355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иэн Стюарт » Истина и красота. Всемирная история симметрии. » Текст книги (страница 20)
Истина и красота. Всемирная история симметрии.
  • Текст добавлен: 26 сентября 2016, 19:45

Текст книги "Истина и красота. Всемирная история симметрии."


Автор книги: Иэн Стюарт


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 20 (всего у книги 26 страниц)

К 60-м годам двадцатого века, однако, квантовая механика начала сбавлять обороты. Первоначальный прогресс уступил место глубоким парадоксам и необъяснимым наблюдениям. Успех квантовой теории не подлежал сомнению, и на этой основе вскоре возникла «стандартная модель» фундаментальных частиц. Но становилось все труднее найти новые вопросы, на которые был бы хоть какой-нибудь шанс получить ответ. По-настоящему новые идеи трудно было проверить; те идеи, которые допускали проверку, были лишь развитием уже существующих.

Из всех этих исследований возник один весьма изящный основополагающий принцип: ключевую роль в отношении структуры материи на очень малых масштабах играет симметрия. Но важные симметрии фундаментальных частиц – это ни обычные движения эвклидова пространства без деформаций, ни даже лоренцевы преобразования релятивистского пространства-времени. Они включают в себя калибровочные симметрии и суперсимметрии. Кроме того, имеются и другие виды симметрии (вполне в духе тех, что изучал Галуа), действующие перестановками на дискретном множестве объектов.

Каким образом могут существовать различные типы симметрий?

Симметрии всегда образуют группу [82]82
  Наука не стоит на месте. Есть – и используются – также симметрии с более хитрой алгебраической структурой. (Примеч. перев.)


[Закрыть]
, но имеется много различных способов, которыми группа может действовать. Она может действовать параллельными переносами или вращениями, перестановками компонент или же обращением направления времени. Физика частиц привела к открытию нового способа, каким могут действовать симметрии, названные калибровочными.Выбранное название – историческая случайность (лучше было бы называть их локальными симметриями).

Представьте себе, что вы отправились в другую страну – назовем ее Дупликатия, – и там вам понадобились деньги. Валютой в Дупликатии является пфуннинг, а обменный курс – два пфуннинга за доллар. Сначала это вас слегка смущает, но потом вы обращаете внимание, что имеется очень простое и очевидное правило для перевода всех транзакций из долларов в пфуннинги: в пфуннингах все стоит ровно в два раза больше, чем вы бы заплатили в долларах.

Тут действует некий вид симметрии. «Законы» денежных транзакций остаются неизменными, если удвоить все числа. При этом, чтобы компенсировать численное удвоение, вам приходиться платить в пфуннингах, а не в долларах. Эта «инвариантность относительно монетарного масштаба» представляет собой глобальную симметрию правил, действующих для денежных транзакций. Если везде произвести одно и то же изменение, то правила останутся инвариантными.

Так, а, допустим, прямо через границу, в соседней Трипликатии, местной валютой является будл, причем их дают три за доллар. Когда вы отправитесь в Трипликатию, соответствующая симметрия потребует умножения всех сумм на три. Но законы коммерции по-прежнему остаются инвариантными.

Таким образом, перед нами «симметрия», которая изменяется в зависимости от места. В Дупликатии надо умножать на два, в Трипликатии – на три. Скорее всего, вы не удивитесь, когда, приехав в Квинтапликатию, узнаете, что там доллар надо умножать на пять. Все эти операции симметрии можно применять одновременно, но каждая пригодна только в соответствующей стране. Законы коммерции остаются инвариантными, надо только интерпретировать числа в соответствии с местной валютой.

Это локальное масштабное преобразование денежных операций является калибровочной симметрией законов коммерции. В принципе обменный курс мог бы быть различным в каждой точке пространства и времени, а законы все равно оставались бы инвариантными – при условии, что все транзакции интерпретируются в терминах локального значения «валютного поля».

Квантовая электродинамика соединяет в себе специальную теорию относительности и теорию электромагнетизма. Она явилась первым физическим объединением после Максвелла, и основана она на калибровочной симметрии электромагнитного поля [83]83
  Квантовая электродинамика, как видно уже из названия, соединяет в себе идею о квантовании и электродинамику. Про теорию относительности она ничего нового не говорит, поскольку «относительность» уже встроена внутрь максвелловской (т.е. неквантовой, классической) электродинамики именно в виде симметрии относительно группы Лоренца, о которой говорится в следующем абзаце. В классической электродинамике имеются и Лоренцева, и калибровочная симметрии. Задача квантовой электродинамики, повторимся, состояла в перенесении описания электромагнетизма (с сохранением данных симметрий) в квантовую область. (Примеч. перев.)


[Закрыть]
.

Как мы видели, теория электромагнетизма симметрична относительно группы Лоренца – группы преобразований специальной теории относительности. Эта группа состоит из глобальных симметрий пространства-времени, то есть ее преобразования надо применять одновременно ко всей вселенной, чтобы сохранить уравнения Максвелла в неизменности. Однако Максвеллов электромагнетизм обладает также калибровочной симметрией, которая играет ключевую роль в квантовой электродинамике. Эта симметрия заключается в изменении фазы света.

Всякая волна состоит из регулярных всплесков. Максимальный размер всплеска – это амплитуда волны. Момент времени, в который волна попадает в этот максимум, называется фазой волны; фаза говорит нам о том, когда и где достигаются пиковые значения. Что важно, это не абсолютная фаза какой-либо волны, а разность фаз между двумя отдельными волнами. Например, если разность фаз двух (в остальном тождественных) волн составляет половину периода (времени между максимальными высотами), то одна волна будет попадать в максимумы как раз «не в ногу» с другой, так что пики одной совпадут со впадинами другой.

Когда вы идете по улице, ваша левая нога на полпериода отстает по фазе от правой ноги. Когда слон идет по улице, его ноги одна за другой касаются земли в фазах, равных 0, 1/ 4, 1/ 2и 3/ 4полного периода; сначала левая задняя, потом левая передняя, потом правая задняя и затем правая передняя. Стоит заметить, что, начав считать от 0 с какой-нибудь другой ноги, мы получили бы некоторые другие числа, но соответствующие разностифаз все равно составляли бы те же 0, 1/ 4, 1/ 2и 3/ 4. Таким образом, относительная фаза корректно определена и физически осмысленна.

Рассмотрим световой луч, проходящий через некоторую сложную систему линз и зеркал. Поведение луча оказывается не зависящим от общей фазы. Изменение фазы эквивалентно малой временной задержке в наблюдениях, или, что то же самое, некоторой перестановке часов наблюдателя.

На геометрию системы или путь света это не влияет. Даже если две световые волны пересекаются, ничто не меняется – при условии, что фазы обеих волн сдвигаются на одну и ту же величину.

Эффект фазового сдвига волны.

Эти сдвиги фаз до сих пор представляли собой глобальную симметрию. Но если внеземной экспериментатор где-нибудь в галактике Андромеда изменит фазу света в одном из своих экспериментов, то в земной лаборатории не последует никакого эффекта. Таким образом, фазу света можно изменять произвольным образом в каждом данном месте пространства и времени, и законы физики должны оставаться инвариантными. Возможность произвольного изменения фазы в каждой точке пространства-времени без глобального требования, чтобы фаза была повсюду одинакова, представляет собой калибровочную симметрию уравнений Максвелла, и эта симметрия сохраняется в квантовом варианте этих уравнений – квантовой электродинамике [84]84
  Серьезная путаница. При калибровочных преобразованиях фаза световой (электромагнитной) волны остается неизменной.Фазовые преобразования в электродинамике относятся не к свету, а к полю, описывающему частицы, которые излучают и поглощают свет (например, электроны и позитроны). Имеющуюся в этом поле «фазу» роднит с фазой электромагнитной волны лишь название. Смысл же калибровочной инвариантности состоит в том, что если в каждой точке пространства произвольным образом изменить фазу электрон-позитронного поля, то найдется компенсирующее преобразованиеэлектромагнитного поля. (Этот факт неможет, кроме того, следовать из аргументов, неожиданно привлекающих к рассмотрению галактику Андромеда.) (Примеч. перев.)


[Закрыть]
.

Фазовый сдвиг на полный период колебаний есть то же самое, что отсутствие фазового сдвига, а отсюда следует, что рассматриваемое абстрактно изменение фазы является вращением. Таким образом, относящаяся сюда группа симметрии – калибровочная группа – есть группа вращений двумерного пространства SO(2). Однако физики любят, чтобы квантовые координатные преобразования были у них «унитарными», т.е. определялись не действительными числами, а комплексными. К счастью, SO(2) имеет и другое воплощение – в виде унитарной группы U(1), представляющей собой группу вращений в комплексной плоскости.

Коротко говоря, квантовая электродинамика обладает калибровочной U(1)-симметрией.

Калибровочные симметрии оказались ключом к двум следующим объединениям в физике – электрослабой теории и квантовой хромодинамике [85]85
  Квантовая хромодинамика сама по себе неявляется какой-либо объединенной теорией. Она описывает сильные взаимодействия. (Примеч. перев.)


[Закрыть]
. Взятые вместе, они составляют Стандартную Модель – на данный момент общепринятую теорию всех фундаментальных частиц. Прежде чем мы увидим, как в ней обстоят дела, надо точно объяснить, что же именно объединяется: не теории, а силы.

Современная физика выделяет четыре различных вида сил в природе – гравитацию, электромагнетизм, слабые ядерные силы и сильные ядерные силы. Все они обладают очень различными характеристиками: они действуют на разных масштабах пространства и времени, некоторые из них заставляют частицы притягиваться, некоторые – отталкиваться, некоторые – делать и то и другое в зависимости от частиц и, наконец, некоторые – делать и то и другое в зависимости от того, на каком расстоянии друг от друга частицы находятся.

На первый взгляд каждая сила мало напоминает остальные. Но в глубине под поверхностью вещей имеются указания, что эти различия на самом деле не так велики, как кажется. Физики смогли получить свидетельства глубокого единства, подсказывающего, что все четыре силы имеют общее объяснение.

Следствия гравитации мы ощущаем на себе постоянно. Когда мы роняем тарелку и она разбивается об пол в кухне, мы наблюдаем, как гравитация тянет ее по направлению к центру Земли, а пол встает у нее на пути. Поросята на дверце холодильника (у нас дома, по крайней мере, это именно поросята) держатся там благодаря магнитной силе, относительно которой Максвелл установил, что она есть всего лишь один аспект объединенной электромагнитной силы. Ее электрическое проявление обеспечивает работу холодильника. Менее очевидным образом, разбившаяся тарелка также демонстрирует проявления электромагнитной силы, потому что именно она в основном действует в химических связях, удерживающих вместе куски материи. Когда напряжение в тарелке становится настолько велико, что электромагнитная сила больше не может удерживать молекулы вместе, тарелка бьется.

Две оставшиеся силы, действующие на уровне атомного ядра, проявляются не так непосредственно; но без них не было бы вообще никакой материи, потому что благодаря им атомы представляют собой единое целое [86]86
  Все же атомыпредставляют собой единое целое благодаря электромагнитномупритяжению между электронами и находящимися в ядре протонами. Атомные ядрасуществуют – являются стабильными или квазистабильными образованиями – благодаря сильнымвзаимодействиям между протонами и нейтронами. Деление ядер высвобождает часть энергии сильных взаимодействий, которые в случае реализации цепной реакции имеют в качестве довольно непосредственныхпроявлений атомную бомбу и Солнце. (Примеч. перев.)


[Закрыть]
. Они – причина, по которой тарелки, поросята, холодильник, пол и кухня существуют.

Силы других типов могли бы в принципе породить вселенную иного типа, и нам о таких возможностях не известно практически ничего. Нередко утверждается, что без наших конкретных сил жизнь была бы невозможна, что как бы доказывает, что наша вселенная на удивление хорошо подогнана к тому, чтобы жизнь в ней была возможна. Этот неверный аргумент – колоссальное преувеличение, основанное на определенном взгляде на то, что составляет жизнь. Жизнь, подобная нашей, была бы невозможна, но верхом самонадеянности было бы считать, что жизнь нашего типа – это единственно возможный вид сложной организации, который мог бы существовать. Логическая ошибка состоит здесь в смешении достаточных условий для жизни (те аспекты нашей вселенной, от которой зависит жизнь нашего типа) с необходимыми.

Первой из четырех была научно сформулирована сила гравитации. Согласно Ньютону, это притягивающая сила: любые две частицы во вселенной, утверждал он, притягивают друг друга гравитационно. Гравитационная сила – дальнодействующая: она спадает с расстоянием достаточно медленно. С другой стороны, гравитационная сила намного слабее остальных трех: малюсенький магнитик может крепко удерживать поросенка на холодильнике, несмотря на то что вся Земля пытается притянуть его к себе за счет гравитационной силы.

Следующим по очереди среди фундаментальных сил был осознан электромагнетизм, за счет которого частицы могут или притягивать, или отталкивать друг друга. Тот или иной случай реализуется в зависимости от того, имеют ли частицы электрические заряды одного знака и одну и ту же магнитную полярность. Если да, то сила оказывается отталкивающей; если нет – притягивающей. И эта сила также дальнодействующая.

Ядра в атоме составлены из меньших частиц – протонов и нейтронов. Нейтроны, как можно заключить уже из их названия, не несут электрического заряда, но все протоны имеют положительный заряд. Электромагнитное отталкивание между протонами должно бы вызвать распад ядра. Что же удерживает ядро в виде одного целого? Гравитация слишком слаба – вспомните о поросятах на холодильнике. Должна существовать некая другая сила – которую физики назвали сильным ядерным взаимодействием.

Но если сильное взаимодействие может преодолеть электрическое отталкивание, то почему же все протоны во вселенной не слиплись в одно гигантское атомное ядро? Дело в том, что влияние сильного взаимодействия быстро спадает с расстоянием, как только расстояние превышает размер ядра. Итак, сильное взаимодействие является короткодействующим.

Сильное взаимодействие не объясняет явление радиоактивного распада, когда атомы определенных элементов «выплевывают» частицы и излучение, превращаясь при этом в атомы других элементов. Уран, например, является радиоактивным и в конце концов превращается в свинец. Таким образом, должна существовать еще одна субатомная сила. Ею оказывается слабое взаимодействие; оно даже еще более короткодействующее, чем сильное взаимодействие: оно действует только на расстояниях в одну тысячную размера протона [87]87
  Около 10 −18 м, что примерно в 1000 раз меньше диаметра атомного ядра. Для «истории симметрии» может показаться интересным, что при ядерных превращениях, обусловленных слабым взаимодействием, нарушается зеркальная симметрия —симметрия между правым и левым. (Примеч. перев.)


[Закрыть]
.

Физика была неизмеримо проще, когда единственными «кирпичиками» материи считались протоны, нейтроны и электроны. Эти «элементарные частицы» составляли атомы, которые, как стало ясно, на самом деле могут распадаться, хотя само название означает «неделимый». В ранней модели Нильса Бора атом представлялся как тесное собрание протонов и нейтронов, вокруг которых вращались гораздо более легкие, удаленные от них электроны. Протон несет фиксированный положительный электрический заряд, электрон несет то же количество отрицательного заряда, а нейтрон электрически нейтрален.

Позднее, по мере развития квантовой теории, этот образ в духе представлений о солнечной системе уступил место более хитрому устройству. Электроны не вращаются вокруг ядра в качестве четко определенных частиц, но некоторым образом размазаны вокруг ядра в виде облаков довольно замысловатых форм. Эти облака лучше всего интерпретируются как облака вероятности [88]88
  Сама идея о «размазанности» электрона – это уже интерпретация некоторого квантово-механического факта, имеющего отношение к вероятности. А не наоборот. (Примеч. перев.)


[Закрыть]
. Если смотреть на электрон, то вероятнее всего найти его там, где плотность облаков максимальна, и наоборот, он будет реже встречаться в областях, где облако «разрежено».

Физики изобрели новые способы изучать структуру атома, «разбирая» его на части и исследуя внутреннюю структуру этих частей [89]89
  Речь идет главным образом об атомных ядрах,а не о самих атомах. (Примеч. перев.)


[Закрыть]
. Основной метод, которым до сих пор продолжают пользоваться, состоит в том, чтобы ударить по атому другим атомом или частицей и посмотреть, что вылетит из области соударения. Постепенно – эта история слишком сложная, чтобы излагать ее подробно – обнаруживались все новые и новые частицы. Это было нейтрино, которое обладает способностью пройти миллионы километров через свинец, не претерпев столкновения, в силу чего его нелегко детектировать. Далее, это был позитрон, который похож на электрон, но несет противоположный электрический заряд и который был предсказан дираковской симметрией между материей и антиматерией.

Когда число «элементарных» частиц перевалило за шестьдесят, физики стали искать более глубокие классифицирующие принципы. «Кирпичики» материи оказались слишком многочисленными, чтобы быть фундаментальными. Частица каждого типа характеризуется рядом свойств: массой, зарядом, тем, что называется «спином» и представляет собой некое подобие вращения вокруг некоторой оси (за исключением того факта, что это старомодное представление и, чем бы спин ни был, он не сводится к вращению) [90]90
  Это обсуждалось в главе 12. (Примеч. перев.)


[Закрыть]
. Частицы вращаются не в пространстве (как это делают Земля или крутящийся волчок), а в некоторых более экзотических измерениях.

Как и все в квантовом мире, большая часть этих свойств выражается целыми кратными базовых, очень маленьких количеств – квантов. Все электрические заряды выражаются как целые кратные заряда протона. Все спины суть целые кратные спина электрона. Отсутствовала ясность по поводу того, квантуется ли аналогичным образом масса; массы фундаментальных частиц представляли собой мешанину, лишенную всякой структуры.

Стали проявляться и некоторые общие семейные черты. Важное различие потребовалось провести между частицами, спин которых есть нечетное кратное спина электрона, и частицами, спин которых – четное кратное. Причина состоит в свойствах симметрии; спины (живущие в своих экзотических пространствах) вели себя по-разному, если заставить частицу вращаться в обычном пространстве. Некоторым образом, экзотические спиновые и прозаические пространственные измерения оказались связаны.

Нечетные частицы получили название фермионов, а четные [91]91
  «Нечетные» – частицы со спином, выражающимся как нечетное кратное спина электрона; «четные» – со спином, выражающимся как четное кратное спина электрона. (Примеч. перев.)


[Закрыть]
– бозонов, по именам двух гигантов физики частиц, Энрико Ферми и Сатьендраната Бозе. По причинам, которые некогда представлялись разумными, спин электрона определен равным 1/ 2. Таким образом, бозоны имеют целочисленные спины (четные кратные 1/ 2являются целыми), а фермионы – спины 1/ 2, 3/ 2, 5/ 2и т.д., а также противоположные им − 1/ 2, − 3/ 2, − 5/ 2 [92]92
  Часть фразы про отрицательные спины лучше всего полностью проигнорировать. (Примеч. перев.)


[Закрыть]
.

Фермионы подчиняются принципу запрета Паули, который гласит, что в любой заданной квантовой системе две различные частицы не могут находиться в одном и том же состоянии в один и тот же момент времени. Бозоны не подчиняются принципу Паули.

К фермионам относятся все хорошо знакомые частицы – фермионами являются протоны, нейтроны и электроны. Кроме того, к фермионам относятся и более экзотические частицы, такие как мюон, тау-лептон, лямбда, сигма, кси и омега, – их имена представляют собой буквы греческого алфавита. Фермионами также являются три типа нейтрино, связанные с электронами, мюонами и тау-лептонами.

У бозонов более загадочные имена, такие как пион, каон и эта.

Специалисты по физике частиц знали, что все эти частицы существуют, и научились измерять их физические свойства. Задача состояла в том, чтобы найти смысл в кажущейся мешанине. Построена ли наша вселенная из чего-то, что случайно подвернулось под руку? Или же имелся некий скрытый план?

Итог подобных размышлений состоял в том, что многие казавшиеся элементарными частицы в действительности оказались составными. Все они построены из кварков. Кварки (слово, заимствованное из «Поминок по Финнегану» [93]93
  Шифрованный роман Джеймса Джойса. (Примеч. перев.)


[Закрыть]
) организованы в шесть различных ароматов, получивших условные названия up, down, strange (странный), charm (очарованный), top и bottom. Все они – фермионы со спином 1/ 2. У каждого имеется свой антикварк.

Есть два способа складывать кварки вместе. Один – это использовать три обыкновенных кварка, и в таком случае получается фермион. Протон, например, состоит из двух up-кварков и одного down-кварка, а нейтрон – из двух down и одного up. Необычная частица, названная омега-минус, составлена из трех странных кварков. Второй способ состоит в том, чтобы использовать кварк и какой-нибудь антикварк, что в результате дает бозон. Они не аннигилируют друг с другом, потому что ядерные силы удерживают их на расстоянии друг от друга [94]94
  Подразумевается, что кварки участвуют в сильном взаимодействии. Причина же, по которой кварк и антикварк не аннигилируют, состоит вовсе не в этом, а просто в том, что складывающиеся из них частицы включают кварки и антикварки другого аромата,которые просто не являются античастицами друг для друга, а потому и не аннигилируют. (Примеч. перев.)


[Закрыть]
.

Чтобы все получилось правильно с электрическим зарядом, заряды кварков не могут быть целочисленными [95]95
  Т.е. целыми кратными заряда электрона (или, что то же с точностью до знака, протона). (Примеч. перев.)


[Закрыть]
. У одних кварков заряд 1/ 3, у некоторых 2/ 3. Кварки организованы в три различных «цвета». Таким образом, всего имеется 18 типов кварков плюс еще 18 антикварков. Ах да, есть кое-что еще. Надо добавить некоторое количество частиц, «переносящих» сильные ядерные взаимодействия, которые удерживают кварки вместе. Получающаяся теория обладает немалой математической элегантностью, несмотря на некоторое размножение числа частиц, и известна как квантовая хромодинамика.

Квантовая теория объясняет все физические силы в терминах обмена частицами. Подобно тому как теннисный мячик удерживает вместе двух игроков на противоположных сторонах корта, пока продолжается игра, так и различные частицы переносят электромагнитные, сильные и слабые взаимодействия. Электромагнитное взаимодействие переносят фотоны. Сильное взаимодействие переносят глюоны, а слабое – промежуточные векторные бозоны. (Не ругайте меня – не я изобрел эти названия: по большей части они возникли в результате исторических случайностей.) Наконец, широко распространено предположение, что гравитацию должны переносить гипотетические частицы, названные гравитонами. Обнаружить гравитон пока не удалось.

Крупномасштабный эффект всех этих частиц-переносчиков состоит в том, что вселенная заполнена «полями» [96]96
  Ясно, что Вселенная может быть «заполнена» лишь дальнодействующимиполями, т.е. теми, у которых большой («бесконечный») радиус действия. (Примеч. перев.)


[Закрыть]
. Гравитационные взаимодействия создают гравитационное поле, электромагнитные – электромагнитное поле, а две ядерные силы, взятые вместе, создают нечто, названное полем Янга-Миллса по именам физиков Чжэньнин Янга и Роберта Миллса.

Основные характеристики фундаментальных взаимодействий можно подытожить в некотором подобии физического прейскуранта.

Гравитация

Напряженность 6×10 −39, радиус действия бесконечен, переносится гравитонами (не наблюдались, но должны иметь массу 0 и спин 2), образует гравитационное поле.

Электромагнетизм

Напряженность 10 −2, радиус действия бесконечен, переносится фотонами (масса 0, спин 1), образует электромагнитное поле.

Сильное взаимодействие

Напряженность 1, радиус действия 10 −15метров, переносится глюонами (масса 0, спин 1), образует одну из компонент поля Янга-Миллса.

Слабое взаимодействие

Напряженность 10 −6, радиус действия 10 −18метров, переносится векторными бозонами (большая масса, спин 1), образует другую компоненту поля Янга-Миллса.

У вас может сложиться впечатление, что 36 фундаментальных частиц да еще глюоны в ассортименте [97]97
  Электрон, мюон и тау-лептон, а также электронное («обычное») нейтрино, мюонное нейтрино и тау-нейтрино нескладываются из кварков. (Примеч. перев.)


[Закрыть]
, – не слишком большое улучшение по сравнению с шестьюдесятью или более частицами. Однако кварки образуют семейство с очень строгой структурой и огромной симметрией. Все они представляют собой вариацию на одну и ту же тему, в отличие от дикого зверинца частиц, с которыми физикам приходилось иметь дело до открытия кварков.

Описание фундаментальных частиц в терминах кварков и глюонов известно как Стандартная Модель [98]98
  Описание в терминах кварков и глюонов (оно относится к частицам, участвующим в сильном взаимодействии) известно как квантовая хромодинамика. Стандартная Модель помимо квантовой хромодинамики опирается и на другие идеи, главная из которых – спонтанное нарушение симметрии.Поле, которое должно участвовать в этом процессе – так называемое поле Хиггса, – возможно, будет обнаружено на Большом адронном коллайдере к тому времени, как эта книга доберется до читателя. (Примеч. перев.)


[Закрыть]
. Она исключительно хорошо согласуется с экспериментальными данными. Некоторые из масс некоторых частиц пришлось установить таким образом, чтобы добиться согласия с наблюдениями, но после этого все другие массы в точности попадают куда надо. Здесь нет замкнутого логического круга.

Кварки связаны друг с другом очень крепко, и невозможно увидеть изолированный кварк. Все, что удается наблюдать, это комбинации из двоек и троек кварков. Тем не менее физика частиц нашла непрямые подтверждения существования кварков. Они не являются всего лишь нумерологическими изысканиями в зоопарке частиц. И для тех, кто верит, что вселенная в основе своей прекрасна, свойства симметрии кварков подтверждают это.

Согласно квантовой хромодинамике, протон составлен из трех кварков – двух up и одного down. Если взять кварки из протона, перетасовать их, а потом положить обратно, то все равно получится протон. Таким образом, законы для протонов должны быть симметричны относительно перестановок составляющих их кварков. Более интересно то, что эти законы также оказываются симметричными относительно изменения типа кварка. Можно было бы, скажем, превратить up-кварк в down-кварк, и законы работали бы по-прежнему [99]99
  Конечно, в зависимости от того, что понимается под законами. Например, электрический заряд up-кварка равен 2/ 3, а down-кварка – − 1/ 3. Электромагнитное взаимодействие заведомо не будет «работать по-прежнему» после замены одного на другой. (Примеч. перев.)


[Закрыть]
.

Отсюда следует, что настоящая группа симметрии является здесь не просто группой из шести перестановок трех кварков, а тесно связанной с ней непрерывной группой SU(3) – одной из простых групп в списке Киллинга. Преобразования из SU(3) оставляют уравнения для законов природы неизменными, но они могут изменить решения этих уравнений. Используя SU(3), можно, например, «повернуть» протон в нейтрон. Все, что нужно сделать, – это перевернуть все составляющие его кварки вверх ногами, так, чтобы два up и один down стали двумя down и одним up. Мир фермионов имеет SU(3) симметрию, которая действует, меняя один фермион на другой.

Еще две группы симметрии дают вклад в Стандартную Модель. Калибровочные симметрии слабых взаимодействий, образующие группу SU(2), могут заменить электрон на нейтрино. Группа SU(2) – еще одна из списка Киллинга. И доброе старое электромагнитное поле имеет симметрию U(1) – не лоренцеву симметрию уравнений Максвелла, а калибровочную (т.е. локальную) симметрию изменений фазы. Эта группа отсутствует в списке Киллинга потому, что это не SU(1), но морально она там присутствует, поскольку является очень близким родственником [100]100
  Группа SU(1) состоит из единственногоэлемента – единицы – и поэтому совершенно не интересна. Группа же U(1) содержит бесконечно многоэлементов (правда, закон умножения в ней коммутативен, что и есть причина ее отсутствия в списке простых групп Ли). (Примеч. перев.)


[Закрыть]
.

Электрослабая теория соединила электромагнетизм и слабое взаимодействие путем объединения их калибровочных групп. Стандартная Модель также включает в себя сильные взаимодействия, являясь единой теорией для всех фундаментальных частиц. Делает она это весьма прямолинейно: она просто соединяет все три калибровочные группы вместе, в группу SU(3)×SU(2)×U(1). Эта конструкция проста и непосредственна, но не особо изящна, и именно из-за нее Стандартная Модель напоминает сооружение, построенное из жевательной резинки и куска бечевки.

Предположим, у вас есть мяч для гольфа, пуговица и зубочистка. Мяч для гольфа имеет сферическую симметрию SO(3), пуговица имеет симметрию окружности SO(2), а зубочистка обладает, скажем, просто отражательной симметрией O(1). Можно ли найти некоторый объединенный объект, обладающий всеми этими тремя типами симметрий? Да, можно – просто положите все три в бумажный пакет. Теперь вы можете применять SO(3) к содержимому пакета за счет вращения мяча для гольфа, SO(2) за счет вращения пуговицы, a O(1) – за счет переворачивания зубочистки. Группа симметрии содержимого пакета есть SO(3)×SO(2)×O(1). Стандартная Модель соединяет симметрии таким же образом, только вместо вращений она использует «унитарные преобразования» из квантовой механики. И страдает от того же недостатка: она просто сваливает различные системы в кучу и комбинирует их симметрии очевидным и довольно тривиальным способом.

Гораздо более интересный способ комбинирования трех групп симметрий может состоять в построении чего-то, что содержит те же объекты, но более изящным способом, чем просто в бумажном пакете. Может быть, у вас получится уравновесить зубочистку на мяче для гольфа, а на конце ее прикрепить пуговицу. Или у вас может быть целая система зубочисток, подобная спицам колеса; установите пуговицу на втулку и крутите колесо на мяче для гольфа. Если вы хорошенько исхитритесь, быть может, построенный объект будет обладать огромной симметрией, скажем, группой K(9). (Такой группы нет. Я придумал ее для этого обсуждения.) Группы симметрии SO(3), SO(2) и O(1) по отдельности могли бы при везении оказаться подгруппами в K(9). Это был бы куда более впечатляющий способ объединить мяч для гольфа, пуговицу и зубочистку.

Физики испытывают нечто подобное по поводу Стандартной Модели, и им бы хотелось, чтобы K(9) была чем-то из списка Киллинга или вроде того, потому что Киллинговы группы являются фундаментальными составными частями симметрии. И вот физики изобрели целый ряд теорий Великого Объединения, или ТВО, основанных на группах, подобных SU(5), О(10) и Киллинговой таинственной исключительной группе E 6. ТВО, по видимости, страдали от того же недостатка, что и теория Калуцы-Клайна, – от отсутствия допускающих проверку предсказаний. Но затем появились по-настоящему интересные предсказания. Они определенно были новыми – настолько, что вероятность того, что они окажутся истинными, казалась невысокой, однако они допускали проверку. Все ТВО предсказывают, что протон можно «повернуть» в электрон или нейтрино. Таким образом, протоны оказываются неустойчивыми, и через длительное время вся материя во вселенной должна распасться, превратившись в излучение. Вычисления показывают, что среднее время жизни протона должно быть около 10 29лет, что намного больше возраста вселенной. Но отдельные протоны могут спонтанно распадаться намного быстрее, и если протонов достаточно много, то можно засечь распад.

Большая цистерна с водой содержит более чем достаточно протонов для того, чтобы каждый год несколько из них распадалось. К концу 80-х годов двадцатого века проводились шесть экспериментов с целью зафиксировать распад протона. Самая большая из цистерн содержала более 3000 тонн исключительно чистой воды. Распадов протона зафиксировать не удалось. Ни одного. Что означает, что среднее время жизни составляет по крайней мере 10 32лет. Протоны живут по крайней мере в тысячу раз дольше, чем это предсказывают ТВО. ТВО ну никак не могут заставить протон развалиться на части. Оглядываясь назад, следует признать, что если бы распад протона был зафиксирован, это вызвало бы некоторую неловкость, потому что в ТВО отсутствует кое-что очень важное – гравитация.

Любая Теория Всего призвана объяснить, почему имеются четыре фундаментальные силы и почему они приняли тот странный вид, какой имеют сегодня. Это до известной степени похоже на попытки найти фамильное сходство между слоном, вомбатом [101]101
  Вомбаты – семейство двурезцовых сумчатых; это роющие норы травоядные животные, внешне напоминающие маленьких медведей. (Примеч. перев.)


[Закрыть]
, лебедем и комаром.

Было бы намного легче организовать четыре силы, если бы удалось показать, что все они – различные проявления одной силы. В биологии такое удалось сделать: все слоны, вомбаты, лебеди и комары являются представителями Древа Жизни; объединяет их ДНК, а отличает друг от друга длинный исторический ряд изменений, произошедших в ДНК. Все четверо эволюционировали шаг за шагом от общего предка, который жил миллиард или два миллиарда лет назад.

Общий предок слонов и вомбатов жил позднее, чем, скажем, общий предок слонов и лебедей. Так что эта дивергенция представляет собой наиболее недавнее ветвление древа, нарисованного для этих четырех видов. До того общий предок слонов и вомбатов отделился от некоторого предка лебедя. А еще ранее общий предок этих трех видов отделился от предка комара.



Как четыре вида дивергируют с течением времени.

Происхождение видов можно трактовать как некое нарушение симметрии. Единый вид является (приближенно) симметричным относительно любой перестановки входящих в него организмов; каждый вомбат напоминает любого другого. Когда имеются два различных вида – вомбаты и слоны, можно переставлять вомбатов между собой, а слонов между собой, но нельзя заменить слона на вомбата так, чтобы никто этого не заметил.

Физики похожим образом объясняют единство, лежащее в основе четырех сил. Роль ДНК, однако, здесь играет температура вселенной – другими словами, уровень ее энергии. Хотя основополагающие законы природы одни и те же во все моменты времени, они приводят к различному поведению при различных энергиях – так же как вода, согласно одним и тем же законам, является твердой при низких температурах, жидкой при средних и газообразной при высоких. При очень высоких температурах молекулы воды разрушаются, и образуется плазма, состоящая из отдельных частей [102]102
  Состоящая из ионов – атомов, от которых отделено некоторое число их электронов – и самих этих электронов по отдельности. (Примеч. перев.)


[Закрыть]
. При еще более высоких температурах сами эти частицы разрушаются и образуют кварк-глюонную плазму.

Когда Вселенная возникла в момент Большого Взрыва, тринадцать миллиардов лет назад, она была невероятно горячей. Сначала все четыре силы действовали в точности одинаково. Но по мере того, как вселенная остывала, ее симметрия нарушалась, а силы расщеплялись на отдельные, каждая со своими отличительными свойствами. На данный момент наша вселенная с ее четырьмя силами является бледной копией той изящной изначальной – результатом трех нарушений симметрии.


    Ваша оценка произведения:

Популярные книги за неделю