Текст книги "Под знаком кванта"
Автор книги: Леонид Пономарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 1 (всего у книги 31 страниц)


Л. И. Пономарев
Под знаком кванта
ИЗДАНИЕ ВТОРОЕ, ИСПРАВЛЕННОЕ И ДОПОЛНЕННОЕ

МОСКВА «НАУКА»
ГЛАВНАЯ РЕДАКЦИЯ
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
ББК 22.314
П56
УДК 530.145(023)
Рецензент
член-корреспондент АН СССР И. И. Гуревич
Пономарев Л. И.
П56 Под знаком кванта.—2-е изд., испр. и доп.– М.: Наука. Гл. ред. физ.-мат. лит., 1989.– 368 с.: ил.
ISBN 5-02-014049-Х
Квантовая физика – самое выдающееся открытие XX века. Практически ни одно глубокое явление природы невозможно понять и объяснить без квантовых идей. Цель книги – познакомить читателя-неспециалиста с основными фактами квантовой физики и историей их открытия. Ярко и образно, достаточно строго, но вполне доступно автор рассказывает об эволюции идей и понятий современной физики. Предыдущее издание (М.: Сов. Россия, 1984) удостоено Диплома первой степени на Всесоюзном конкурсе общества «Знание».
Для старшеклассников; учителей, студентов и всех, кого интересуют основы науки.
1604030000-131
053(02)-89
93-89
ББК 22.314
© Издательство «Советская Россия»,
1984
© Издательство «Наука».
ISBN 5-02-014049-Х
Главная редакция физико-математической литературы, 1989, с изменениями
– Этот мир странно устроен...
– По сравнению с чем?
ОТ АВТОРА
«Настоящее колдовское исчисление»,– писал о квантовой механике Альберт Эйнштейн своему другу Мишелю Бессо в декабре 1925 г.: в то время даже для него новая механика казалась слишком сложной. Сейчас хороший студент-физик знает о квантах больше, чем все великие ученые начала века: квантовая физика стала привычной. Но она йе стала от этого менее удивительной, и каждое новое поколение исследователей отдает ей свою дань восхищения.
Квантовая физика родилась в короткий период между двумя мировыми войнами. С тех пор она изменила жизнь цивилизованных народов больше, чем любое из прежних открытий, но даже образованные люди знают о ней незаслуженно мало. Типичные представления о квантовой физике напоминают отчасти донаучное отношение человека к молнии и грому: он не понимал их природы и потому – боялся. Для многих наука об атомах и квантах навсегда присыпана пеплом атомного взрыва, а «физик-атомщик» – чем-то сродни злому волшебнику. Все это несправедливо и достойно сожаления, ибо такое предвзятое отношение мешает понять главное: квантовая физика – не просто еще одна из бесчисленных ныне наук. Это именно та наука, которая стала основой технотронной эры, привела к пересмотру философии знания, повлияла на политику целых государств. По праву науку о квантах можно сравнить лишь с такими взлетами мысли, как система Коперника, законы Ньютона, учение об электричестве. Все они стали теперь достоянием общечеловеческой культуры, и каждому современнику необходимо иметь о них хотя бы простейшие представления.
Но дело даже не в пользе или необходимости: квантовая физика – это интересно. Интересно – в самом точном смысле этого слова,– и столь же увлекательно. Именно внутренняя логика и красота учения о квантах стали побудительной причиной появления этой книги. Ее основное содержание – эволюция идей и понятий квантовой физики. Я буду считать свою работу не напрасной, если читатель поймет необходимость этого странного мира, почувствует неизбежность его квантовых химер и, наконец, примет их и признает естественными.

«Каждый школьник знаком теперь с истинами, за которые Архимед отдал бы жизнь.»
Эрнест Ренан
«Ощущение тайны – наиболее прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели истинного искусства и настоящей науки.»
Альберт Эйнштейн
Истоки
ГЛАВА 1
Атомы. Волны. Кванты. Вокруг кванта
ГЛАВА 2
Спектры. Ионы. Лучистая материя. Атомы, электроны, волны.
Вокруг кванта
ГЛ АВ а з
Планетарный атом. Спектральные серии. Фотоны. Победа атомистики. Вокруг кванта
ГЛАВА 4
До Бора. Атом Бора. После Бора. Формальная модель атома. Вокруг кванта
ГЛАВА 5
Учения древних. Первые попытки. Элементы и атомы. Таблица элементов. Периодический закон. Вокруг кванта
ГЛАВА 1
Жиг-гуаша
Квантовая физика – это наука о строении и свойствах квантовых объектов и явлений.
В этом определении все верно, и тем не менее бесполезность его очевидна до тех пор, пока мы не объяснили, что означают сочетания слов «квантовое явление» и «квантовый объект».
Слово quant – квант отсутствует во всех словарях прошлого века: оно появилось лишь в начале нашего, XX века. До этого повсеместно знали слово «quantum», которое означает: «сколько», «количество», «доля», «часть», «порция». Если поставить его рядом со словами «объект» и «явление», то получится «количественное явление» или «порционный объект» – в общем, нечто несуразное, если все это понимать буквально.
Каждый, кто изучал иностранные языки, легко поймет причину такой несуразицы: словосочетания «квантовое явление», «квантовый объект», равно как и «квантовая физика»,– это идиоматические обороты, которые нельзя переводить дословно. Чтобы понять их истинный смысл, необходимо предварительно познакомиться с обычаями и культурой страны, в которой они родились.
Квантовая физика – обширная страна с богатой и глубокой культурой. Если вы знаете о ней только то, что она «...разрешила вековую загадку таинственной страны микромира», а также «перевернула все наше мировоззрение», то вам известно о ней примерно столько же, сколько туристам о незнакомой стране, культуры которой они не знают, а языка – не понимают: их память сохранит лишь яркие пятна реклам на незнакомом языке.
Язык квантовой физики своеобразен, но, в сущности, ничем не отличается от любого иностранного. Как и всякий язык, его нельзя усвоить единым усилием воли – нужна система. Для начала надо просто запомнить несколько ходовых слов и пытаться строить из них простые фразы, не очень заботясь о строгости грамматических конструкций. Лишь впоследствии придут та легкость и уверенность владения новым языком, которые приносят с собой удовлетворение и радость чистого знания.
Чтобы привыкнуть к языку и логике квантовой физики, необходимо освоить предварительно несколько понятий, на первый взгляд ничем не связанных между собой. В стройную систему они складываются не сразу, а при длительном сопоставлении и размышлении. Процесс усвоения квантовых идей можно уподобить растворению соли в воде: вначале брошенные в стакан мелкие кристаллы бесследно исчезают, но затем наступает момент, когда достаточно бросить еще один кристаллик, чтобы из этой маленькой затравки вырос большой, правильный кристалл.
В дальнейшем мы узнаем истоки, идеи и находки квантовой физики, объясним систему ее образов и, наконец, расскажем о приложениях. Но вначале мы должны растворить в своем сознании несколько кристаллов первоначальных понятий, усвоить те немногие, но необходимые слова, без которых невозможно построить ни одной осмысленной «квантовой фразы». Для начала запомним три важных понятия квантовой физики: атомы, волны, кванты — и проследим истоки их возникновения.
АТОМЫСейчас мало осталось людей, для которых реальность атомов менее очевидна, чем движение Земли вокруг Солнца. Почти у каждого с этим понятием связано интуитивное представление о чем-то маленьком и неделимом. И все же, какой смысл вкладывает в понятие «атом» нынешняя физика? Как оно возникло, что понимали под этим древние, как потом развивалось и почему только квантовая механика наполнила реальным содержанием эту умозрительную схему?
Творцом идеи атома принято считать Демокрита, хотя история упоминает также учителя его Левкиппа и – менее уверенно – древнеиндийского философа Канаду. О жизни и личности Демокрита мы знаем мало. Известно, что родился он в ионийской колонии Абдера на Фракийском берегу Средиземного моря; кроме Левкиппа, учился у халдеев и персидских магов, много путешествовал и много знал; прожил около ста лет и в 370 г. до н. э. был похоронен за общественный счет гражданами родного города, которые его глубоко почи-
|
| Демокрит |
тали. Многочисленные поколения художников изображали Демокрита высоким, с короткой бородой, в белом хитоне и в сандалиях на босу ногу.
Легенда рассказывает, что однажды Демокрит сидел на камне у моря, держал в руке яблоко и размышлял: «Если я сейчас это яблоко разрежу пополам – у меня останется половина яблока; если я затем эту половину снова разрежу на две части – останется четверть яблока; но если я и дальше буду продолжать такое деление, всегда ли у меня в руке будет оставаться 1/8, 1/16 и т. д. часть яблока? Или же в какой-то момент очередное деление приведет к тому, что оставшаяся часть уже не будет обладать свойствами яблока?» Впоследствии оказалось, что сомнение Демокрита (как почти всякое бескорыстное сомнение) содержало долю истины. По зрелом размышлении философ пришел к выводу, что предел такого деления существует, и назвал эту последнюю, уже неделимую, частицу атом – аторо? – «неразрезаемый», а свои мысли изложил в книге «Малый диакосмос». Вдумайтесь – это написано более двух тысяч лет назад: «Начало вселенной – атомы и пустота, все же остальное существует лишь в мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия, не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля. Дело в том, что последние суть соединения некоторых атомов. Атомы же не поддаются никакому воздействию и неизменяемы вследствие твердости».
Когда умер Демокрит, Аристотелю, будущему учителю Александра Македонского, было 14 лет. Он был худощав, невысок ростом,


изыскан, а уважение к нему переходило часто все разумные границы. Для этого были основания: он владел всеми знаниями той эпохи. Аристотель учил обратному: процесс деления яблока можно продолжить бесконечно, по крайней мере в принципе. (Справедливости ради следует признать, что идея бесконечной делимости вещества для неискушенного ума выглядит более естественно, чем
Аристотель мысль о существовании принципиального
предела делимости материи.) Учение Аристотеля стало господствующим, Демокрита забыли на многие века, а его сочинения уничтожались с тщанием, достойным лучшего применения. Поэтому учение Демокрита сохранилось только во фрагментах и свидетельствах современников, а Европа узнала о нем из поэмы древнеримского поэта Тита Лукреция Кара (99—55 гг. до н. э.) «О природе вещей».
Бессмысленно винить древних за такой выбор – для них обе системы были равно разумны и приемлемы: цель своей науки они видели не в практических применениях (они их стыдились), а в том, чтобы с помощью умозрения достигнуть того чувства гармонии мира, которое сообщает человеку всякая законченная философия.
Чтобы освободиться от заблуждений великого авторитета, потребовались две тысячи лет. В XVII веке впервые возникла наука физика, которая вскоре вытеснила древнюю натуральную философию.
Наука опиралась не на чистое умозрение, а на опыт и математику. Окружающую природу стали не просто наблюдать, а изучать, то есть ставить сознательные опыты для проверки гипотез и записывать результаты этой проверки в виде чисел. Идея Аристотеля не выдержала такого испытания, а гипотеза Демокрита окрепла и дала начало атомной теории.
После двадцати веков забвения идею об атомах возродил к жизни французский философ и просветитель Пьер Гассенди (1592—1655): в 1647 г. появилась его книга с изложением идей атомизма. В то время это было сопряжено с известным риском: традиции средневековья преследовали не только гипотезы, но и строгие факты науки, если они противоречили общепризнанным догматам. (В Париже, например, в 1626 г. учение об атомах запретили под страхом смертной казни.) Тем не менее атомную гипотезу приняли все передовые
ученые того времени. Даже Ньютон с его знаменитым девизом «Hypothesis non fingo» («гипотез не строю») поверил в нее и изложил по-своему в конце третьего тома «Оптики».
Однако до тех пор, пока гипотезу об атомах не подтвердили опытом, она оставалась, несмотря на всю свою привлекательность, только гипотезой.
В правоте Демокрита впервые наглядно мог убедиться шотландский ботаник Роберт Броун (1773—1858). В 1827 г. это был уже немолодой директор ботанического отдела Британского музея. В юности он провел четыре года в экспедициях по Австралии и привез оттуда около 4 тысяч видов растений. Двадцать лет спустя он все еще продолжал изучать коллекции экспедиции. Летом 1827 г. Броун обратил внимание на то, что мельчайшая пыльца растений произвольно двигается в воде под действием неизвестной силы. Он тут же опубликовал статью, заглавие которой очень характерно для той неторопливой эпохи: «Краткий отчет о микроскопических наблюдениях, проделанных в июне, июле и августе 1827 г. над частицами, содержащимися в пыльце растений; и о существовании активных молекул в органических и неорганических телах».
Сначала его опыт вызвал недоумение. Это недоумение усугубил сам же Броун, пытаясь объяснить обнаруженное явление некой «живой силой», которая якобы присуща органическим молекулам. Естественно, такое прямолинейное объяснение «броуновского движения» не удовлетворило ученых, и они предприняли новые попытки изучения его особенностей. Среди них особенно много сделали голландец Карбонэль (1880 г.) и француз Гуи (1888 г.). Они поставили тщательные опыты и выяснили, что броуновское движение не зависит от внешних воздействий: времени года и суток, добавления солей, вида пыльцы и «...наблюдается одинаково хорошо ночью в деревне и днем вблизи многолюдной улицы, где проезжают тяжелые экипажи». Оно не зависит даже от вида частичек, а только от их размеров и массы и, что самое главное, никогда не прекращается. (Почти за двадцать веков до Броуна свойства этого движения мысленно представил себе и подробно описал в своей поэме Лукреций Кар.)
Надо сказать, что первое время странное движение не обратило на себя должного внимания. Большинство физиков о нем вообще не знали, а те, кто знал, считали его неинтересным, полагая, что это явление аналогично движению пылинок в солнечном луче. Лишь сорок лет спустя впервые оформилась мысль о том, что видимые в микроскоп беспорядочные движения пыльцы растений вызваны случайными толчками
И
маленьких невидимых частиц жидкости. После работ Гуи в это поверили почти все, и гипотеза об атомах приобрела множество последователей.
Конечно, и до Броуна немало людей были убеждены, что все тела построены из атомов. Для них некоторые свойства атомов были очевидны уже без дальнейших исследований. В самом деле, все тела в природе, несмотря на огромные различия между собой, имеют массу и размеры. Очевидно, у атомов этих тел также должны быть и масса, и размеры. Именно эти их свойства положил в основу своих рассуждений Джон Дальтон (1766—1844) —скромный учитель математики и натуральной философии в городе Манчестере и великий ученый, определивший развитие химии примерно на сто лет вперед* В 1804 г., тщательно анализируя известные в то время данные о химических соединениях, Джон Дальтон сформулировал понятие о химическом элементе', вещество, которое состоит из атомов одного типа.
При этом сразу же возникал вопрос: не означает ли многообразие веществ такого же многообразия атомов, как это утверждал Демокрит? Оказалось, что нет. Вскоре выяснилось, что элементов в природе не так уж много: в то время их знали около 40 (сейчас 105). Все остальные вещества построены из молекул – разнообразных сочетаний этих атомов. Сами атомы разных элементов также различаются между собой, и прежде всего массой. Самые легкие из них – атомы водорода, атомы кислорода тяжелее их в 16 раз, железа – в 56, и т. д. Так в науку об атоме впервые проникли числа.
Однако по-прежнему об абсолютных размерах и массах атомов ничего не было известно.
Первой удавшейся научной попыткой оценить размер и массу атомов следует считать работу преподавателя физики Венского университета Йозефа Лошмидта (1821 —1895). В 1865 г. он нашел, что размеры всех атомов примерно одинаковы и равны 10-8 см, то есть 0,00000001 см, а масса атома водорода составляет всего 10-24 г.
Впервые мы встречаемся здесь с такими малыми величинами, и у нас просто нет необходимых навыков, чтобы их осмыслить. Самое большее, на что мы способны, это сказать: тонкий, как паутина, или – легкий, как пух. Но толщина паутины (10-3 см) в сто тысяч раз больше самого большого атома, а пуховая подушка – это уже нечто весомое и вполне реальное. Чтобы хоть как-то заполнить провал между здравым смыслом и малостью этих чисел, обычно все же прибегают к сравнениям, хотя они, как правило, мало помогают и еще меньше объясняют, поскольку для столь малых объектов само понятие о размере как о величине, измеряемой прикладыванием масштаба, теряет свой первичный смысл. Поэтому лучше с самого начала оставить попытки представить себе эти числа наглядно. Важно только понимать, что, несмотря на свою чрезвычайную малость, эти числа не произвольны: именно та

кие малые диаметры и массы нужно приписать атомам, чтобы свойства веществ, которые из них состоят, оказались такими, какими мы их наблюдаем в природе.
Число молекул газа в объеме 1 см3 при нормальном давлении и температуре таяния льда
£ = 2,68676-1019 см“3
сейчас известно с большой точностью и называется постоянной Лошмидта. Она примерно в десять раз превышает значение, найденное им впервые.
волны
Железо, как и всякое вещество, состоит из атомов. Если один конец железного лома поместить в печь, он, разумеется, начнет нагреваться. Мы теперь хорошо знаем, что тепло – это энергия движущихся атомов и увеличение их энергии при нагревании просто обнаружить, коснувшись, например, другого конца лома. Но это далеко не все. По мере нагревания постепенно меняется цвет нагретого железа: от вишневокрасного до ослепительно белого. Причем к лому теперь нельзя не только прикоснуться, но и просто подойти близко. Последнее уже непонятно, если пользоваться только представлением о движении атомов: действительно, мы не касались лома, атомы железа не ударялись о нашу руку – почему же нам стало жарко?
Здесь мы впервые встречаемся с новым явлением и должны ввести соответствующее ему понятие – излучение, которое на первый взгляд никак не связано с идеей атома.
Мы говорим: лучи солнца осветили поляну, то есть свет – это излучение. Но мы говорим также: греться в лучах солнца. Следовательно, и тепло может распространяться в виде лучей. Вообще, с излучением мы имеем дело постоянно: когда сидим у костра, наблюдаем закат, вращаем ручку настройки приемника или проходим флюорографию. Тепло, свет, радиоволны и рентгеновские лучи – различные проявления одного и того же электромагнитного излучения.

Однако мы все-таки их различаем не только качественно и субъективно, но и количественно. По какому признаку? У электромагнитного излучения их много, но нам особенно важен сейчас один из них – волновая природа излучения.
Явление распространения волн настолько привычно каждому из нас, что пояснять его вновь кажется излишним. Тем не менее мы все-таки напомним здесь основные свойства волнового движения, по той же самой причине, по которой даже в солидные академические словари иностранных слов помещают вполне понятные обиходные слова.
«Волна» – одно из самых необходимых слов физики. Каждый представляет себе ее по-разному: один сразу же видит волны от брошенного в пруд камня, другой – синусоиду. Поскольку синусоиду рисовать проще – воспользуемся ею. У этой схематической волны четыре свойства: амплитуда А, длина волны X, частота v и скорость распространения v. Амплитуда волны – это наибольшая ее высота. Что такое длина волны – понятно из рисунка. Скорость ее распространения, по-видимому, особых пояснений не требует.
Чтобы выяснить, что такое частота, проследим за движением волны в течение секунды. При скорости и (см/с) она за это время пройдет расстояние v (см). Подсчитав, сколько длин волн уместилось на этом отрезке, мы найдем частоту излучения: v = u/X (с-1).
Важнейшее свойство волн – их способность интерферировать,то есть способность волн уничтожать или усиливать друг друга, например, при отражении, и это именно то свойство, по которому волну всегда можно безошибочно отличить от потока частиц.
Еще одно свойство волны, которое отличает ее от частиц,– дифракция — состоит в ее способности огибать препятствия, если его размеры соизмеримы с длиной волны. Если препятствие невелико, то благодаря дифракции волна может разделиться, обойти его и, складываясь снова, усилить или погасить себя точно так же, как при сложении прямой и отраженной волн.
Именно таким способом, обнаружив интерференцию и дифракцию у рентгеновского и других видов излучения, установили, что все они – волны, только разной длины. Длина волны излучения и есть тот основной признак, по которому мы количественно различаем разные виды электромагнитного излучения. Наибольшая длина у радиоволн: от нескольких километров до нескольких сантиметров. У тепловых лучей она короче – от 1 до 10-2 см. Еще короче волны видимого света, примерно 4-10-5—8-Ю-5 см. Наконец, у рентгеновских лучей длина волны составляет лишь 10~7 – 10“8 см. Все виды излучения распространяются с одной и той же скоростью – со скоростью света с = 3-1О10 см/с. Отсюда по формуле v=c/X очень просто вычислить частоту каждого вида излучения. Очевидно, для рентгеновского излучения она будет наибольшей, а для радиоволн – наименьшей.
Очень важно отдавать себе отчет в том, что, конечно, любое излучение – это не синусоида, изображенная на рисунке, а физический процесс, основные характеристики которого (например, периодичность), по счастью, можно выразить на языке таких простых моделей. У каждого вида излучения свои особенности. Сосредоточимся пока на том его виде, который для нас наиболее важен и привычен,– на солнечном излучении.
Когда вы греетесь на солнце, вы, наверное, не задумываетесь о сложном составе солнечного излучения, хотя иногда солнечные ожоги и напоминают вам об этом. Исаак Ньютон (1643—1727) жил в Англии, где солнце светит не так уж ярко, тем не менее он захотел узнать, из чего состоит солнечный свет. Чтобы выяснить это, Ньютон поставил в 1666 г. опыт, знакомый теперь каждому школьнику: пропуская луч солнца сквозь призму, он обнаружил позади нее на стене радугу – спектр солнечного света. Впоследствии его соотечественник Томас Юнг (1773—1829) выяснил, что каждому цвету радуги-спектра соответствует своя длина волны солнечного излучения: самые длинные волны у красного цвета – 650 нм; у зеленого короче – 520 нм; еще короче у фиолетового– 400 нм (1 нм = 10-7 см).

Спектр излучения любого тела – будь то Солнце или раскаленный железный лом – полностью известен, если мы, во-первых, знаем, из каких волн он состоит и, во-вторых, какую долю они составляют в общем потоке излучения. В частности, цвет раскаленного тела определяют те волны, которых больше всего в спектре его излучения. При изменении температуры тела спектральный состав его излучения также меняется. Пока температура тела невысока, оно излучает, но не светится, то есть испускает только тепловые волны, невидимые для глаза. При повышении температуры оно начинает светиться: сначала красным, затем оранжевым, желтым и т. д. цветом. Например, при температуре 6000 °C больше всего’ излучается желтых лучей (именно по этому признаку определили температуру поверхности Солнца).
В конце прошлого века законы теплового излучения тел стали предметом пристального внимания ученых. В значительной мере это было обусловлено потребностями металлургии и, в частности, изобретением в 1856 г. Генрихом Бессемером (1813—1898) нового способа производства стали, получившего впоследствии название бессемеровского.
Спектральный состав излучения принято описывать с помощью спектральной функции и (у, Т), которая показывает, чему равна доля излучения с частотой v в его общем потоке при заданной температуре тела Т. Типичная спектральная функция и (v, Т) изображена на рисунке: примерно так выглядит спектральный состав излучения Солнца.
При попытке более детально изучить законы' теплового излучения вначале нужно было принять во внимание тот факт, что даже при одной и той же температуре спектр излучения и, следовательно, спектральная функция и(у,Т) зависят от вещества нагретого тела. В этом нетрудно убедиться, нагревая в темноте два одинаковых по размеру шара – каменный и стальной: первый из них будет светиться намного ярче. Вскоре выясни

ли, однако, что если вместо сплошных шаров нагревать полые, а их излучение наблюдать через небольшое отверстие в стенке шара, то спектральный состав этого излучения уже не будет зависеть от вещества шара. Такой спектр назвали спектром абсолютно черного тела. Происхождение этого несколько необычного названия легко по-
нять. Представьте, что вы не нагреваете шар, а, наоборот, освещаете его снаружи. В этом случае вы всегда увидите перед собой одинаково черное отверстие – независимо от вещества шара, поскольку почти все лучи, попавшие внутрь полости, многократно в ней отражаются и наружу практически не выходят.
Универсальная спектральная функция и(у,Т), описывающая спектр излучения абсолютно черного тела, была введена в научный обиход выдающимся немецким физиком Густавом Робертом Кирхгофом (1824—1887) в 1859 г. Измерить ее оказалось не так просто: это удалось лишь Сэмюэлю Лэнглею (1834—1906), который в 1884 г. изобрел болометр – прибор для измерения энергии излучения. Важность функции u(v,T) поняли сразу же, но в течение 40 лет не удавалось найти для нее теоретическую формулу, которая бы правильно воспроизводила результаты измерений. Однако попытки эти никогда не прекращались: по-видимому, поиски абсолютного всегда привлекательны для человеческого ума.






