Текст книги "Истина и красота. Всемирная история симметрии."
Автор книги: Иэн Стюарт
Жанр:
Математика
сообщить о нарушении
Текущая страница: 17 (всего у книги 26 страниц)
Эйнштейн был уверен, что правильные полевые уравнения должны определять математический вид метрики – формулы для расстояния в пространстве-времени, которая определяет все его геометрические свойства – единственным образом, однозначно. Это было попросту неверно: изменения системы координат могут изменить данную формулу, не оказывая при этом никакого влияния на внутреннююкривизну пространства. Но Эйнштейн не знал о так называемых тождествах Бьянки, которые проясняют отсутствие единственности; по-видимому, не знал о них и Гроссманн.
Такое состояние – сущий кошмар для каждого ученого: по видимости неопровержимая идея, которая вроде бы ведет в правильном направлении, на деле заводит в ужасные дебри. Устранить такую ошибку отчаянно трудно, ведь вы уверены, что никакой ошибки нет. Часто даже не удается понять, какие именно допущения вы незаметно сделали.
К концу 1914 года Эйнштейн наконец осознал, что полевые уравнения не могут определять метрику единственным образом, потому что имеется возможность выбора различных систем координат: это не влияет на физику, но меняет формулу для метрики. Он все еще не знал о тождествах Бьянки, но теперь они ему были не нужны. Он наконец понял, что имеется свобода в выборе любых координат из соображений удобства.
18 ноября 1914 года Эйнштейн открыл новый фронт в войне с уравнениями гравитационного поля. Он подобрался достаточно близко к окончательной формулировке, чтобы сделать два предсказания. Одно из них – на самом деле скорее «послесказание», в том смысле, что оно было сделано после события. Оно состояло в объяснении тончайших изменений, к тому времени уже наблюдавшихся в орбите Меркурия. Положение перигелия – ближайшего к Солнцу положения планеты – медленно изменяется. Из новой теории гравитации Эйнштейн смог вывести, насколько быстро должен двигаться перигелий, – и результат его вычисления совпал с результатами наблюдений.
Второе предсказание требовало для своего подтверждения или опровержения новых наблюдений; то была прекрасная новость, поскольку новые наблюдения – это лучшая проверка новых теорий. Согласно теории Эйнштейна, гравитация должна изгибать свет.
Геометрия этого эффекта проста и имеет дело с геодезическими – кратчайшими – путями между двумя точками. Если растянуть струну и приподнять ее, она примет вид прямой линии; это происходит потому, что в эвклидовом пространстве прямая линия является геодезической. Если, однако, два конца струны прижать к поверхности футбольного мяча, сильно ее при этом натянув, то она примет форму кривой, лежащей на поверхности мяча. Геодезические линии на искривленном пространстве – мяче – сами искривлены. То же происходит и в искривленном пространстве-времени, хотя подробности слегка отличны.
Физические обстоятельства, в которых этот эффект может проявиться, также «прямолинейны». Звезда, подобная Солнцу, будет изгибать любой свет, проходящий мимо нее. Единственным в то время способом наблюдать этот эффект было дождаться солнечного затмения, когда свет Солнца более не забивает свет от звезды, расположенной на небосводе близко к краю солнечного диска. Если Эйнштейн был прав, то кажущиеся положения таких звезд должны были слегка сдвинуться по сравнению с их положениями, когда они не находятся на одной линии с Солнцем.
Количественный анализ этого явления куда менее прямолинеен. Первая попытка Эйнштейна, предпринятая в 1911 году, предсказывала сдвиг в пределах угловой секунды. Ньютон предсказал бы близкое число, основываясь на своем убеждении, что свет состоит из мельчайших частиц: сила гравитации должна притягивать частицы, вызывая изгиб их траектории. Но в 1915 году Эйнштейн получил результат, в соответствии с которым в его новой теории свет должен отклониться на вдвое больший угол – на 1,74 угловой секунды.
Перспектива выбора между Ньютоном и Эйнштейном стала реальностью. 25 ноября 1914 года Эйнштейн записал свои полевые уравнения в их окончательном виде. Эти уравнения Эйнштейнасоставляют основу общей теории относительности – релятивистской теории гравитации. Они записываются в математическом формализме, известном как тензоры(некоторым образом нагроможденные друг на друга матрицы). Уравнения Эйнштейна говорят нам, что тензор Эйнштейна пропорционален скорости изменения тензора энергии-импульса [63]63
Ошибка автора. Скорость изменения здесь ни при чем. Тензор Эйнштейна пропорционалентензору энергии-импульса, и все. Кстати, тензор Эйнштейна – это «почти» упоминавшийся выше тензор Риччи, отсюда и его связь с кривизной, упомянутая в следующей фразе. (Примеч. перев.)
[Закрыть]. Другими словами, кривизна пространства-времени пропорциональна степени присутствия материи. Эти уравнения подчиняются некоторому принципу симметрии, но он сугубо локален. В малых областях пространства-времени у них те же симметрии, что в специальной теории относительности, при условии, что во внимание принимается локальное влияние кривизны.
Эйнштейн заметил, что сделанные им второстепенные изменения не повлияли на его вычисления движения перигелия Меркурия и отклонения света звезд. Он представил свои уравнения Прусской Академии – и выяснил, что математик Давид Гильберт уже демонстрировал в точности такие же уравнения, но только утверждал, что это нечто намного большее, чем теория гравитации. На самом деле он утверждал, что они включают в себя электромагнитные уравнения, а это было ошибкой. Снова потрясает тот факт, что ведущие математики были предельно близки к тому, чтобы обойти Эйнштейна на финишной прямой.
Было предпринято несколько попыток проверить предсказание Эйнштейна об отклонении света гравитационным полем Солнца. Первой попытке – в Бразилии – помешал дождь. В 1914 году немецкая экспедиция отправилась наблюдать затмение в Крым, но началась Первая мировая война, и им было приказано возвращаться домой, и побыстрее. Некоторые вернулись, других арестовали, но в конце концов все добрались домой целыми и невредимыми. Естественно, никаких наблюдений провести не удалось.
Война не дала провести наблюдения и в Венесуэле в 1916 году. Американцы предприняли еще одну попытку в 1918-м, но с неубедительными результатами. Наконец, британская экспедиция, которую возглавил Артур Эддингтон, добилась успеха в мае 1919 года, но они не объявляли о своих результатах до ноября.
Когда же результаты были объявлены, вердикт был в пользу Эйнштейна, а не Ньютона. Отклонение имелось, оно было слишком большим, чтобы соответствовать ньютоновской модели, и оно прекрасно укладывалось в модель Эйнштейна.
Задним числом можно сказать, что результаты эксперимента были не столь уж решающими, как могло показаться. Экспериментальная ошибка была довольно велика, и лучшее, что удавалось заключить, – это что Эйнштейн, по всей видимости,прав. (Более свежие наблюдения с применением более совершенных методов и оборудования подтвердили теорию Эйнштейна.) Но в то время их представили как совершенно определенные, и средства массовой информации буквально взорвались. Человек, способный доказать неправоту Ньютона, определенно был гением. Тот, кому удалось открыть радикально новую физику, должен был быть величайшим из живущих ученых.
Так родилась легенда. Эйнштейн написал о своих идеях в Times of London.Через несколько дней на редакционной странице появился отклик:
Это по-настоящему шокирующая новость, и она заставляет усомниться даже в том, что наша вера в таблицу умножения так уж обоснованна. Потребуется не менее двух председателей двух Королевских Обществ, чтобы заявления о наличии веса у света и пределов у пространства приобрели некоторое правдоподобие – чтобы о подобном вообще можно было подумать. Это не так по определению – и дело с концом. Таким образом, во всяком случае, обстоит дело для обычных людей, как бы оно ни обстояло для высокоученых математиков.
Но высокоученые математики оказались правы. Вскоре Timesсообщила миру, что «только двенадцать людей в состоянии понять теорию „внезапно ставшего знаменитым д-ра Эйнштейна“» – миф, который продолжал циркулировать, даже когда многочисленные студенты-физики уже рутинно изучали эту теорию.
В 1920 году у Гроссманна появились первые признаки рассеянного склероза. Он написал свою последнюю статью в 1930-м, а в 1936-м умер. Эйнштейн стал наиболее превозносимым физиком двадцатого столетия. Позднее в жизни он свыкся со своей славой, находя ее довольно занятной. На ранних этапах ему, по-видимому, нравилось общаться со средствами массовой информации.
Но здесь мы должны оставить Эйнштейна – заметив только, что после 1920 года его усилия в физике были посвящены бесплодному поиску путей сведения теории относительности и квантовой механики в единую объединенную теорию поля. Он продолжал работать над этой проблемой за день до своей смерти в 1955 году.
Глава 12
Квантовый квинтет
«Почти все открыто, и все, что остается, – это заполнить несколько пробелов» – не слишком обнадеживающая новость для одаренного молодого человека, намеревающегося изучать физику, в особенности когда такая новость исходит от специалиста, который по долгу службы обязан быть в курсе дела, – в данном случае от профессора физики Филипа фон Йолли.
Дело происходило в 1874 году, и взгляды фон Йолли отражали то, во что верило большинство физиков того времени: физика закончилась. В 1900 году не кто иной, как знаменитый лорд Кельвин, сказал: «В физике нет ничего нового, подлежащего открытию. Остается лишь выполнять все более и более точные измерения».
Заметим, что он также сказал: «Я твердо заявляю, что летающие машины тяжелее воздуха невозможны» и «Высадка на Луну связана со столь сложными проблемами для людей, что их решение может занять еще 200 лет». Биограф Кельвина пишет, что первую половину своей карьеры он был во всем прав, а всю вторую – не прав.
Но он был не совсем не прав. В лекции 1900 года «Тучи XIX столетия над динамической теорией теплоты и света» он указал на два наиболее существенных пробела в современном ему понимании физической вселенной: «Красота и ясность динамической теории, которая утверждает, что теплота и свет являются формами движения, омрачены в настоящее время двумя тучами. Первая – это вопрос о том, как Земля движется через упругое тело, каковым по сути является светоносный эфир. Вторая – это доктрина Максвелла-Больцмана о распределении энергии». Первая туча оказалась предвестницей теории относительности, вторая – предвестницей квантовой теории.
По счастью, молодого адресата рекомендация фон Йолли не отпугнула. Он заявил, что у него нет желания открывать новое – все, чего он хочет, сводится к развитию лучшего понимания известных оснований физики. В поисках такого понимания он произвел одну из двух величайших революций в физике двадцатого столетия и развеял второе из Кельвиновых облаков. Этого человека звали Макс Планк.
Юлиус Вильгельм Планк был профессором права в Киле и Мюнхене. И его отец, и мать были профессорами теологии, а брат – судьей. Так что, когда его вторая жена Эмма Патциг осчастливила его сыном – шестым ребенком, – было заранее ясно, что мальчику предстоит вырасти в интеллектуальной среде. Макс Карл Эрнст Людвиг Планк появился на свет 23 апреля 1858 года.
Европа, как обычно, находилась в состоянии политических неурядиц, и в самых ранних воспоминаниях мальчика сохранился вступление в Киль прусских и австрийских войск во время Датско-Прусской войны 1864 года.
К 1867 году Планки перебрались в Мюнхен, где образование Макса проходило под руководством математика Германа Мюллера в Школе короля Максимилиана. Мюллер учил мальчика астрономии, механике, математике и основам физики, в частности – закону сохранения энергии. Планк был превосходным учеником и закончил учебу необычно рано, в шестнадцатилетнем возрасте.
Кроме того, он был еще и способным музыкантом, однако, несмотря на высказанный с самыми добрыми намерениями совет Йолли, все же решил изучать физику. Планк занимался под руководством Йолли кое-какими экспериментами, но быстро переключился на теоретическую физику. Он познакомился с несколькими физиками и математиками, занимавшими ведущее положение в мире, и в 1877 году переехал в Берлин, где продолжил свое обучение у Гельмгольца, Густава Кирхгоффа и Вейерштрасса. В 1878 году он успешно сдал свои первые экзамены, а в 1879-м защитил диссертацию по термодинамике. В течение некоторого времени он преподавал математику и физику в своей старой школе. В 1880 году он защитил диссертацию на право преподавания в университете, темой которой были равновесные состояния тел при различных температурах, и перед ним открылись перспективы академической карьеры. Со временем он получил соответствующую должность, однако это произошло лишь в 1885 году, когда он стал доцентом в университете в Киле. Его научные интересы были сосредоточены на термодинамике, в особенности на концепции энтропии.
Макс познакомился с Мари Мерк, сестрой одного из своих друзей, и в 1887 году они поженились и стали снимать квартиру. Всего у них было четверо детей: Карл, близнецы Эмма и Грета, а также Эрвин.
В 1889 году – в том самом году, когда родились близнецы – Макс получил в Берлине должность, которую ранее занимал Кирхгофф, а в 1892 году стал полным профессором. Семейство переехало на виллу в берлинском районе Грюневальд, по соседству с другими выдающимися представителями академической среды. Один из них, теолог Адольф фон Харнак, стал близким другом Планков. Планки были общительной семьей, и дома у них регулярно бывали знаменитые интеллектуалы, включая Эйнштейна и физиков Отто Гана и Лизе Майтнер, которые позднее совершили фундаментальные открытия в области деления атомного ядра, послужившие частью долгого пути к созданию атомной бомбы и атомных электростанций. Когда в доме Планков бывали гости, там по заложенной Гельмгольцем традиции исполнялась музыка.
В течение некоторого времени жизнь была безоблачна; но Мари заразилась легочной инфекцией – возможно, туберкулезом – и умерла в 1909 году. Через полтора года, в возрасте пятидесяти двух лет, Макс снова женился – его супругой стала Марга фон Хесслин, родившая ему третьего сына – Германа.
В 1894 году местная электрическая компания пыталась разработать более эффективную лампочку накаливания, так что Макс занялся некоторыми исследованиями по контракту для промышленности. В принципе анализ лампы накаливания представлял собой стандартную физическую задачу, известную как «излучение черного тела», – задачу о том, как излучался бы свет, испущенный полностью неотражающим телом. Такое тело при нагревании излучает свет на всех частотах, но интенсивность света, или, что эквивалентно, его энергия, зависит от частоты. Спрашивалось, как частота влияет на интенсивность. Без ответа на этот фундаментальный вопрос трудно было бы изобрести более эффективную лампочку.
Имелись твердо установленные экспериментальные результаты, а также один теоретический – закон Релея-Джинса, полученный из основополагающих принципов классической физики. К сожалению, этот закон не согласовывался с результатами экспериментов, проводимых для высокочастотного излучения. Он даже предсказывал нечто невозможное: по мере возрастания частоты света его энергия должна становиться бесконечно большой. Этот невозможный результат получил известность как «Ультрафиолетовая катастрофа». Дальнейшие эксперименты привели к формулировке нового закона, который был получен подгонкой под наблюдения за высокочастотным излучением и известен как закон Вина по имени его открывателя Вильгельма Вина.
Однако закон Вина был непригоден для низкочастотного излучения.
Физикам приходилось иметь дело с двумя законами: один из них работал на низких частотах, но не работал на высоких, а другой – в точности наоборот. Планк задался идеей построить интерполяцию между ними – другими словами, записать математическое выражение, которое на низких частотах переходило бы в закон Релея-Джинса, а на высоких – в закон Вина. В результате возникла формула, которую теперь называют законом Планка для излучения черного тела.
Этот новый закон был сознательно устроен таким образом, чтобы прекрасно отвечать экспериментальным наблюдениям во всем спектре электромагнитного излучения [64]64
Чуть выше речь шла о свете, а теперь – об электромагнитном излучении. Эти слова в данном контексте надо воспринимать как синонимы. (Примеч. перев.)
[Закрыть], однако он был чисто эмпирическим – т.е. выведенным из эксперимента, а не из каких-либо фундаментальных физических принципов. Планка, действовавшего в согласии со своим намерением лучше понять известные законы физики, это не устраивало, и он потратил значительные усилия на поиск физических принципов, которые могли бы привести к написанной им формуле.
В 1900 году Планк наконец заметил любопытное свойство своей формулы. Ее можно было вывести, практически повторяя вычисления, которые приводили к закону Релея-Джинса, если только сделать там одно маленькое изменение. В классическом выводе предполагалось, что для любой заданной частоты энергия электромагнитного излучения может в принципе принимать любое – какое угодно – значение. В частности, она может приближаться к нулю сколь угодно близко. Планк осознал, что именно это предположение и было причиной ультрафиолетовой катастрофы и что если бы было сделано другое предположение, то проблемы с появлением бесконечности в вычислениях не возникало бы.
Правда, спасительное предположение носило радикальный характер. Требовалось, чтобы энергия излучения на заданной частоте складывалась только из целого числа «пакетов» фиксированного размера. При этом требовалось, чтобы размер каждого пакета был пропорционален частоте, другими словами – равным частоте, умноженной на некоторую постоянную величину; эту постоянную мы сейчас называем постоянной Планка и обозначаем символом h.
Эти пакеты энергии получили название квантов. Планк проквантовал свет.
Отлично, но почему же экспериментаторы никогда не замечали, что энергия выражается целым числом квантов? Путем сравнения своих вычислений с наблюдаемыми энергиями Планк сумел определить величину своей постоянной. Она оказалась очень – очень– маленькой. В действительности hпримерно равняется 6×10 −34джоуль-секунд. Грубо говоря, чтобы заметить «дырки» или «скачки» в возможных значениях энергии – т.е. значения, которые классическая физика разрешает, а квантовая физика запрещает, – требуется выполнить наблюдения с точностью до 34-го десятичного знака [65]65
Бессмыслица. Постоянная Планка очень мала, но минус тридцать четвертая степень определяется тем, в каких единицах она выражается.Например, если вместо джоулей использовать килоджоули, то показатель степени будет равен не −34, а −37. А если вместо секунд использовать часы, то величина постоянной Планка будет выражаться числом, в 3600 раз большим. Пожалуй, в данном абзаце верно лишь то бесспорное утверждение, что да, постоянная Планка чрезвычайно мала по сравнению со всеми измеряемыми в джоуль-секундах величинами, с которыми мы обычносталкиваемся. (Об этих величинах говорят как о макроскопических.) (Примеч. перев.)
[Закрыть]. Даже сегодня очень немногие физические величины можно измерять с точностью до шести или семи десятичных знаков, а в те дни и три знака были серьезным требованием. Прямое наблюдение кванта требует невероятного уровня точности.
Может показаться странным, что математическое различие, столь тонкое, что его нельзя увидеть, оказывает такой радикальный эффект на закон излучения. Но вывод этого закона включает в себя суммирование по вкладам, вносимым в энергию всеми возможными частотами. Результат представляет собой коллективный эффект всех возможных квантов. Глядя с Луны, нельзя разглядеть отдельную песчинку на Земле. Но Сахара очень даже заметна. Когда складывается вместе достаточно много маленьких вкладов, результат может оказаться огромным.
Планковская физика процветала, но личная жизнь Планка оказалась исполненной трагизма. Его сын Карл погиб на фронте во время Первой мировой войны. Дочь Грета умерла при родах в 1917 году, а Эмма разделила ее судьбу в 1919-м, после того как вышла замуж за овдовевшего мужа сестры. Много позднее Эрвин был казнен нацистами за участие в неудавшемся покушении на Адольфа Гитлера в 1944 году.
К 1905 году появились новые свидетельства, поддерживающие радикальное предложение Планка; они содержались в работе Эйнштейна о фотоэлектрическом эффекте. Напомним, что суть эффекта состоит в том, что свет можно превратить в электричество [66]66
Фотоэффект есть испускание веществом электроновпод действием света. (Прим. перев.)
[Закрыть].
Эйнштейн знал, что электричество существует в виде дискретных пакетов. Действительно, к тому времени физики выяснили, что электричество представляет собой движение мельчайших частиц, называемых электронами. Из фотоэлектрического эффекта Эйнштейн вывел, что то же должно быть верно и в отношении света. Это не только подтверждало идеи Планка о квантах света, но и объясняло, что же такое эти кванты: световые волны, подобно электронам, должны быть частицами.
Как волна может быть частицей? И тем не менее таков был однозначный вывод из экспериментов. Открытие частиц света или фотонов, быстро привело к квантовой картине мира, в которой частицы являются на самом деле волнами, ведущими себя иногда одним способом, а иногда другим.
Физическое сообщество начало относиться к квантам более серьезно. Великий датский физик Нильс Бор выдвинул квантованную модель атома, в которой электроны движутся вокруг центрального ядра по орбитам, представляющим собой окружности, причем размеры окружностей подчинены дискретности квантов. Из того, что фотоны могут быть и волнами, и частицами, а электроны испускаются соответствующими металлами при попадании на них фотонов, французский физик Луи де Бройль заключил, что и электроны также должны быть и волнами, и частицами. На самом деле вся материя должна демонстрировать эту двойственную природу – быть иногда твердыми частицами, а иногда – колеблющимися волнами. Вот почему в эксперименте можно обнаружить то одно, то другое.
На исключительно малых масштабах материю в действительности не описывают ни «частица», ни «волна». Элементарные составные части материи являются немного и тем и другим – частицами-волнами. Де Бройль изобрел формулу для описания частиц-волн.
Далее произошло важнейшее для нашего рассказа событие. Эрвин Шредингер взял формулу де Бройля и превратил ее в уравнение, описывающее движение частиц-волн. Подобно тому как законы движения Ньютона имели фундаментальное значение для классической механики, так и уравнение Шредингера стало фундаментом механики квантовой.
Эрвин Шредингер родился в Вене в 1886 году в результате смешанного брака. Его отец Рудольф Шредингер занимался производством погребальных одежд – навощенных одеяний, используемых на саваны для умерших; он, кроме того, был ботаником. Рудольф был католиком, а мать Эрвина Георгина Эмилия Бренда – лютеранкой. С 1906 по 1910 год Эрвин изучал физику в Вене под руководством Франца Экснера и Фридриха Хазенорля, ставшего ассистентом Экснера в 1911 году. Он защитил диссертацию на право преподавания в 1914-м, в момент начала Первой мировой войны, и провел войну в качестве офицера австрийской артиллерии. Два года спустя после окончания войны он женился на Аннемари Бертель. В 1920 году он занял соответствующую доценту должность в Штутгарте, а с 1921-го стал полным профессором в Бреслау (ныне Вроцлав в Польше).
Уравнение, носящее теперь его имя, Шредингер опубликовал в 1926 году в статье, где показал, что из этого уравнения можно получить правильные уровни энергии для спектра атома водорода [67]67
Несколько перегруженное высказывание. Речь может идти об уровнях энергии в самом атоме водорода; спектр же – то есть излучаемые атомом волны определений длины – есть лишь свидетельствооб этих уровнях энергии (или способ экспериментального доступа к ним). (Примеч. перев.)
[Закрыть]. За ней в скором времени последовали три другие ключевые статьи по квантовой теории. В 1927 году он приехал к Планку в Берлин, но в 1933-м из-за антисемитизма нацистов уехал из Германии в Оксфорд, где его приняли в Колледж Магдалины. Вскоре после этого он вместе с Полем Дираком был удостоен Нобелевской премии по физике.
Шредингер вел вызывающий образ жизни, живя одновременно с двумя женщинами, что, конечно, задевало тонкие, чувствительные натуры оксфордских донов [68]68
Дон – преподаватель, член совета колледжа в Кембридже или Оксфорде. (Примеч. перев.)
[Закрыть].
Не прошло и года, как он снова переехал, на этот раз в Принстон, где ему предложили постоянную работу, но он не стал принимать этого предложения – возможно, из-за того, что его желание жить одной семьей и с женой, и с любовницей вызывало в Принстоне взгляды ничуть не более благосклонные, чем в Оксфорде. В конце концов в 1936 году он осел в австрийском Граце, не обращая внимания на пуританскую нетерпимость австрийцев.
Присоединение Австрии Гитлером создало для Шредингера немалые сложности из-за его известной неприязни к нацистам. Он публично отрекся от своих взглядов (и много лет спустя извинялся за это перед Эйнштейном). Но уловка не сработала: он лишился работы, поскольку считался политически неблагонадежным, и ему пришлось бежать в Италию.
В конце концов Шредингер поселился в Дублине [69]69
Быть может, уместно напомнить, что Республика Ирландия (столица – Дублин; англ. Dublin, ирл. Baile Átha Cliath) придерживалась нейтралитетаво Второй мировой войне. (Примеч. перев.)
[Закрыть]. В 1944 году вышла его книга «Что такое жизнь?» – захватывающая, но неудачная попытка применить квантовую физику к живым организмам. Его идеи основывались на концепции «негэнтропии» – тенденции живого не подчиняться второму закону термодинамики (или как-то обходить его действие). Шредингер подчеркивал, что гены живых существ должны представлять собой некие сложные молекулы, содержащие закодированные инструкции. Эти молекулы теперь называются ДНК, но их структура была открыта только в 1953 году Фрэнсисом Криком и Джеймсом Уотсоном, вдохновленными – отчасти – Шредингером.
В Ирландии Шредингер не изменял своему свободному отношению к сексуальности, вступая в связи со студентками и став отцом двух детей от разных матерей.
Он умер в Вене от туберкулеза в 1961 году.
Более всего Шредингер известен благодаря своему коту. Не настоящему коту, а тому, который участвует в мысленном эксперименте. Его нередко интерпретируют как причину, по которой шредингеровские волны [70]70
Будем считать, что под шредингеровскими волнамипонимаются решения уравнения Шредингера. Как указывал автор, это уравнение играет фундаментальную роль в квантово-механическом описании материи, однако это описание носит не вполне непосредственный характер, а потому имеются вопросы (обсуждаемые до сих пор) о том, «что же значат» эти решения «сами по себе», то есть об их интерпретации. (Прим. перев.)
[Закрыть]нельзя рассматривать как нечто реально физическое, а надо воспринимать как некое завуалированное описание, которое само по себе проверить невозможно, но из которого проистекают верные следствия. Однако эта интерпретация не вполне последовательна – если волны не существуют, то почему выводимые из них следствия столь хорошо применимы?
Как бы то ни было, вернемся к коту. Согласно квантовой механике, частицы-волны могут интерферировать друг с другом, налагаясь одна на другую и при этом усиливая друг друга в тех случаях, когда пик одной волны попадает на пик другой, или же гася друг друга, когда пик накладывается на провал. Поведение такого типа называется суперпозицией, так что квантовые частицы-волны могут создавать суперпозиции, накладываясь друг на друга, – откуда следует, что они потенциально содержат множество возможных состояний, но при этом не находятся ни в одном из них самом по себе. Согласно Бору и знаменитой «копенгагенской интерпретации» квантовой теории, в этом-то и состоит естественное положение вещей. Только тогда, когда мы производим наблюдение какой-либо физической величины, мы заставляем ее выйти из некоторой квантовой суперпозиции и оказаться в каком-то единственном «чистом» состоянии.
Такая интерпретация хорошо работает для электронов, однако Шредингер задался вопросом о том, что она будет означать для кота. В его мысленном эксперименте запертый в ящике кот может находиться в суперпозиции состояний жизни и смерти. Когда вы открываете ящик, вы совершаете наблюдение над котом и тем самым заставляете его оказаться или в одном состоянии, или в другом [71]71
Кот помещен в закрытый ящик, где имеется механизм, содержащий радиоактивное ядро и емкость с ядовитым газом. Вероятность распада ядра в течение часа составляет 50%. Если ядро распадается, то открывается емкость с газом и кот умирает. Согласно квантовой механике, пока над ядром не производится наблюдения, его состояние описывается суперпозицией двух состояний – распавшегося ядра и нераспавшегося ядра, следовательно, кот в ящике и жив, и мертв одновременно. Но, когда ящик открывают, экспериментатор увидит только какое-нибудь одно конкретное состояние – «ядро распалось, кот мертв» или «ядро не распалось, кот жив». Когдаже кот умирает? См. также:
http://ru.wikipedia.org/wiki/Koт_Шpёдингep. (Примеч. перев.)
[Закрыть]. Как заметил в «Маскараде» Терри Пратчетт, коты устроены не так. Кот-супермачо Грибо появляется из ящика в третьем состоянии – до чертиков разъяренным.
Шредингеру тоже было известно, что коты устроены иначе, хотя и по другим причинам. Электрон – микроскопическая вещица и ведет себя тем или иным образом на квантовом уровне. Он обладает (когда мы потрудимся сделать соответствующее измерение) определенной координатой, или скоростью, или спином, описать которые относительно несложно [72]72
Квантово-механическая сложность при описании микроскопических частиц состоит в том, что частица (скажем, электрон) обладает илиопределенной координатой, илиопределенной скоростью (см. о принципе неопределенности ниже). Кот же, как мы знаем, обладает этими двумя характеристиками одновременно. (Примеч. перев.)
[Закрыть]. Кот же – существо макроскопическое, и с ним все по-другому. Можно устроить суперпозицию состояний электрона, но не кота. У нас с женой две кошки, и когда они пытаются устроить суперпозицию, результат состоит из летящей шерсти и двух крайне негодующих кошек. Жаргонное слово здесь – это «декогеренция», которая объясняет, почему в повседневной жизни большие квантовые системы, подобные котам, выглядят как привычные «классические» системы. Декогеренция говорит нам, что кот состоит из столь большого числа частиц-волн, что они все перепутываются и разрушают суперпозицию за время, меньшее, чем свет затрачивает на прохождение расстояния, равного диаметру электрона. Таким образом, коты, являясь макроскопическими системами, состоящими из очень большого числа квантовых частиц, ведут себя как коты. Они могут быть или живыми, или мертвыми, но не могут находиться в обоих этих состояниях сразу.
Тем не менее на достаточно малых масштабах – а мы говорим о вещицах по-настоящему малых, а вовсе не таких, которые можно разглядеть в обычный микроскоп, – вселенная ведет себя в точности так, как ей велит квантовая физика, и ей удается делать две разные вещи в один момент времени. И это все меняет.
Насколько странным должен быть квантовый мир, стало ясно из работ Вернера Гайзенберга. Гайзенберг был блестящим физиком-теоретиком, но его знакомство с экспериментом было столь ничтожным, что на экзамене, необходимом для защиты диссертации, он не смог ответить на простые вопросы о телескопах и микроскопах. Он даже не знал, как работает аккумуляторная батарея.
Август Гайзенберг женился на Анне Велайн в 1899 году. Он был лютеранином, а она – католичкой, и ей пришлось перейти в его религию, для того чтобы их брак состоялся. У них было много общего: он был преподавателем и специалистом по Античности, специализирующимся в древнегреческом, она же была дочерью преподавателя и специалиста по греческим трагедиям. Их первый сын Эрвин родился в 1900 году и стал химиком. Второй – Вернер – родился в 1901-м и изменил мир.
Германия в то время еще была монархией, и профессия преподавателя означала высокий социальный статус, так что Гайзенберги жили в финансовом отношении благополучно и могли отдать своих детей в хорошие школы. В 1910 году Август стал профессором средневекового и современного греческого языка в Мюнхенском университете, и семья переехала в этот город. В 1911 году Вернер начал обучение в Школе короля Максимилиана в Мюнхене, где до этого учился и Планк. Дед Вернера Николаус Велайн был директором школы. Мальчик рос сообразительным и живым, отчасти из-за того, что его отец побуждал его соперничать со старшими, и демонстрировал замечательные способности к математике и естественным наукам. Он был, кроме того, одарен еще и музыкально и освоил фортепиано столь хорошо, что в 12-летнем возрасте выступал на школьных концертах.
Позднее Гайзенберг писал, что его «интерес и к языкам, и к математике проснулся достаточно рано». Он получал высшие оценки по греческому и латыни и хорошо учился по математике, физике и религии. Худшими для него предметами были физкультура и немецкий. У него был превосходный учитель математики по имени Кристоф Вольф, который развивал способности Вернера, давая ему решать специальные задачи. Скоро ученик превзошел учителя, и в школьной характеристике Гайзенберга было сказано: «Его независимая работа в области математики и физики далеко выходит за школьные требования». Он самостоятельно изучил теорию относительности, отдавая предпочтение ее математическому содержанию перед физическими следствиями. Когда родители попросили его позаниматься со студенткой из местного колледжа, чтобы подготовить ее к экзаменам, он самостоятельно освоил математический анализ – предмет, не входящий в школьную программу. В нем развился интерес к теории чисел, про которую он говорил, что «она понятна, там все устроено так, что можно понять все до самого конца».