганизмы, существуя в виде спор, практически бессмертны. Для непосвященного это не более чем странный факт. Популярная пресса на него почти не отреагировала. Однако в самой научной среде начался форменный переполох. Потому что из живучести бактерий в конечном счете вытекала возможность того, что все мы, обитатели Земли, по происхождению своему – инопланетяне, что наша планета заразилась жизнью через микроорганизмы из космоса.

«Я намеревался издать работу, где доказывал, что для живого существа межзвездное путешествие – вещь абсолютно нереальная. Но ряд обстоятельств, включая публикацию в «Нейчур», вынуждают меня пересмотреть свою позицию», – признался известный физик Джо Мелош из университета Аризоны.

Едва ученый успел сделать это признание, как появилась еще одна сенсационная статья, теперь уже в журнале «Сайнс». В ней сообщалось, что кометы и метеоры могут успешно транспортировать живые организмы от одной планеты к другой. И вот уже целый ряд специалистов в области астрономии, физики и биологии высказывают мнение, что сегодня теория космического происхождения жизни на Земле выдвигается на передний план. К ней возникает куда меньше вопросов, чем к экспериментально не подтвержденным домыслам о самозарождении живых организмов из химического супчика, который булькал на нашей планете миллиарды лет назад. Домыслы эти, между прочим, берут на веру даже многие нобелевские лауреаты.

Панспермия, теория о том, что семена жизни рассеяны по всему космосу, весьма стара – первым ее высказал еще древнегреческий философ Анаксагор. В XIX веке, из знаменитостей, такой точки зрения придерживался, например, французский химик Луи Пастер, которому мы обязаны пастеризованным молоком. Во второй половине XX века относиться к панспермии всерьез считалось в науке дурным тоном. Упорно отстаивали ее на протяжении последних 30 лет лишь двое британских ученых, которые ныне торжествуют победу, – сэр Фред Хойл, получивший рыцарское звание за изучение химического состава звезд, и его сподвижник Чандра Викрамасингх. Еще в конце 70–х годов они заявили, что обнаружили следы жизни в пыли далеких звезд.

Что ж, почему бы и нет, пожимали плечами коллеги Хойла и Викрамасингха, да только лететь до этих звезд тысячи и миллионы лет. Так что к возникновению жизни на Земле найденные следы никакого отношения иметь не могут. Но раз споры бактерий сохраняют жизнеспособность едва ли не вечно, утрачивает силу и возражение о том, что рейс микроорганизма с одной планеты на другую будет чересчур долог. Сколько потребуется, столько и будут лететь.

* * *

Кое‑кто, правда, пытается намекнуть, что авторы публикации в «Нейчур» могли ошибаться, что материал, с которым они работали, мог быть случайно загрязнен спорами современных бактерий. Вот эти наши современники, а вовсе даже не ископаемые, к жизни‑де и воспряли.

Однако тут получается натяжка. Хотя бы потому, что чуть–чуть раньше у другой группы ученых бодренькие и здоровые микроорганизмы вылупились из кусочка янтаря возрастом 30 миллионов лет. Такого срока вполне хватит, чтобы долететь с ближайшей планеты, условия которой напоминают земные, даже если та находится далеко за пределами Солнечной системы, а сами «пассажиры» будут пользоваться исключительно попутным транспортом в виде метеоров или комет, а вовсе не путешествовать с удобствами на специальных кораблях.

Нашли и планету, с которой некогда могла стартовать «звездная посылка». Расположена она на расстоянии 56 световых лет от нас и, судя по первым признакам, мало чем отличается от планет земной группы.

Несколько весомее выглядят сомнения, связанные со смертоносными лучами, которыми пронизан космос. Мэтью Гендж, исследователь метеоритов из лондонского Музея естественной истории, говорит: «В условиях Земли споры могут сохраняться многие миллионы лет потому, что они защищены от радиации.

Летящий сквозь космос метеор подвергается бомбардировке ядерными частицами. Если снаряд этой космической артиллерии попадет в живой организм, его ДНК будет повреждена, а при многократном попадании пассажир метеора погибнет».

Однако эксперты уже успели прикинуть, что, спрятавшись в глубь своего каменного космического корабля метра на три, бактерии могут пережить атаку космических частиц. Диаметр же в десяток метров для метеора не редкость. А если какая‑нибудь из радиоактивных частиц по ДНК бактерии все‑таки изловчится шарахнуть, то, кто знает, может, последующая мутация пойдет микроорганизму только на пользу – поможет освоиться в условиях новой планеты. И вообще для зарождения жизни на Земле достаточно, чтобы из тысяч бактерий, отправившихся в путешествие на метеоре, до пункта назначения добралось хотя бы несколько.

* * *

Дружно принять на ура теорию звездного происхождения земной жизни научному сообществу по большому счету мешает только одно. Уж чересчур велик космос. Уж чересчур мала вероятность, что напичканный бактериями метеор, вырвавшись за пределы своей звездной системы, успешно преодолеет гравитационные соблазны других звезд и планет, а затем приземлится аккурат на созревшей для приема гостей Земле, которая радушно предложит им хлеб–соль, то бишь воду и воздух. Вышеупомянутый Мэтью Гендж в интервью изданию «Спейс» заявил:

«О нет, конечно, в принципе подобное не исключено. А что до шанса, то он примерно таков же, как если бы некий джентльмен, которого ослепили и отвезли на другой континент, затем пешим ходом добрался бы до дому».

Но зачем искать источник земной жизни в звездной дали? У Земли есть добрый старый сосед, лететь до которого совсем недолго. Наукой установлено, что осколки небесных тел покрывают расстояние от него до нас меньше чем за год. Речь, разумеется, идет о Марсе. Сувениры с этой планеты на Земле найдены. Например, восемь однотипных метеоритов, названных LUHLU – по месту их обнаружения в Шерготти (Индия), Накле (Египет) и Шассиньи (Франция), – имеют марсианское происхождение.

Недавнее открытие, что в недрах Марса плещется вода, привело ученых в крайнее волнение. Оно означает, что жизнь там может сохраняться до сих пор. Холодно? В Антарктиде, где обнаружены процветающие под ледяным покровом микробы, тоже не жарко.

«Полагаю, перелет микроорганизмов с Марса на Землю в теле астероидов имел место со стопроцентной достоверностью, причем далеко не однократно, – утверждает физик Пол Дэвис, автор бестселлера «Пятое чудо: в поисках происхождения и смысла жизни». – Несколько миллиардов лет назад условия Марса вполне соответствовали требованиям, необходимым для живых существ. Находясь дальше от Солнца и будучи планетой меньшей, чем Земля, он остывал гораздо быстрее, чем она, создавая тем самым комфортные условия для развития жизни. Сила гравитации на Марсе тоже меньше земной. Значит, небесному телу куда легче было лететь с Марса на Землю, а не в обратном направлении».

ЖИЗНЬ ЗАРОДИЛАСЬ В ПЕКЛЕ, ИЛИ ВСЕ МЫ ВЫШЛИ ИЗ АДА?

Ну, хорошо, допустим, что «семена жизни» в виде каких‑то бактериальных спор действительно попали на нашу планету из космоса. А там они откуда взялись? Оказывается, во Вселенной немало мест, которые могут претендовать на звание источника жизни…

А начались поиски этих источников, как ни странно, с того, что физики попробовали со своей точки зрения взглянуть на… Библию. И выяснили, что многим из нас после смерти надо готовиться к житию в пекле. Потому как в той же Библии сказано: «Боязливых же и неверных, и скверных и убийц, и любодеев и чародеев, и идолослужителей и всех лжецов – участь в озере, горящем огнем и серою». А много ли среди нас праведников?

Между тем внимательный читатель может почерпнуть из той же Библии, и сколь накален ад. Сера, как известно, – твердое хрупкое вещество желтого цвета, которое плавится при температуре 119,7°С. При последующем повышении температуры она сначала растекается пылающими реками и огненными озерами, а затем (при 450 °С) начинает испаряться.

Таким образом, получается, что в аду столь же жарко, как, скажем, на поверхности Венеры. Впрочем, на конце горящей сигареты температура еще выше – 700 °С.

Впрочем, давайте для сравнения посмотрим, что же уготовано тем немногим праведникам, которые гарантировано попадут в рай. Для этого снова обратимся к тексту Библии. Пророк Исайя говорит о грядущем благолепии: «И свет луны будет, как свет солнца, а свет солнца будет светлее всемеро»….

Пользуясь этим указанием, два физика из университета испанского города Сантьяго‑де–Компостела попробовали применить к этим речам закон излучения Стефана–Больцмана («Температура тела, пребывающего в термическом равновесии, пропорциональна корню четвертой степени из количества излучения»), В итоге у них получилось, что температура небес, «по Исайе», равна 231,5°С! То есть, говоря иначе, в раю хоть не такое пекло, как в аду, но прохладно тоже не покажется…

* * *

Конечно, к подобным выкладкам не стоит относиться всерьез. Библия все‑таки – не свод лабораторных отчетов, чтобы подходить к ней с физическими мерками. И пытаясь узнать, где всего холоднее и всего жарче во Вселенной, обратимся лучше к исследованиям самих физиков и астрономов.

Для начала зададимся вопросом, что такое температура. Физики уже давно уяснили, что температуру любого тела характеризует беспорядочное движение молекул, из которых это тело состоит. Когда это движение полностью прекратится, температура тела упадет до абсолютного нуля.

Еще в 1848 году английский физик Уильям Томсон (впоследствии лорд Кельвин) предложил новую шкалу температур, названную теперь его именем. Начальной ее точкой стал абсолютный нуль: 0° К, или —273°С.

Ниже этой точки на шкале не может быть ничего. Частицы вещества либо движутся, либо не движутся. Третьего не дано.

Однако показатель градусов по шкале Кельвина или Цельсия ничего не скажет нам о том, какие частицы движутся и сколько их. Одна и та же температура легче переносится в одной физической среде и труднее – в другой. Определяется это именно количеством частиц, участвующих в тепловом движении, а также их типом. Например, мы относительно легко переносим температуру воздуха, равную 70°С (в особенности, если он сухой), а вот вода, нагретая до той же температуры, может нас обжечь. Причина понятна: вода – более плотная среда, чем воздух. Она содержит в единице объема больше молекул, чем воздух, и это чувствительнее для нас, вынужденных поглаживать ошпаренную кожу.

Но еще поразительнее для нас узнать, что самые высокие и самые низкие температуры во Вселенной зафиксированы у нас на Земле. Между тем это так. Во время экспериментов по искусственной термоядерной реакции (именно эта реакция протекает в недрах звезд, вызывая их свечение) ученым удавалось на короткие мгновения получать температуру в миллиарды градусов по шкале Цельсия. Так, еще в 1962 году в СССР была получена температура в 3 тысячи миллионов градусов. Для сравнения укажем, что в недрах Солнца температура достигает всего «каких‑то» 15 миллионов градусов.

В то же время ученые пытаются достичь абсолютного нуля по шкале Кельвина – и уже получены температуры, равные всего миллиардным долям градуса. Даже в самых пустынных уголках Вселенной и то теплее, чем в иных спецлабораториях на нашей планете. Ведь вдали от звезд температура диффузного вещества (то есть газа и пыли), заполняющего пространство, равна как‑никак трем градусам Кельвина. Межзвездные дали согреты космическим фоновым излучением – реликтом грандиозного события, которое, как считается, породило все наше мироздание, то есть реликтом Большого Взрыва.

Кстати, в момент, когда время было равно нулю и наша Вселенная, по мнению космологов, возникла буквально из ничего, температура в точке возникновения равнялась 10 13градусов. Это – самая высокая температура, которую когда‑либо использовали в своих расчетах физики–теоретики.

Сразу после Большого Взрыва наша Вселенная начала остывать. В конце времен, когда угаснут все звезды и исчезнут все планеты, воцарится мрак.

Есть поразительная взаимосвязь между областью самых высоких и самых низких температур. Так, в лабораторных условиях мы можем имитировать процессы, протекавшие во время гипотетического Большого Взрыва, если попробуем достичь абсолютного температурного нуля! По крайней мере, так заявляют физики Григорий Воловик и Мати Крузиус из Хельсинского технического университета.

При этом они опираются на «теорию струн», согласно которой наше мироздание, едва оно возникло, пронизали незримые космические нити. Они протянулись от одного края Вселенной до другого. Они были намного тоньше атома, но весили столько же, сколько весят нынешние галактики. И вот оказалось, что эти нитевидные структуры можно воспроизвести в жидком гелии, охлажденном до тысячной доли градуса Кельвина, если подвергнуть гелий нейтронной бомбардировке. Исследование этих тончайших образований, возникавших в пекле Большого Взрыва и возникающих близ абсолютного нуля, может помочь ответить на вопрос, что же действительно произошло в начале всех времен. Две крайности, похоже, смыкаются: горнило всепорождающего огня напоминает губительный ледяной мрак.

* * *

Итак, в первые мгновения после Большого Взрыва наша Вселенная стремительно расширялась и ее температура также быстро падала. Прошла всего десятитысячная доля секунды, а космос остыл уже до 10 12градусов, то есть до триллиона градусов. На второй день «творения» средняя температура Вселенной понизилась до каких‑то вполне сносных 30 миллионов градусов. («И увидел Бог, что это хорошо. И был вечер, и было утро: день второй».) Сегодня эта цифра равна всего 3 градусам Кельвина. Космос охладился почти до нуля.

Конечно, средние показатели не исключают того, что отдельные, крохотные участки Вселенной внезапно разогреваются до невероятных температур. Такое происходит, например, при вспышке сверхновой, то есть при взрыве какой‑либо массивной звезды. В этот момент ее температура на короткое время подскакивает почти до десяти миллиардов градусов. Этого достаточно, чтобы из элементарных частиц образовались новые элементы (углерод, кислород, железо, азот). Все они стремительно разлетаются прочь от взорвавшейся звезды. Именно эти элементы, рожденные в горниле многочисленных космических плавилен, являются основой всех органических веществ – в том числе и тех, что способствовали зарождению жизни.

Подобные температуры возникают и в очаге неуправляемого термоядерного взрыва, или, иными словами, при взрыве водородной бомбы. В естественных условиях подобный процесс происходит в недрах Солнца и других звезд, где водород превращается в гелий, что сопровождается выделением огромного количества тепла. Благодаря этой излучаемой энергии на Земле существует жизнь. Человек, словно нерадивый ученик сказочного волшебника, попробовал воспроизвести этот процесс, сотворив бомбу, но его презренная копия убивает все живое.

Все эти сверхвысокие температуры, упоминаемые нами, мы можем оценить лишь приблизительно. Никто не измерял их с точностью до градуса. Зато температуру на поверхности Солнца, как и в недрах Земли, измерить удалось. И та и другая равны примерно 6000 градусов Цельсия. В такой жаре испаряется даже вольфрам – самый тугоплавкий из всех химических элементов (температура плавления – 3420 °С). Между тем астрономы давно подумывали о том, что на Солнце могут обитать живые существа. Их аргумент был таков: солнечные пятна холоднее, чем окружающее их пространство. Если предположить, что Солнце, как и Венера, окружено раскаленными облаками, тогда эти пятна могут быть разрывами в череде облаков, проемами, сквозь которые виднеется поверхность самого светила. Ну а поскольку эти пятна темны, их температура невысока. Значит, в обширной области солнечных пятен вполне могут поселиться некие организмы. Вот такова была гипотеза, возникшая в то время, когда люди настойчиво принялись искать жизнь за пределами нашей планеты – в том числе и на Солнце.

Теперь мы знаем, что никаких «солнечных человечков» все‑таки нет. Впрочем, нельзя не признать, что ученые прошлого отличались определенной прозорливостью. Солнечные пятна и впрямь почти на 1500 °К холоднее окружающего их вещества, а сама поверхность Солнца не очень‑то и разогрета, если мы сравним ее температуру с тем жаром, которым пышут некоторые другие звезды, например голубые гиганты. Температура поверхности самых крупных из них достигает почти 100 000 градусов. Всего за шесть секунд подобные звезды излучают столько же энергии, сколько наше Солнце – за год.

Еще сильнее разогреты крохотные нейтронные звезды, чей диаметр не превышает тридцати километров. Мы не способны их увидеть, но знаем, что их температура достигает миллиона градусов! На таком фоне покажется вполне уютной и пригодной для обитания самая холодная из известных нам звезд – двойная звезда в созвездии Стрельца. Она потеряла так много вещества, что весит теперь в 20 раз меньше Солнца и остыла до 1700 °С. Впрочем, все равно здесь чересчур жарко для живых организмов биологического типа. Так что жизнь на звездах скорее всего невозможна.

* * *

Какая же температура надобна для возникновения жизни и ее развития? Еще полвека назад американский астрофизик азиатского происхождения Су–Шу Хуанг, попытался очертить «зону жизни» – то есть область вокруг звезд, где может существовать жизнь. При этом он принимал как аксиому, что средняя температура в этой зоне должна колебаться в пределах от 0 до 100 градусов Цельсия.

Не думайте, что он так уж перегнул палку. Мы уже отмечали, что ученые долгое время верили, что при 100°С все живое гибнет. Однако в 70–е годы XX века на дне океана были открыты необычные образования, которые окрестили «черными курильщиками». Здесь из недр Земли вырастают конические трубы, из которых вырывается темная, сернистая магма, разогретая до 300 °С. В окрестностях этих подводных курящихся труб, словно в Аду, обитает множество организмов – бактерии, креветки, черви… Позднее примитивные формы жизни были обнаружены также в кипящей воде гейзеров.

Неужели жизнь зародилась среди адского пекла – в «озерах, горящих огнем и серою»? Если это так, то жизнь может быть и на такой планете, как Венера. Жаролюбивые, питающиеся серой бактерии могли бы, прижившись в атмосфере Венеры, сделать эту планету пригодной для жизни человека – пусть на это понадобились бы сотни тысяч лет.

А может быть, все было наоборот и жизнь появилась в ледяной пучине космоса? Во всяком случае, так около полувека назад утверждал британский астроном Фред Хойл. Согласно его теории, первые зародыши жизни возникли в темных межзвездных облаках и позднее были занесены на многие планеты. В то время эта гипотеза казалась выдумкой, достойной фантастов – тем более что сам Хойл и написал научно–фантастический роман, посвященный подобному думающему облаку.

Однако со временем выяснилось, что гипотеза не так уж и фантастична. В межзвездных облаках, состоящих из графитовых (углеродных) пылинок, обнаружены органические молекулы: поначалу – лишь ядовитый цианистый водород (то есть синильная кислота), затем – полициклические углеводороды. Под действием ультрафиолетового излучения, испускаемого соседними звездами, в этих пылинках может пробудиться жизнь.

В пользу этого соображения говорит и следующий довод. Все земные аминокислоты – основные компоненты белка – имеют сходную форму, так называемую L–конфигурацию. Возможно, что эти «кирпичики жизни» приобрели подобную форму под действием звездного света, для которого характерна круговая поляризация.

Жизнь может существовать не только в ледяной пучине космоса, но и под толщей льдов Антарктиды – там, куда не проникает свет, где нет тепла, нет притока энергии. Правда, обнаруженные там формы жизни (архебактерии) пребывают в анабиозе – своего рода «зимней спячке» (образно говоря, они делают один вдох за сто лет), но если они получат достаточно света и тепла, то быстро проснутся. Добавим, что в Антарктиде (рекордно низкая температура: —89,2°С) почти так же холодно, как на Марсе, где температура снижается до —140°С. Быть может, в недрах Марса, дожидаясь лучшей поры, тоже скрывается своя примитивная жизнь? Ведь было время – и на Марсе текли реки!


    Ваша оценка произведения:

Популярные книги за неделю