Текст книги "Истина и красота. Всемирная история симметрии."
Автор книги: Иэн Стюарт
Жанр:
Математика
сообщить о нарушении
Текущая страница: 22 (всего у книги 26 страниц)
Я не хочу, чтобы у вас сложилось впечатление, будто, когда дело доходит до объединения квантовой теории с теорией относительности, суперструны – единственное, что есть в программе. Имеются и конкурирующие предложения – хотя все они страдают от того же отсутствия экспериментального подтверждения.
Одна идея, известная как некоммутативная геометрия, взращена французским математиком Аленом Конном. Он основывается на новой концепции геометрии пространства-времени. Большинство объединений исходят из идеи, что пространство-время представляет собой некоторое расширение релятивистской модели Эйнштейна, и пытаются как-то подогнать его под существующие фундаментальные частицы субатомной физики. Конн делает наоборот. Он начинает с математической структуры, известной как некоммутативное пространство, которое содержит все группы симметрии, возникающие в Стандартной Модели, а далее выводит свойства, аналогичные относительности. Математика такого пространства восходит к Гамильтону и его некоммутативным кватернионам, однако она сильно обобщена и модифицирована. При этом снова альтернативная теория имеет крепкие связи с теорией групп Ли.
Другая захватывающая идея – петлевая квантовая гравитация. В 80-х годах двадцатого века физик Абэй Аштекар предложил, как выглядели бы уравнения Эйнштейна в квантовой области, где пространство становится «зернистым». Ли Смолин и Карло Равелли развили его идеи, что привело к модели пространства, которое представляет собой нечто вроде средневековой кольчуги, собранной из очень маленьких, сцепленных между собой кусочков порядка 10 −35м в поперечнике. Они заметили, что детали структуры кольчуги становятся очень запутанными, когда звенья заузливаются или сплетаются между собой как косы. Однако не ясно, что эти возможности означают.
В 2004 году Санденс Билсон-Томсон открыл, что некоторые из этих кос точно воспроизводят правила сочетаний кварков. Электрический заряд кварка переинтерпретируется здесь в терминах топологии соответствующей косы, а правила их сочетаний следуют из простых геометрических операций с косами. Эта идея, все еще находящаяся во младенчестве, позволяет воспроизвести большинство частиц, наблюдаемых в Стандартной Модели. Она – последняя в ряду гипотетических предложений о том, что материя – реализованная здесь в виде частиц – может оказаться следствием «особенностей» в пространстве, таких как узлы, локализованные волны или более сложные структуры, где пространство перестает быть гладким и регулярным. Если Билсон-Томсон прав, то материя есть лишь скрученное пространство-время.
Электрон, представленный в виде косы.
Математики изучали топологию кос в течение многих лет, и давно известно, что косы образуют группу – группу кос.Операция «умножения» в ней состоит в присоединении концов нитей друг к другу [116]116
«Начало» одной косы к «концу» другой. (Примеч. перев.)
[Закрыть]– в том же духе, как мы присоединяли друг к другу перестановки при рассмотрении подхода Руффини к уравнениям пятой степени. Мы опять видим, как физика основывается на предсуществующих математических открытиях, сделанных в основном «ради самих себя», только потому, что они казались интересными. И снова ключевым ингредиентом является симметрия.
В последних версиях суперструн главной проблемой стал кризис перепроизводства. На смену отсутствию всяких предсказаний пришло производство слишком большого их количества в теории. «Энергия вакуума» – энергетическое содержание пустого пространства – может быть практически любой в зависимости от того, как струны наматываются на дополнительные измерения пространства. Число способов, которыми это может происходить, поистине гигантское – около 10 500. При различных выборах получаются различные значения энергии вакуума. При этом наблюдаемое значение очень, очень мало – около 10 −120, однако не нулевое [117]117
Энергия, в отличие от числакомбинаций, должна, конечно, измеряться в каких-то единицах (аналогичным образом бессмысленно утверждение, что вы ехали «со скоростью 100», пока не сказано, о каких единицах идет речь). В тексте говорится в действительности даже не об энергии, а о «космологической постоянной» λ≈ 10 −120 M Pl4, для которой в качестве единицы измерения здесь выбрана четвертая степень величины M Pl= 4,34 мкг (мкг – микрограммы, то есть миллионные доли грамма). (Примеч. перев.)
[Закрыть].
Согласно стандартной истории с «тонкой настройкой», это конкретное значение как раз подходит для существования жизни. Любое значение, превышающее 10 −118, заставит локальное пространство-время взорваться; а все меньшее 10 −120приведет к тому, что пространство-время сожмется и исчезнет в космическом хлопке. Так что «окно возможностей» для жизни очень невелико. Чудесным образом наша вселенная именно в нем и оказалась.
«Слабый антропный принцип» гласит, что если бы наша вселенная не была устроена таким способом, каким она в действительности устроена, то нас бы там не оказалось и мы не задавались бы вопросом о ее устройстве; однако при этом остается открытым вопрос о том, почему нашлось «здесь», в котором мы можем жить. «Сильный антропный принцип» говорит, что мы здесь потому, что вселенная была спроектирована специально для существования в ней жизни, но это – мистическая чепуха. Никто в действительности не знает, какие возможности реализовались бы, если бы вакуумная энергия сильно отличалась от ее актуального значения. Нам известно, что ряд вещей пошел бы вкривь и вкось, но мы и представления не имеем о том, что бы могло появиться вместо них. Большая часть всех аргументов о тонкой настройке – ерунда.
В 2000 году Рафаэль Буссо и Джозеф Полчински предложили иной ответ, используя теорию струн и имеющиеся 10 500возможных значений энергии вакуума. Хотя число 10 −120очень мало, возможные уровни вакуумной энергии отделены друг от друга на 10 −500единиц, что есть еще меньшее число. Таким образом, большое число теорий струн дает вакуумные энергии в «правильном» интервале. Вероятность, что случайно выбранная энергия попадет в него, по-прежнему пренебрежимо мала, но Буссо и Полчински указали, что это несущественно. В конце концов «правильная» вакуумная энергия непременно возникнет. Идея состоит в том, что вселенная перебирает все возможные теории струн, застревая на каждой до тех пор, пока та не заставит эту вселенную рассыпаться, а затем квантово-механически тунеллирует к некоторой другой теории струн. Если подождать достаточно долго, то на некотором этапе вселенная приобретет вакуумную энергию, которая будет лежать в интервале, подходящем для жизни.
В 2006 году Поль Стайнхардт и Нил Тьюрок предложили вариацию на тему теории тунеллирования – циклическую вселенную, которая расширяется после Большого Взрыва и сжимается в Большом Схлопывании, повторяя такое поведение каждый триллион лет или около того. В их модели энергия вакуума убывает на каждом последовательном цикле, так что в конце концов вселенная получает очень малую, но не нулевую вакуумную энергию.
В той или иной модели вселенная, вакуумная энергия которой достаточно мала, будет тут околачиваться очень долго. Условия пригодны для возникновения жизни, а у жизни полно времени, чтобы развить разум и поинтересоваться, почему она тут оказалась.
Глава 15
Математическая кутерьма
У гусей – гогот, у львов – достоинство, у певчих птиц – пленительность, у жаворонков – ликование… А какое обобщающее существительное относится к математике? Великолепие математики? Слишком пафосно. Таинство математики? Пожалуй, немного чересчур. В результате многих выпавших на мою долю шансов понаблюдать за поведением математических индивидуумов, сбившихся в достаточно большое стадо, я пришел к выводу, что самое подходящее слово для того, что они устраивают, – «кутерьма».
Один из них в такой кутерьме изобрел одну из наиболее причудливых структур во всем предмете и открыл скрытое единство за таинственным фасадом. Их открытия, возникавшие по большей части из праздношатания в надежде, что под руку подвернется что-нибудь интересное, начинают проникать в теоретическую физику, и они могут оказаться ключевыми для некоторых самых любопытных свойств суперструн.
Математика суперструн – предмет настолько новый, что большая ее часть еще не изобретена. Но, по иронии судьбы, математики и физики как раз открыли, что суперструны, находящиеся на самом переднем крае исследований в современной физике, демонстрируют занятную связь с куском викторианской алгебры – настолько старомодным куском, что его редко упоминают в университетских курсах математики. Это алгебраическое изобретение известно как октонионы; они представляют собой структуру, идущую после вещественных чисел, комплексных чисел и кватернионов.
Октонионы были открыты в 1843 году, результат появился в печати в 1845-м за чужим авторством, и с тех пор их создатель неизменно указывался неправильно – но это большого значения не имело, поскольку внимания на них все равно никто не обращал. К 1900 году они впали в безвестность даже внутри математики. Недолгое возрождение выпало на их долю в 1925 году, когда Вигнер и фон Нейман попытались на их основе построить квантовую механику, но снова исчезли с горизонта, когда эта попытка не удалась. В 80-х годах двадцатого века они вынырнули снова из-за их потенциальной полезности в теории струн. В 1999 году они сыграли роль ключевого ингредиента в 10– и 11-мерной теориях суперструн [118]118
11-мерных суперструн не бывает (это же видно из перечисления теорий струн, приведенного в главе 14); в 11-мерном пространстве живет суперсимметричное обобщение эйнштейновской теории гравитации, которое наряду с суперструнами должно некоторым образом включаться в пока еще не созданную M-теорию (неявляющуюся в буквальном смысле теорией струн). Эта 11-мерная супергравитация будет упомянута в самом конце настоящей главы. (Примеч. перев.)
[Закрыть].
Октонионы говорят нам, что нечто очень странное творится в районе числа 8, а что-то еще более странное происходит с физикой пространства, времени и материи. Викторианская безделушка пережила второе рождение в качестве ключа, открывающего глубокие тайны на общих рубежах математики и физики – в особенности это относится к вере в то, что пространство-время может иметь большее число измерений, чем традиционные четыре, и что именно за счет этого соединяются в одно целое гравитация и квантовая теория.
Октонионная сага разворачивается на свободных просторах абстрактной алгебры; этому сюжету посвящен прекрасный математический обзор, опубликованный в 2001 году американским математиком Джоном Баэзом. Я буду в значительной мере опираться на его идеи, изо всех сил стараясь донести до читателя хитроумные, но изящные чудеса, которыми славится эта любопытная область на стыке математики и физики. Как и с духом отца Гамлета – развоплощенным голосом из-под сцены, – значительная часть математических подробностей должна оставаться вне поля зрения аудитории. Отнеситесь ко мне с терпением и не обращайте слишком большого внимания на непонятности необъясненного профессионального жаргона. Иногда просто требуется удобное слово, чтобы не упускать из виду основных действующих лиц.
В качестве вступления могут быть полезны несколько напоминаний. С нашей историей о погоне за симметрией тесно переплелось осуществлявшееся шаг за шагом расширение числовой системы. Первым шагом было открытие (или изобретение) в середине шестнадцатого столетия комплексных чисел, в которых имеется квадратный корень из −1. До того времени математики считали, что числа – единственные и данныеот Бога. И подумать нельзя было об изобретении каких-то новых чисел. Но около 1550 года Кардано и Бомбелли сделали именно это, записав квадратный корень из отрицательного числа. Понадобилось около 400 лет, чтобы разобраться, какой в этом смысл, но всего около 300, чтобы убедить математиков, что штука эта слишком полезная, чтобы стоило ее выкидывать.
К 1800-м годам вычурное изобретение Кардано и Бомбелли кристаллизовалось в числа некоего нового вида, в записи которых появился новый символ i. Комплексные числа могут показаться странными, но они оказались восхитительным средством для понимания математической физики. Задачи о тепле, свете, звуке, колебаниях, упругости, гравитации, магнетизме, электричестве и течении жидкостей и газов – все они поддались комплексному натиску, правда, только в физике размерности два.
Наша вселенная, однако, имеет три пространственных измерения – во всяком случае так считалось до самого последнего времени. Поскольку двумерная система комплексных чисел настолько эффективна в двумерной физике, может ли найтись аналогичная трехмерная числовая система, пригодная для использования в «настоящей» физике? Гамильтон потратил годы на поиски чего-то подобного, но без всякого успеха. Затем 16 октября 1843 года он испытал озарение: не смотри на три измерения, смотри на четыре,– и нацарапал свои уравнения для кватернионов на каменной кладке моста Брумбридж.
У Гамильтона был старый друг со времен колледжа по имени Джон Грейвс, фанат алгебры. Весьма вероятно, что именно Грейвс первоначально пробудил в Гамильтоне интерес к расширению числовой системы. Гамильтон написал своему приятелю длинное письмо о кватернионах на следующий же день после того, как испортил мост своей надписью.
Грейвс сначала был озадачен и сомневался, насколько законным является изобретение правил умножения прямо из головы. «У меня пока нет никакого ясного представления о том, в какой степени мы свободны в произвольном создании мнимостей и в наделении их сверхъестественными свойствами», – писал он в ответ. Но он также разглядел потенциал новой идеи и задался вопросом о том, как далеко это позволит продвинуться: «Если ваша алхимия позволяет вам создать три фунта золота, то зачем останавливаться?»
То был хороший вопрос, и Грейвс задался целью ответить на него. По прошествии двух месяцев он прислал письмо, в котором говорил, что нашел восьмимерную числовую систему. Он назвал ее октавами. С ними была связана замечательная формула о сумме восьми квадратов, к которой мы очень скоро обратимся. Он попытался определить 16-мерную числовую систему, но наткнулся на нечто, о чем он отозвался как о «непредвиденной загвоздке». Гамильтон сказал, что поможет своему другу привлечь к его открытию внимание публики, но потом оказался слишком для этого занят исследованием своих кватернионов. Затем он заметил потенциальную проблему: умножение октав не подчинялось закону ассоциативности. Это значит, что если взять произведение трех октав двумя способами, как (ab)cи a(bc), то, как правило, получатся различные ответы. После проведенной им серьезной переоценки ценностей Гамильтон был готов отказаться от закона коммутативности, но расстаться еще и с ассоциативностью – это было уже чересчур.
Далее Грейвсу крупно не повезло. До того как он сумел опубликовать свое открытие, Кэли независимо открыл то же самое и в 1845 году опубликовал как приложение к ужасной во всех остальных отношениях статье по эллиптическим функциям, настолько изобилующей ошибками, что ее изъяли из собрания его работ. Кэли назвал свою систему октонионами.
Грейвс был расстроен тем, что его опередили в плане публикации. Так случилось, что его собственная статья должна была вскоре выйти в том же журнале, где о своем открытии объявлял Кэли. Поэтому Грейвс добавил к статье замечание с указанием, что та же идея пришла ему в голову еще за два года до того, а Гамильтон поддержал его, опубликовав краткую заметку, подтверждающую, что приоритет принадлежит его другу. Несмотря на эту четкую картину, октонионы быстро приобрели название «числа Кэли», широко используемое и по сей день. Многие математики теперь пользуются терминологией Кэли, называя эту систему октонионами, указывая при этом на авторство Грейвса. В любом случае такое название лучше, чем «октавы», поскольку оно напоминает «кватернионы».
Алгебру октонионов можно описывать в терминах замечательной диаграммы, известной как плоскость Фано. Она представляет собой конечную геометрию, составленную из семи точек, соединенных по три семью «прямыми» линиями, и имеет вид, показанный на рисунке.
Одну из прямых пришлось свернуть в окружность, чтобы изобразить ее на плоскости, но это не страшно. В этой геометрии любые две точки лежат на одной прямой, а любые две прямые пересекаются в некоторой точке. Параллельных прямых нет. Плоскость Фано была изобретена для совершенно иных целей, но оказалось, что она кодирует в себе правила умножения октонионов.
В октонионах имеется восемь единиц: обычное число 1 и еще семь, обозначаемые как e 1, e 2, e 3, e 4, e 5, e 6и e 7. Квадрат любой из этих семи равен −1. Диаграмма определяет их правила умножения. Пусть нам надо умножить e 3на e 7. Ищем на диаграмме точки 3 и 7 и соединяющую их прямую линию. На ней имеется третья точка – в данном случае точка 1. Следуя по стрелкам, мы идем от 3 к 7 и далее к 1, так что e 3 e 7 = e 1. Если порядок обратный, то надо дополнительно взять знак минус: e 7 e 3= − e 1. Если проделать это для всех возможных пар единиц, получится полная картина арифметики октонионов. (Со сложением и вычитанием все всегда просто, а деление следует из умножения.)
Плоскость Фано – геометрия с семью точками и семью прямыми.
Грейвс и Кэли не знали об этой связи с конечной геометрией, поэтому они выписывали таблицу умножения для октонионов. Как плоскость Фано помогает выразить эту таблицу, было открыто много позже.
На протяжении многих лет октонионы оставались диковинкой второго сорта. В отличие от кватернионов у них не было ни геометрической интерпретации, ни применений в науке. Даже внутри чистой математики из них, казалось, ничего не следует; неудивительно, что они впали в безвестность. Но все изменилось, когда выяснилось, что октонионы – источник наиболее причудливых алгебраических структур, известных в математике. Они дают объяснение, откуда на самом деле берутся пять Киллинговых исключительных групп Ли G 2, F 4, E 6, E 7и E 8. А группа E 8– самая большая из исключительных групп Ли – фигурирует дваждыв качестве группы симметрии, на которой основана 10-мерная теория суперструн, обладающая необычайно приятными свойствами и рассматриваемая многими физиками как наилучший на данный момент кандидат на Теорию Всего.
Если мы соглашаемся с Дираком в том, что корни вселенной – в математике, то мы можем сказать, что вероятная Теория Всего существует постольку, поскольку существует E 8, а E 8существует постольку, поскольку существуют октонионы. Что открывает перед нами занятную философскую возможность: структура, лежащая в основе нашей вселенной (про которую мы знаем, что она очень специальная), выделена своей связью с уникальным математическим объектом – октонионами.
Красота есть истина, а истина – красота. Пифагорейцам и платоникам понравилось бы такое свидетельство определяющей роли математических структур в картине нашего мира. Октонионы обладают зачаровывающей, сюрреалистической математической красотой, за которую Дирак ухватился бы в качестве причины, указывающей, почему 10-мерная теория струн должна быть истинной. Если же она, на нашу беду, окажется ложной, то будет, тем не менее, даже более интересной, чем что бы то ни было иное, которое окажетсяистинным. Правда, нам известен и тот факт, что прекрасные теории не обязательно истинны, и до тех пор, пока по поводу суперструн не будет вынесен вердикт, эта возможность должна оставаться только гипотезой.
Какова бы ни была их важность в физике, круг идей, связанных с октонионами, – чистое золото для математики.
Связь между октонионами и исключительными группами Ли представляет собой одно из целой серии странных соотношений между различными обобщениями кватернионов и передним краем современной физики. Я хочу достаточно глубоко рассмотреть некоторые из этих связей, чтобы вы смогли оценить, насколько они замечательны. И я собираюсь начать с некоторых из самых старых исключительных структур в математике – формул для сумм квадратов.
Одна такая формула естественно вытекает из комплексных чисел. Каждое комплексное число имеет «норму» – квадрат расстояния от числа до начала координат. По теореме Пифагора, норма числа x + iyравна x 2+ y 2. Правила умножения комплексных чисел, сформулированные Весселем, Арганом, Гауссом и Гамильтоном, говорят нам, что норма обладает очень приятным свойством. Если перемножить два комплексных числа, то нормы тоже перемножатся. На языке символов ( x 2 + y 2)( u 2 + v 2) = ( xv + yu) 2 + (xu − yv) 2. Сумма двух квадратов, умноженная на сумму двух квадратов, всегда является суммой двух квадратов. Этот факт был известен индийскому математику Брахмагупте около 650 года, а также Фибоначчи в 1200 году.
На начальном этапе математиков в теории чисел сильно занимали суммы двух квадратов, потому что с их помощью можно было различать два типа простых чисел. Легко доказать, что если нечетное число представляется в виде суммы двух квадратов, то оно должно иметь вид 4 k + 1 для некоторого целого k. Остальные нечетные числа, имеющие вид 4 k + 3, нельзя представить в виде суммы двух квадратов. Однако неверно, что каждое число вида 4 k + 1 является суммой двух квадратов, даже если разрешить одному из квадратов равняться нулю. Первое такое исключение доставляет число 21.
Ферма сделал замечательное по красоте открытие: эти исключения не могут быть простыми числами. Он доказал, что, наоборот, каждое простое число вида 4 k +1 является суммой двух квадратов. Из приведенной выше формулы для перемножения сумм двух квадратов тогда следует, что нечетное число является суммой двух квадратов, если и только если каждый простой множитель вида 4 k + 3 входит в четной степени. Например, 45 = 3 2+ 6 2является суммой двух квадратов. Его разложение на простые множители имеет вид 3×3×5, и простой множитель 3, имеющий вид 4 k + 3 (при k = 0), возникает в степени два – т.е. в четной степени. Другой множитель, 5, возникает в нечетной степени, но это простое число имеет вид 4 k + 1 (при k = 1), что не вызывает никаких проблем.
С другой стороны, исключение 21 есть 3×7, где оба простых имеют вид 4 k + 3, причем каждое входит в степени 1 (т.е. в нечетной степени), и поэтому для 21 правило не работает. Для бесконечного числа других чисел оно не работает по той же причине.
Позднее Лагранж использовал аналогичные методы для доказательства того факта, что каждое положительное целое число является суммой четырех квадратов (здесь разрешаются нули). Его доказательство использует хитрую формулу, открытую Эйлером в 1750 году. Оно похоже на приведенное выше рассуждение, но только относится к суммам четырех квадратов. Сумма четырех квадратов, умноженная на сумму четырех квадратов, есть сумма четырех квадратов. Подобной формулы не может быть для суммы трех квадратов, потому что существуют пары чисел, которые оба являются суммой трех квадратов, но произведение которых такой суммой не является. Однако в 1818 году Деген нашел формулу произведения для суммы восьмиквадратов. Ту же формулу открыл Грейвс, используя октонионы. Бедный Грейвс – сделанное им раньше всех открытие октонионов приписано другому; его формула для восьми квадратов оказалась неоригинальной.
Имеется также тривиальная формула произведения для суммы одного квадрата – т.е. просто для квадрата. Она имеет вид x 2 y 2= (xy) 2. Эта формула является для вещественных чисел тем же, чем формула двух квадратов для комплексных: она показывает, что норма мультипликативна, т.е. норма произведения равна произведению норм. Здесь, как и выше, норма есть квадрат расстояния от числа до начала координат. Число, противоположное любому положительному числу, имеет ту же норму, что и это положительное.
А что насчет формулы для четырех квадратов? Она утверждает то же самое для кватернионов. Четырехмерный аналог теоремы Пифагора (да, есть такая штука!) говорит нам, что кватернион общего вида x + iу + jz + kwимеет норму x 2 + y 2 + z 2 + w 2, а это есть сумма четырех квадратов. Кватернионная норма также мультипликативна, и этим объясняется формула Лагранжа для четырех квадратов.
Вы, наверное, меня уже опередили. Формула Дегена для восьми квадратов имеет аналогичную интерпретацию в терминах октонионов. Октонионная норма мультипликативна.
Здесь происходит что-то весьма любопытное. У нас имеется четыре типа последовательно усложняющихся числовых систем: вещественные, комплексные, кватернионы и октонионы. Их размерности равны 1, 2, 4 и 8. Имеются формулы, утверждающие, что сумма квадратов, умноженная на сумму квадратов, есть сумма квадратов, и эти формулы применимы к 1, 2, 4 или 8 квадратам. Эти формулы тесно связаны с соответствующими числовыми системами. Но еще более интригующей является сама последовательность чисел, которые здесь появляются: 1, 2, 4, 8 – что дальше?
Если продолжить последовательность, то весьма разумно было бы ожидать, что мы найдем интересную 16-мерную числовую систему. Действительно, такую систему можно построить естественным путем, называемым процессом Кэли-Диксона. Если применить этот процесс к вещественным числам, то получаются комплексные. Применение к комплексным дает кватернионы. Применение к кватернионам – октонионы. И если теперь двинуться дальше и применить его к октонионам, получатся седенионы – 16-мерная числовая система, а затем алгебры размерности 32, 64 и так далее (на каждом шаге размерность удваивается).
Что же, существует формула для 16 квадратов?
Нет. Норма седенионов не мультипликативна. Формулы произведения для сумм квадратов существуют толькотогда, когда квадратов в них 1, 2, 4 или 8. Закон малых чисел снова проявил себя: то, что выглядело как последовательность степеней, стопорится.
Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом – и изящные вещественные числа погружаются в анархию. Подробности этого таковы.
Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее – из-за которого они и попадают в класс обобщений вещественных чисел – состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением». В течение некоторого времени Грейвс полагал, что его метод перехода от 4 к 8 можно будет повторить, что приведет к нормированным алгебрам с делением размерностей 16, 32, 64 – всех степеней двойки. Но он наткнулся на препятствие с седенионами и начал сомневаться, действительно ли существует 16-мерная нормированная алгебра с делением. Он был прав: нам теперь известно, что существуют только четыре нормированные алгебры с делением, и они имеют размерности 1, 2, 4 и 8. Нет формулы для 16 квадратов, подобной формуле Грейвса для восьми квадратов или формуле Эйлера для четырех квадратов.
Почему? На каждом шаге вдоль по цепочке из степеней двойки новая числовая система теряет некоторую часть структуры. Комплексные числа не упорядочены вдоль прямой. Кватернионы не подчиняются алгебраическому правилу ab = ba —закону коммутативности. Октонионы не подчиняются закону ассоциативности (ab)c = a(bc), хотя и удовлетворяют закону альтернативности (ab)a = a(ba).Седенионы не образуют алгебру с делением и не имеют мультипликативной нормы.
Все это носит намного более фундаментальный характер, чем просто факт «отказа» в процессе Кэли-Диксона. В 1898 году Гурвиц доказал, что единственные нормированные алгебры с делением – это четыре наших старых друга. В 1930 году Макс Цорн доказал, что те же четыре алгебры являются единственными альтернативными алгебрами с делением. Они поистине исключительны.
Происходящее – из разряда тех вещей, которые нравятся чистым математикам с их платоническими пристрастиями. Но единственными по-настоящему важными для остального человечества случаями являются, по-видимому, вещественные и комплексные числа, которые имеют широкие практические применения. Кватернионы проявили себя в ряде полезных, пусть даже эзотерических приложений, но октонионы не попадали в свет рампы прикладной науки. Они, казалось, являют собой некий тупик чистой математики, подобие претенциозной интеллектуальной чепухи, которой и следует ожидать от людей, витающих в облаках.
История математики показывает снова и снова, что опасно отбрасывать всякие яркие или красивые идеи лишь на том основании, что они вроде бы не приносят очевидной пользы. К сожалению, это не мешает людям пренебрегать такими идеями, часто именно потому, что они прекрасные или яркие. Чем более «практическими» люди себя полагают, тем в большей степени они склонны поливать презрением математические концепции, возникающие из абстрактных проблем и изобретенные «ради самих себя», а не из проблем реального мира. Чем изящнее концепция, тем больше презрения, как будто бы изящества самого по себе следует стыдиться.
Такие декларации бесполезности – заложники судьбы. Одно-единственное новое применение, один шаг вперед в науке – и презираемая концепция может внезапно, как выпущенное из пушки ядро, приземлиться в центре сцены, более не бесполезная, а, наоборот, сущностно важная.
Таким примерам нет числа. Сам Кэли говорил, что его матрицы совершенно бесполезны, но сегодня ни одна ветвь науки не могла бы без них функционировать. Кардано объявил, что комплексные числа «настолько же деликатны, насколько бесполезны», но ни один инженер или физик не мог бы работать в мире, в котором отсутствовали бы комплексные числа. Годфри Хэролду Харди – ведущему английскому математику 30-х годов двадцатого века – безмерно импонировала мысль, что теория чисел не имеет никаких практических применений и, в частности, не может использоваться в военных целях. Сегодня теория чисел применяется для шифровки сообщений – она жизненно важна для безопасности коммерческих операций, проводимых через Интернет, и еще более важна для военных.
Подобное же происходит и с октонионами. Они еще могут войти в обязательный курс математики и даже, скорее, физики. Постепенно становится ясной центральная роль октонионов в теории групп Ли – в особенности тех, что представляют интерес для физики, и в первую очередь пяти исключительных групп Ли G 2, F 4, E 6, E 7и E 8, имеющих загадочные размерности 14, 52, 78, 133 и 248. Само их существование представляет собой загадку. Один доведенный до белого каления математик назвал их создание грубым порождением злонамеренного божества.
Любители природы получают удовольствие, вновь и вновь посещая хорошо им известные красивые места, откуда можно наслаждаться прекрасным видом – от середины водопада, с уступа, уводящего в сторону от нахоженной тропы, или на утесе, с которого открывается вид на голубой океан. Подобным же образом математики любят возвращаться к старым темам и рассматривать их с новых точек зрения. По мере смены перспективы в наших взглядах на математику удается дать новые интерпретации старым концепциям, что открывает новые возможности. Это вовсе не вопрос математического туризма, когда с открытым ртом таращатся на нечто невыразимо удивительное, рассматривая его под разными углами. Таким способом возникают новые мощные способы решения старых и новых задач. Ни в каком другом месте эта тенденция не проявилась сильнее и не была более информативной, чем в теории групп Ли.