Текст книги "Истина и красота. Всемирная история симметрии."
Автор книги: Иэн Стюарт
Жанр:
Математика
сообщить о нарушении
Текущая страница: 4 (всего у книги 26 страниц)
Книга аль-Хваризми несет на себе следы влияния предшественников – вавилонян и греков, а также основывается на идеях, появившихся около 600 года у Брахмагупты в Индии. Там объясняется, как решать линейные и квадратные уравнения. Непосредственные последователи аль-Хваризми поняли, как решать и некоторые специальные виды кубических уравнений. К числу этих последователей принадлежали Сабит ибн Корра – врач, астроном и философ, который жил в Багдаде и был при этом язычником, – а также египтянин по имени аль-Хасан ибн аль-Хайсам, которого в позднейшей западной литературе, как правило, называют Альхазен. Но более всех знаменит Омар Хайям.
Полное имя Омара было Гияс аль-Дин Абу'ль-Фатх Омар ибн Ибрахим аль-Нишапури аль-Хайями. Слово «аль-Хайями» буквально переводится как «палаточник», что, по мнению ряда ученых, должно указывать на род занятий его отца Ибрахима. Омар родился в Персии в 1047 году и провел большую часть своей деятельной жизни в Нишапуре. Теперь этот город можно найти на карте рядом с городом Мешхед в провинции Хоросан на северо-востоке Ирана, вблизи границы с Туркменистаном.
Легенда гласит, что в молодости Омар ушел из дома изучать ислам и Коран под руководством прославленного религиозного деятеля Имама Моваффака, жившего в Нишапуре. Там он свел дружбу с двумя другими учениками – Хасаном Сабахом и Низамом аль-Мульком. Друзья поклялись, что если кто-то из них станет богатым и знаменитым – что вполне могло случиться с теми, кто обучался у Моваффака, – то он поделится своим богатством и властью с двумя другими.
Юноши закончили обучение. Год проходил за годом; соглашение оставалось в силе. Низам отправился в Кабул. Омар, не обладавший серьезными политическими амбициями, провел некоторое время в качестве палаточника (другое возможное объяснение его имени аль-Хайями). Страстью его стали науки и математика, и он отдавал им большую часть своего свободного времени. Затем вернулся Низам, который добился для себя должности в правительстве и стал управляющим делами султана Альп Арслана в его резиденции в Нишапуре.
Поскольку Низам достиг богатства и славы, Омар и Хасан напомнили ему о клятве. Низам испросил у султана дозволения помочь своим друзьям и, когда оно было получено, исполнил клятву. Хасан получил хорошо оплачиваемую работу в правительстве, но Омар пожелал просто продолжать свои научные занятия в Нишапуре, где он мог бы возносить молитвы за здоровье и благополучие Низама. Старый школьный друг организовал для Омара правительственное жалованье, дабы тот мог посвящать свое время занятиям. На том и порешили.
Хасан позднее попытался подсидеть вышестоящего чиновника и лишился своей синекуры, а Омар тихо и спокойно жил как прежде и даже получил назначение в комиссию по реформированию календаря. Персидский календарь основывался на движении Солнца, и наступление первого дня нового года нередко переносилось, что создавало большие неудобства. Работа очень подходила квалифицированному математику, и Омар применил свои математические и астрономические знания для вычисления наступления нового года в любой наперед заданный год.
Примерно в то же время он написал «Рубайят», или «Рубай», что довольно приблизительно переводится как «четверостишия». Это форма лирической поэзии. Рубай состоят из четырех строк, рифмующихся определенным образом – точнее говоря, одним из двух возможных способов [11]11
аабаили аааа. (Примеч. перев.)
[Закрыть]. «Рубай» Омара Хайяма были собранием таких стихов. Один из них ясно указывает на его деятельность по реформированию календаря:
Дни – волны рек в минутном серебре,
Песка пустыни в тающей игре.
Живи Сегодня. А Вчера и Завтра
Не так нужны в земном календаре.
Рубай Омара носили отчетливо нерелигиозный характер. Многие из них восхваляют вино и его действие на человека. Имеются и дерзкие и лукавые посвящения вину:
Дал Нишапур нам жизнь иль Вавилон,
Льет кубок сладость или горек он? —
По капле пей немую влагу Жизни!
И жизнь по капле высохнет, как сон.
Некоторые другие стихи высмеивают религиозные верования. Интересно, что думал султан о человеке, которому он выплачивал неплохое жалованье, и какие мысли приходили в голову имаму по поводу плодов приобретенного у него образования?..
Тем временем впавший в немилость Хасан, которому пришлось уехать из Нишапура, связался с шайкой бандитов и, пользуясь преимуществом своего образования, сделался их главарем. В 1090 году эти бандиты под предводительством Хасана захватили замок Аламут в горах Эльбурз, что прямо к югу от Каспийского моря. Они терроризировали всю область, и Хасан приобрел недобрую славу как Старец Горы. Его приспешники, известные как ассасины, или гашишины (из-за их пристрастия к гашишу – сильному наркотику, получаемому из конопли), построили шесть горных укреплений, из которых они совершали вылазки с целью убийства видных религиозных и политических деятелей. От этого их прозвища и происходит слово «assassin», то есть убийца. Таким образом, Хасан и сам смог стать богатым и знаменитым, как и подобало ученику Моваффака, хотя на тот момент он не был расположен делиться достигнутым со старыми друзьями.
Пока Омар занимался вычислением астрономических таблиц и методами решения кубических уравнений, Низам продолжал свою политическую карьеру, пока, по злой иронии изощренной судьбы, его не убили бандиты Хасана. Омар дожил до 76 лет и умер, как передают, в 1123 году. Хасан умер на следующий год в возрасте 84 лет. Ассасины продолжали сеять политическое опустошение, пока их не сокрушили монголы, в 1256 году захватившие Аламут.
Вернемся к математике Омара. Около 350 года до Р.Х. греческий математик Менехм открыл специальные кривые, известные как конические сечения, которые, как полагают исследователи, он использовал для решения задачи об удвоении куба. Архимед развил теорию этих кривых, а Аполлоний Пергский систематизировал и обобщил эту тему в своей книге « Конические сечения». Что особенно интересовало Омара Хайяма – это открытие греками того факта, что конические сечения можно применить к решению определенных кубических уравнений.
Конические сечения называются так потому, что их можно получить, пересекая конус плоскостью. Точнее говоря – двойной конус, похожий на два рожка мороженого, соединенных своими острыми концами. Одинарный конус образован набором отрезков прямых линий, которые все пересекаются в одной точке и проходят через определенную окружность – «основание» конуса. Но в греческой геометрии прямолинейный отрезок всегда можно продолжить неограниченно далеко, и в результате получается двойной конус.
Три основных типа конических сечений – это эллипс, парабола и гипербола. Эллипс представляет собой замкнутую овальную кривую, которая возникает, когда секущая плоскость проходит только через одну половину двойного конуса. (Окружность является частным случаем эллипса и получается, когда секущая плоскость в точности перпендикулярна оси конуса.) Гипербола состоит из двух симметрично расположенных незамкнутых кривых, которые в принципе уходят на бесконечность; она возникает, когда секущая плоскость проходит через обе половины двойного конуса. Парабола является переходной формой – это одна незамкнутая кривая, получающаяся, когда секущая плоскость параллельна какой-либо из прямых, лежащих на поверхности конуса.
На большом расстоянии от вершины конуса кривые, составляющие гиперболу, проходят все ближе и ближе к двум прямым линиям, которые параллельны тем прямым, где конус пересекла бы параллельная плоскость, проходящая через вершину. Эти прямые называются асимптотами.
Конические сечения.
Греческие геометры широко изучали конические сечения, и в этом и состоит их основной вклад в прогресс за рамками тех идей, что были зафиксированы Эвклидом. Эти кривые жизненно важны и в современной математике, но по причинам, сильно отличным от тех, что двигали греками. С алгебраической точки зрения они представляют собой следующие по степени простоты кривые после прямых линий. Они важны и в прикладной науке. Орбиты планет в Солнечной системе являются эллипсами, как это заключил Кеплер на основе наблюдений Тихо Браге за Марсом. Эллиптичность орбит послужила одним из соображений, которые привели Ньютона к формулировке его знаменитого «закона обратных квадратов» для гравитации. Это в свою очередь позволило понять, что целый ряд аспектов нашей вселенной ясно проявляет математические закономерности. Это радикально отразилось на астрономии, поскольку движения планет стали поддаваться вычислениям.
Большинство сохранившихся математических работ Омара посвящены теории уравнений. Он рассматривал решения двух типов. Первые, в духе Диофанта, он называл алгебраическими решениями в целых числах; пожалуй, больше подошло бы прилагательное «арифметические». Решения второго вида он называл геометрическими, под чем он понимал, что решение можно построить геометрическими средствами в терминах конкретных длин, площадей или объемов.
Свободно пользуясь коническими сечениями, Омар разработал геометрические решения для всех кубических уравнений и разъяснил их в своей книге «Алгебра», законченной в 1079 году. Поскольку отрицательные числа в то время еще не получили права на существование, уравнения приходилось каждый раз устраивать таким образом, чтобы все слагаемые оказывались положительными.
Это правило привело к возникновению огромного числа различных случаев, которые в наши дни все рассматриваются как по сути дела единственный случай, если не считать знаков при числах. Омар различает четырнадцатьразличных типов кубических уравнений в зависимости от того, какие слагаемые появляются в каждой части уравнения. Его классификация кубических уравнений такова:
куб = квадрат + сторона + число,
куб = квадрат + число,
куб = сторона + число,
куб = число,
куб + квадрат = сторона + число,
куб + квадрат = число,
куб + сторона = квадрат + число,
куб + сторона = число,
куб + число = квадрат + сторона,
куб + число = квадрат,
куб + число = сторона,
куб + квадрат + сторона = число,
куб + квадрат + число = сторона,
куб + сторона + число = квадрат.
Каждое из указанных слагаемых должно иметь положительный численный коэффициент.
Вы, возможно, недоумеваете, почему в списке нет случаев типа
куб + квадрат = сторона.
Причина в том, что в этих случаях можно разделить обе части уравнения на неизвестное, в результате чего уравнение сведется к квадратному.
Омар изобрел свои решения не полностью самостоятельно, а основываясь на предшествующих греческих методах решения различных типов кубических уравнений с использованием конических сечений. Он систематически развил эти идеи и решил такими методами все четырнадцать типов кубических уравнений. Предшествующие математики, как он заметил, нашли решения в ряде случаев, но все их методы были очень специальными и каждый случай требовал отдельного построения; до Омара никто не изучал весь охват возможных случаев, не говоря уж о том, чтобы дать их решения. «Я же, напротив, никогда не ослабевал в своем желании сделать известными, притом со всей точностью, все возможные случаи и в каждом из них провести различие между возможным и невозможным». Под «невозможным» он понимал отсутствие положительного решения. Чтобы получить представление о его работе, приведем его решение случая «куб, некоторые стороны и некоторые числа равны некоторым квадратам», что мы бы записали как
x 3 + bx + c = ax 2 .
(Поскольку нас не заботит положительность или отрицательность, мы бы, скорее всего, перенесли член из правой части в левую с изменением знака; получив таким образом уравнение x 3 − ax 2 + bx + c =0.)
Омар снабжает своих читателей инструкциями, состоящими в следующей последовательности шагов. (1) Проводим три отрезка с длинами c/b, √bи aтак, чтобы образовался прямой угол. (2) Проводим полуокружность, диаметр которой – горизонтальный отрезок. Продолжаем вертикальные прямые до пересечения с ней. Если жирный вертикальный отрезок имеет длину d, добиваемся, чтобы отрезок жирной горизонтальной прямой имел длину cd/√b. (3) Проводим гиперболу (сплошная линия), асимптоты которой (те специальные прямые, к которым приближается гипербола) – серые прямые, проходящие через только что построенную точку. (4) Находим, где гипербола пересекает полуокружность. Тогда длины двух жирных отрезков, обозначенные как x, дают два (положительных) решения кубического уравнения.
Данное Омаром Хайямом решение кубического уравнения.
Подробности, как всегда, не так важны, как общий стиль. Выполняем ряд эвклидовых построений циркулем и линейкой, потом прибегаем к помощи гиперболы, потом еще немного эвклидовых построений – и готово.
Омар дает аналогичные конструкции для решения каждого из своих четырнадцати случаев и доказывает, что решения верны. В его анализе есть несколько дыр: при некоторых значениях коэффициентов a, bи cтребуемые в его построении точки не существуют. В приведенном выше построении, например, гипербола может вообще не пересекать полуокружность. Но если отбросить эти придирки, он выполнил впечатляющую и очень систематическую работу.
Некоторые из образов в поэзии Омара являются математическими и, как представляется, содержат аллюзии на его собственные работы, в тоне возражений самому себе, который проходит через все его творчество:
Умом ощупал я все мирозданья звенья,
Постиг высокие людской души паренья,
И, несмотря на то, уверенно скажу:
Нет состояния блаженней опьяненья.
Одно особенно впечатляющее четверостишие звучит так:
Кто мы? Куклы на нитках, а кукольщик наш – небосвод.
Он в большом балагане своем представленье ведет.
Он сейчас на ковре бытия нас попрыгать заставит,
А потом в свой сундук одного за другим уберет.
Это напоминает знаменитую платоновскую аллегорию теней на стене пещеры и подходит равным образом для описания и символьных вычислений в алгебре, и человеческой натуры. Омар был талантливым летописцем и того и другого.
Глава 4
Ученый игрок
«Клянусь святым Евангелием Господа нашего и как истинный человек чести не только никогда не публиковать ваши открытия, если вы мне доверите их, но да будет моя вера истинного христианина вам порукой, что я зашифрую их так, чтобы после моей смерти никто не смог их понять». Этот торжественный обет был, как говорят, дан в 1539 году.
Италия эпохи Возрождения была колыбелью нового, и математика не составляла исключения. В иконоборческом духе того времени математики Ренессанса задались целью преодолеть ограничения древней математики. Один из них разрешил загадку кубического уравнения и теперь обвинял другого в воровстве своего секрета.
Гневающегося математика звали Никколо Фонтана по прозвищу Тарталья – Заика. В воровстве интеллектуальной собственности обвинялся математик, врач, неисправимый плут и закоренелый азартный игрок по имени Джироламо Кардано, также известный как Жером Кардан. Около 1520 года Джироламо, как истинный блудный сын, успешно растратил наследство, оставленное ему отцом. Разорившись, он обратился к азартным играм как к источнику дохода, найдя эффективное примененное своих математических способностей для оценки шансов на выигрыш. Он водился с сомнительной компанией; как-то раз, заподозрив другого игрока в нечестной игре, он полоснул его ножом по лицу.
То были суровые времена, и Джироламо был суровым человеком. А кроме того – на редкость оригинальным мыслителем и автором одного из наиболее знаменитых и влиятельных текстов по алгебре во всей истории.
О Джироламо нам известно много, потому что в 1575 году он сам рассказал нам о себе в «Книге моей жизни». Начинается она так:
Эту Книгу Моей Жизни я намереваюсь написать, следуя примеру Антонина Философа [12]12
Марка Аврелия, римского императора с 161 по 180 г. (Примеч. перев.)
[Закрыть], прославленного как мудрейший и достойнейший из людей, хорошо понимая, что ни одно деяние смертных не совершенно, а еще менее того – свободно от злословия; однако сознавая при этом и то, что из всего, что человеку дано достичь, ничто другое не доставляет больше радости и не ценится сильнее, чем познание истины.Ни единого слова, спешу заверить, не было добавлено в угоду тщеславию, и ни единого для пустого приукрашивания; вместо того, насколько возможно, здесь собрано только пережитое, события, о которых мои ученики… были осведомлены или в коих они принимали участие. Эти краткие эпизоды моей истории в свою очередь записаны были мною в повествовательной форме, дабы стать частью этой книги.
Как и многие математики того времени, Джироламо занимался астрологией, так что он отмечает астрологические обстоятельства, сопутствовавшие его рождению:
Хотя, как я слышал, напрасно пытались применить различные абортивные средства, я нормально родился в 24-й день сентября года 1500, когда первый час ночи истек уже более чем наполовину, но менее чем на две трети… Марс угрожал обоим главным светилам из-за неблагоприятного их расположения и потому, что он был в четвертном аспекте с Луною…
Я легко мог родиться уродом, если бы не тот факт, что положение предыдущего соединения приходилось на 29° в Деве, где господствует Меркурий. И так как его положение не совпадало ни с местом Луны, ни с местом асцендента и он не находился в аспекте с предпоследним делением Девы, я непременно должен был бы родиться уродом, и даже легко могло случиться, что я выйду из утробы разорванным, чего едва и не произошло.
Так был я рожден, или, скорее, исторгнут мощными силами из чрева матери; я был почти мертв. Волосы мои были темны и завиты. Меня вернули к жизни ванной из теплого вина, которая могла бы оказаться гибельной для любого другого ребенка. Моя мать провела в тяготах три полных дня, и однако же я выжил [13]13
Не без некоторых потерь:
«…и Солнце, и обе зловещие планеты – Венера и Меркурий – находились в человеческих знаках, вследствие чего у меня и не обнаружилось отклонений от человеческого образа; а так как в асценденте был Юпитер и во всем гороскопе господствовала Венера, у меня обнаружились неправильности только в половых органах: случилось так, что в возрасте от 21 до 31 года я оказался не способен к совокуплению с женщинами и часто горько оплакивал свою участь, завидуя судьбе других людей». (Примеч. перев.)
[Закрыть].
Одна глава в «Книге моей жизни» перечисляет написанные Джироламо книги, и первой в списке идет «Великое искусство» [14]14
Лат.: Ars Magna. (Примеч. перев.)
[Закрыть]– один из трех упоминаемых им «трактатов по математике». Он также писал об астрономии, физике, вопросах морали, драгоценных камнях, воде, медицине, предсказаниях и теологии.
Однако для нашего рассказа важно только «Великое искусство». Подзаголовок этой книги – «Правила алгебры» – объясняет почему. В этой книге Джироламо не только собрал методы решения квадратных уравнений, известные вавилонянам, но и открыл новые решения кубических уравнений и уравнений четвертой степени. В отличие от решений Хайяма, которые опирались на геометрию конических сечений, решения в «Великом искусстве» были чисто алгебраическими.
Я уже упоминал о двух типах математических обозначений, которые оба видны в таких выражениях, как x 3для куба неизвестного. Обозначение первого типа состоит в использовании букв (в нашем случае – x) для чисел – или неизвестных, или известных, но произвольных. Обозначение второго типа – это использование приподнятых над строкой чисел для указания степени, так что верхняя 3 в данном случае обозначает куб числа x, то есть x×x×x.Теперь мы подошли к обозначениям третьего типа – последним из тех, что нам понадобятся.
Обозначение третьего типа очень милое и выглядит так: √. Этот символ означает квадратный корень. Например, √9 – квадратный корень из девяти – обозначает число, которое, будучи умножено на само себя, дает 9. Поскольку 3×3 = 9, мы видим, что √9 = 3. Однако не всегда все обстоит так просто. Наиболее печально известный квадратный корень, который, согласно не слишком правдоподобной легенде, оказался причиной того, что математика, привлекшего к нему внимание, – Гиппаса из Метапонта – выбросили с корабля за борт, – это квадратный корень из двух: √2. Его точное выражение в виде десятичной дроби требует неограниченного продолжения. Начинается оно так:
1,4142135623730950488…,
но не может на этом прекратиться, поскольку квадрат приведенного числа на самом деле равен
1,99999999999999999999522356663907438144,
что, очевидно, есть не вполне то же самое, что 2.
На этот раз известно, откуда взялось такое обозначение. Это искаженная буква «r», обозначающая «radix» – латинское слово «корень». Математики понимают его таким образом и читают выражение √2 как «корень из двух».
Кубические корни, корни четвертой, пятой и так далее степеней обозначаются помещением маленького приподнятого числа перед знаком «корень» – таким образом: 3√, 4√, 5√.
Кубический корень из данного числа – это такое число, куб которого дает исходное, и аналогично для других корней. Таким образом, кубический корень из 8 есть 2, поскольку 2 3 = 8. Кубический же корень из 2 можно выразить в виде десятичной дроби только приближенно. Он начинается таким образом:
1,2599210498948731648…
и продолжается, если вы запасетесь достаточным терпением, бесконечно.
Именно это число появляется в античной задаче об удвоении куба.
Примерно к 400 г. греческая математика утратила свое место на переднем крае этой науки.
Место действия переместилось на Восток – в Аравию, Индию и Китай. Европа погрузилась в «темные века», и хотя они были не такими уж темными, какими их нередко изображают, но все же темными в достаточной мере. Распространение христианства возымело тот плачевный побочный эффект, что знание и ученость сконцентрировались в церквях и монастырях. Многие монахи переписывали работы великих математиков, таких как Эвклид, но лишь очень немногие из них понимали, чтоони переписывают. Древние греки были в состоянии с двух сторон прорыть туннель через гору так, чтобы обеспечить встречу посередине; способ же, которым ранние англосаксы проводили землемерные работы, состоял в том, чтобы разложить в поле план в масштабе 1:1. Даже понятие изображения, сделанного в определенном масштабе, было утеряно. Если бы англосаксы пожелали создать точное изображение Англии, им пришлось бы сделать его размером с Англию. Их карты обычного размера были крайне неточными.
К концу пятнадцатого столетия фокус математической активности снова сдвинулся в сторону Европы. На Среднем и Дальнем Востоке подошел к концу заряд креативности, а Европа включила второе дыхание, освобождаясь от объятий Римской церкви и ее страха перед всем новым. По иронии судьбы новым центром интеллектуальной активности становится Италия – по мере того как Рим ослаблял хватку в своем собственном тылу.
Это тектоническое изменение в европейской науке и математике началось с публикации в 1202 году книги под названием Liber Abbaci, написанной Леонардо Пизанским, который много позднее получил прозвище Фибоначчи, сына Боначчио, под которым теперь и известен, несмотря на то что имя это придумали в девятнадцатом столетии. Отец Леонардо – Гильельмо – служил на таможне в Буджии (ныне в Алжире) и в своей работе неминуемо сталкивался с людьми самых разных культур. Он обучил своего сына новомодным знакам для чисел, изобретенным индусами и арабами, – предшественникам наших десятичных обозначений от 0 до 9. Леонардо позднее писал, что «мне так нравилось обучение, что я продолжал изучать математику во время поездок по работе в Египет, Сирию, Грецию, Сицилию и Прованс и получал особое удовольствие от дебатов с учеными из тех мест». На первый взгляд заглавие книги Леонардо говорит о том, что это книга – об абаке, т.е. механическом вычислительном приспособлении, состоящем из бусинок, скользящих по проволочкам, или же из галечных камешков, передвигаемых в песчаном желобе. Но как латинское слово calculus, относящееся к этой гальке, позднее приобрело другое, более техническое значение [15]15
По-английски «calculus» означает «исчисление», наиболее часто – в значении «дифференциальное и интегральное исчисление». По-русски этот же предмет называется математическим анализом или, когда контекст ясен, просто анализом (откуда производится и прилагательное «аналитический»). (Примеч. перев.)
[Закрыть], так и слово abbaco– рамка для счета – стало обозначать искусство вычисления. Liber Abbaciбыла первым арифметическим текстом, в котором индоарабские символика и методы были принесены в Европу. Значительная часть книги отведена новым применениям арифметики к практическим предметам, подобным обмену валют.
Одна задача – об идеализированной модели роста популяции кроликов – привела к замечательной числовой последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и так далее, где каждое следующее число, начиная с 2, равно сумме двух предыдущих. Эта «последовательность Фибоначчи» более всего прославила Леонардо – не применительно к размножению кроликов, где следствия из нее нулевые, а за то, что она представляет собой замечательный пример математической закономерности и играет ключевую роль в теории иррациональных чисел. Леонардо и представить себе не мог, что этот маленький jeu d'esprit [16]16
Игра ума. (Примеч. перев.)
[Закрыть]затмит в глазах потомков все остальное, что он сделал в своей жизни.
Леонардо написал еще несколько книг, и его Practica Qeometriae, появившаяся в 1220 году, содержала значительную часть «Начал» Эвклида, а также кое-что из греческой тригонометрии.
В Книге X «Начал» Эвклида обсуждаются иррациональные числа, построенные как вложенные друг в друга квадратные корни, типа . Леонардо доказал, что эти иррациональные числа не подходят для решения кубических уравнений. Отсюда не следует, что корни кубического уравнения нельзя построить при помощи циркуля и линейки, поскольку другие комбинации квадратных корней могут в принципе приводить к решению. Но это был намек на то, что, если пользоваться лишь предлагаемыми Эвклидом инструментами, кубическое уравнение может оказаться неразрешимым.
В 1494 году Лука Пачоли свел вместе значительную часть существовавшего тогда математического знания в книге по арифметике, геометрии и пропорции. Она также включала индо-арабские числа, коммерческую арифметику, выжимки из Эвклида и тригонометрию Птолемея. Сквозной темой был элемент замысла в природе, воплощенный в пропорциях – пропорциях человеческого тела, перспективы в живописи, теории цвета.
Пачоли продолжил традицию «риторической» алгебры, используя слова, а не символы. Неизвестное было «штукой» – итальянское слово cosa,и в течение определенного периода практикующие алгебраисты были известны под именем cossist'ов. Он также использовал ряд стандартных сокращений, продолжая (но не сумев улучшить) подход, впервые намеченный Диофантом. Моррис Клайн в своем монументальном «Математическом мышлении от Античности до современности» констатирует: «Серьезное замечание по поводу математического развития арифметики и алгебры между 1200 и 1500 годами состоит в том, что книга Пачоли едва ли содержит что-либо, выходящее за рамки Liber AbbaciЛеонардо Пизанского. В действительности арифметика и алгебра… основывались на книге Леонардо». В конце своей книги Пачоли замечает, что относительно решения кубического уравнения понимания ничуть не больше, чем относительно квадратуры круга. Но такому положению дел скоро предстояло измениться.
Первое по-настоящему существенное продвижение произошло в городе Болонья примерно в конце первой трети шестнадцатого столетия. Внимания на это событие поначалу не обратили.
Джироламо Кардано был побочным сыном миланского юриста Фацио Кардано и молодой вдовы по имени Кьяра Микериа, у которой было еще трое детей от первого брака. Он родился в 1501 году в Павии – городе, входившем в герцогство Миланское. Когда к Милану подобралась чума, беременную Кьяру убедили уехать в деревню, где и родился Джироламо. Все трое ее старших детей, оставшиеся в городе, умерли от чумы.
Согласно автобиографии Джироламо, «отец мой носил багряную накидку – одеяние, нетипичное для нашего сообщества; его никогда не видели без маленькой черной шапочки… К пятидесяти пяти годам он лишился всех зубов. Он был хорошо знаком с работами Эвклида; надо сказать, что плечи его были сгорблены от усердных занятий… Мать мою легко было вывести из себя; она была скора на память и сообразительность и была тучной и набожной женщиной. Скоропалительность отличала обоих моих родителей».
Хотя Фацио и был юристом по профессии, он был достаточно искушен в математике, чтобы консультировать по геометрии Леонардо да Винчи. Он преподавал геометрию в университете в Павии и в благотворительном учреждении Пьятти в Милане. И еще он учил математике и астрологии своего незаконного сына Джироламо:
В раннем детстве отец обучил меня основам арифметики, и примерно тогда же он приобщил меня к таинствам; откуда он приобрел эти познания, мне неизвестно. Вскоре он обучил меня началам арабской астрологии… А когда мне исполнилось двенадцать, он преподал мне первые шесть книг Эвклида.
У ребенка наблюдались проблемы со здоровьем; попытка вовлечь его в семейное дело успеха не принесла. Джироламо сумел убедить находившегося в сомнениях отца позволить ему изучать медицину в университете Павии, но отец предпочитал право.
В 1494 году Карл VIII Французский вторгся в Италию, и последовавшая война продолжалась, утихая и вновь разгораясь, пятьдесят лет. Обострение военных действий привело к закрытию университета в Павии, и Джироламо перебрался в Падую, чтобы продолжать занятия. Судя по всему, он был одним из лучших студентов, и когда Фацио умер, Джироламо начал кампанию с целью стать ректором университета. Хотя многие не любили его за склонность высказываться без обиняков, он был избран с перевесом в один голос.
Тогда-то он и растратил по мелочам полученное им наследство и обратился к азартным играм, которые превратились в пагубную привычку на всю оставшуюся часть его неспокойной жизни. И не только это:
В очень ранний период моей жизни я начал серьезно посвящать себя занятиям фехтованием всякого рода и путем упорных упражнений достиг некоторых успехов даже среди наиболее дерзких… По ночам, даже в нарушение распоряжений герцога, я вооружался и отправлялся рыскать по городу, в котором жил… Лицо мое скрывал капюшон из черной шерсти, а еще я надевал туфли из овчины… Я часто бродил всю ночь, пока не брезжил рассвет, с меня же капал пот от напряжения, с которым я исполнял серенады на своих музыкальных инструментах.
Даже подумать страшно.
В 1525 году, после присуждения ему медицинской степени, Джироламо попытался вступить в Коллегию врачей в Милане, но его не приняли – формально из-за незаконного происхождения, но на самом деле главным образом из-за печальной известности, которую он приобрел в качестве человека, лишенного такта. Так что вместо того, чтобы стать членом престижной коллегии, Джироламо устроился врачом в соседнюю деревушку Сакко. Это обеспечивало ему небольшой доход, но дело шло вяло. Он женился на Лучии Бандарини – дочери капитана милиции – и перебрался ближе к Милану в надежде увеличить свой доход, чтобы содержать семью, однако Коллегия снова его отвергла. Не в силах следовать по пути законной карьеры врача, он обратился к азартным играм, но даже его математические познания не помогли восстановить свое состояние:
Вероятно, ни в каком отношении не достоин я похвалы; ибо насколько сильно меня привлекали излишества шахматной доски и игорного стола, настолько же я знаю, что в глазах людей я заслуживаю самого сурового порицания. Я играл и в то и в другое многие годы – в шахматы более сорока лет, а в кости – около двадцати пяти; и не только каждый год, но – сознаюсь со стыдом – каждый день, теряя при этом все – мысль, состояние и время.
Семейство поселилось в бедном доме. Мебель и драгоценности Лучии давно уже были заложены. «Я вступил на путь долгой и почетной карьеры. Но долой почести и приобретения вместе с пустым тщеславием и неумеренными наслаждениями! Мне конец! Я погиб!»