355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иэн Стюарт » Истина и красота. Всемирная история симметрии. » Текст книги (страница 16)
Истина и красота. Всемирная история симметрии.
  • Текст добавлен: 26 сентября 2016, 19:45

Текст книги "Истина и красота. Всемирная история симметрии."


Автор книги: Иэн Стюарт


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 16 (всего у книги 26 страниц)

В свою очередь Вебер тоже не произвел на Эйнштейна большого впечатления; его лекции он счел старомодными. Особенно его разочаровало, что там недостаточно говорилось о максвелловской теории электромагнетизма; поэтому Эйнштейн выучил ее сам по немецкому тексту 1894 года. Он ходил на лекции двух знаменитых математиков – Гурвица и Германа Минковского. Минковский – блестящий и оригинальный мыслитель – ввел новые фундаментальные методы в теории чисел, а позднее ему предстояло внести важный математический вклад в теорию относительности. Альберт также читал некоторые из работ Чарльза Дарвина по эволюции.

Чтобы остаться в ETH, ему надо было стать там ассистентом преподавателя и за счет этого оплачивать свое дальнейшее обучение. Вебер намекнул, что мог бы предложить Альберту такую позицию, но потом «забыл» о своем предложении, и Альберт так никогда его и не простил. Он написал письмо Гурвицу с вопросом, не предвидится ли для него такой вакансии, и получил, по-видимому, положительный ответ, но и на этот раз ничего конкретного не последовало. К концу 1900 года он оказался без работы. Тем не менее в это же время он опубликовал свою первую научную статью – о силах, действующих между молекулами. Вскоре после этого он получил швейцарское гражданство, которое он сохранил на всю жизнь, даже после переезда в Соединенные Штаты.

В течение всего 1901 года Альберт не оставлял попыток найти работу в каком-либо университете, для чего писал письма и рассылал экземпляры своей статьи, подавая на все возможные вакансии. Но тщетно. В отчаянии он временно устроился школьным учителем. К своему удивлению, он обнаружил, что ему нравится преподавать; кроме того, это оставляло ему достаточно свободного времени для продолжения исследований по физике.

Он сказал своему друг Марселю Гроссманну, что работает над теорией газов и – снова! – проблемой движения материи через эфир. Он перешел в другую школу, тоже в качестве временного преподавателя.

На помощь Альберту пришел Гроссманн: он уговорил своего отца Марселя порекомендовать Альберта директору Федерального бюро патентов в Берне. Когда вышло официальное объявление об открывшейся вакансии, Эйнштейн подал заявление в качестве соискателя на эту должность. Он оставил школьное преподавание и переехал в Берн в начале 1902 года, хотя официально еще не был принят. Возможно, он узнал об этом неофициально или же просто был очень уверен, что все сложится хорошо.

Его официальное зачисление произошло в июне 1902 года. То не была академическая должность, к которой он так стремился, но она приносила достаточно денег – 3500 швейцарских франков в год, – чтобы обеспечить пропитание, одежду и жилье. И она оставляла достаточно времени для физики.

Еще в ETHон встретил молодую студентку Милеву Марич, которая проявляла сильный интерес к наукам – и к Альберту. Они полюбили друг друга. К сожалению, Паулине Эйнштейн потенциальная невестка не понравилась, и это вызвало неприязнь. У Германа в то же самое время развилось крайне серьезное сердечное заболевание. На смертном одре он наконец согласился на брак Альберта и Милевы, а затем попросил всех членов семьи удалиться, чтобы умереть в одиночестве. Альберт испытывал чувство вины всю свою оставшуюся жизнь. В январе 1903 они с Милевой поженились; их единственный сын Ханс Альберт родился в мае 1904 года [55]55
  Их дочь Лизерль родилась в январе 1902 года; упоминания о ней после 1903 года отсутствуют. В июле 1910 года родился их второй сын Эдуард. А. Пейс пишет, что «от отца Эдуард унаследовал черты лица и музыкальность, от матери – склонность к меланхолии. Позднее Эдуард увлекся искусством – писал стихи. Он хотел стать психиатром и изучал медицину, но цели своей не достиг», и добавляет: «Эйнштейн довольно скоро заметил у младшего сына признаки раннего слабоумия. После многих злоключений Эдуард попал в цюрихскую лечебницу, где и умер в 1965 г.». (Примеч. перев.)


[Закрыть]
.

Работа в бюро патентов устраивала Эйнштейна. Он исполнял свои обязанности настолько эффективно, что ближе к концу 1904 года его должность сделали постоянной – однако начальник предупредил его, что дальнейшее продвижение будет зависеть от того, овладеет ли он техническими дисциплинами. Продвигались и работы Эйнштейна по физике в области статистической механики.

Так и наступил «золотой 1905 год», когда служащий бюро патентов написал статью, которая в итоге принесла ему Нобелевскую премию. В том же году он защитил диссертацию в Цюрихском университете. Кроме того, его повысили до технического эксперта второго класса, прибавив жалованье на 1000 швейцарских франков в год, – похоже, он сумел освоить технические дисциплины.

Даже став знаменитым, Альберт всегда питал благодарность к Гроссманну, способствовавшему его трудоустройству в бюро патентов. Именно это больше, чем что-либо другое, говорил Эйнштейн, дало ему возможность заниматься физикой. Это была гениальная комбинация, идеальная работа, и он никогда об этом не забывал.

В тот замечательный год в истории физики Эйнштейн опубликовал три важнейших научных статьи.

Первая была посвящена броуновскому движению – случайным перемещениям очень маленьких частиц, взвешенных в жидкости. Это явление названо именем своего первооткрывателя ботаника Роберта Брауна [56]56
  Название «броуновское» относится к числу традиционно установившихся терминов, и лишь немногие говорят (и почти никто не пишет) «брауновское». (Примеч. перев.)


[Закрыть]
. В 1827 году Браун разглядывал в микроскоп плавающие в воде зерна цветочной пыльцы. Внутри полостей в пыльце он заметил еще меньшие, беспорядочное дергающиеся частицы. Математическую модель движения такого типа разработал в 1880 году Торвальд Тиле, а в 1900-м независимо – Луи Башелье. Башелье интересовался в первую очередь не броуновским движением как таковым, но такими же случайными флуктуациями фондового рынка; их математика оказалась тождественной.

Физическая же природа этого движения еще ждала своего объяснения. Эйнштейн и независимо от него польский ученый Мариан Смолуховский осознали, что броуновское движение может подтверждать еще недоказанную на тот момент теорию, что материя состоит из атомов, комбинации которых образуют молекулы. Согласно так называемой кинетической теории молекулы в газах и жидкостях постоянно соударяются, в результате совершая, по существу, случайное движение. Эйнштейн разработал математические аспекты такого процесса, что позволило ему показать, что процесс соответствует экспериментальным наблюдениям броуновского движения [57]57
  Закон броуновского движения Эйнштейна был экспериментально подтвержден в 1908 году Ж. Перреном. (Примеч. перев.)


[Закрыть]
.

Вторая статья была посвящена фотоэлектрическому эффекту. Александр Беккерель, Уиллоуби Смит, Генрих Герц и некоторые другие уже обнаружили, что определенные металлы производят электрический ток под действием света. Эйнштейн исходил из квантово-механического предположения, что свет состоит из мельчайших частиц. Его вычисления показали, что это предположение очень хорошо согласуется с экспериментальными данными. Это было одним из первых серьезных свидетельств в поддержку теории квантов.

Любая из этих двух статей сама по себе составляла значительное открытие. Но третья оставила первые две далеко позади. Это была статья о специальной теории относительности – теории, которая выходила за рамки ньютоновской физики и перевернула наши взгляды на пространство, время и материю.

Наше повседневное восприятие пространства ничем не отличается от восприятия Эвклида и Ньютона. Пространство имеет три измерения – три независимых взаимно перпендикулярных направления, как на углу здания: на север, на восток и вверх. Структура пространства одна и та же во всех точках, хотя материя, которую оно вмещает, может от точки к точки меняться. Объекты в пространстве можно передвигать различными способами: их можно вращать, отражать как в зеркале или переносить параллельно самим себе без вращений.

Если рассуждать более абстрактно, то можно считать, что эти преобразования применяются к пространству самому по себе (изменение «системы отсчета»). Структура пространства, а также физические законы, которые выражают эту структуру и оперируют с ней, симметричны относительно этих преобразований. Другими словами, законы физики одинаковы во всех местоположениях и во все моменты времени.

При ньютоновском взгляде на физику время образует еще одно «измерение», которое не зависит от пространственных. Время одномерно, и его преобразования симметрии очень просты. Время можно сдвигать (добавлять фиксированный промежуток к каждому наблюдению) или отражать (пустить в обратном направлении – хотя и только в рамках мысленного эксперимента). Физические законы не зависят от того момента, когда вы начали делать измерения, так что они должны быть симметричны относительно сдвигов по времени. Наиболее фундаментальные физические законы – хотя и не все, что представляется некоторой загадкой, – симметричны также относительно обращения времени.

Но когда математики и физики начали размышлять о недавно открытых законах электричества и магнетизма, оказалось, что ньютоновские представления неадекватны. Преобразования пространства и времени, которые оставляют законы неизменными, не были простыми «движениями» – сдвигами, вращениями и отражениями; более того, оказалось невозможно применять эти преобразования к пространству или времени по отдельности. При изменениях в одном только пространстве уравнения перекашивались. Следовало выполнить компенсирующее преобразование времени [58]58
  Здесь и далее изложение грешит смешением двух понятий. При сдвигах или поворотах, о которых только что говорилось, как и при сдвигах по времени (изменениях «начального» момента), уравнения Максвелла – «недавно открытые законы электричества и магнетизма» – сохраняют свой вид, причем довольно банальным образом. Интересные же явления – такие как вовлечение времени в преобразования – начинают происходить при движенииодного наблюдателя относительно другого. Математически уравнения Максвелла и законы Ньютона обладают разными симметриями —преобразованиями, которые надо сделать для согласования описаний, получаемых двумя наблюдателями, движущимися друг относительно друга с постоянной скоростью. Суть проблемы в том, что уравнения Максвелла сохраняют свой вид для всех таких наблюдателей, если соответствующие преобразования другие, чем в ньютоновской механике. Об этом будет явно сказано дальше. (Примеч. перев.)


[Закрыть]
.

До некоторой степени эту проблему можно было игнорировать, например, если рассматриваемые системы не движутся. Но во всей остроте встала проблема математического описания движущейся электрически заряженной частицы (например, электрона); в физике конца девятнадцатого столетия эта проблема была центральной. Невозможно было долго игнорировать сопровождавшую ее озабоченность насчет симметрии.

В годы, предшествовавшие 1905-му, целый ряд физиков и математиков был озадачен этим странным свойством уравнений Максвелла.

Если выполнить какой-нибудь эксперимент с электричеством и магнетизмом в лаборатории и в движущемся поезде, то как согласовать результаты? Разумеется, немногие экспериментаторы работают в движущихся поездах, но все они работают на движущейся Земле. Для многих целей Землю можно считать неподвижной, поскольку экспериментальные приборы движутся вместе с ней, так что движение не создает никаких реальных отклонений. Ньютоновы законы движения, например, остаются в точности теми же в любой «инерциальной» системе отсчета – такой, которая движется с постоянной скоростью по прямой линии. Скорость Земли с неплохой точностью постоянна, но она вращается вокруг своей оси и обращается вокруг Солнца, так что ее движение относительно Солнца не является прямолинейным. Тем не менее путь, по которому движется прибор, почти прямой; имеет ли кривизна какое-либо значение, зависит от эксперимента, причем часто она никакого значения не имеет.

Никто бы не забеспокоился, если бы уравнения Максвелла принимали другой вид во вращающейся системе отсчета. Но открыто было нечто более тревожное: уравнения Максвелла выглядят по-разному в различных инерциальных системах отсчета. Электромагнетизм в движущемся поезде отличается от электромагнетизма в неподвижной лаборатории, даже когда поезд движется по прямой линии с постоянной скоростью.

Имелось и дополнительное усложнение: пожалуйста, пусть поезд или даже Земля движутся, но сама концепция движения является относительной. По большей части мы не замечаем движения Земли. Восход Солнца по утрам и закат по вечерам объясняютсявращением Земли. Но мы не чувствуемэтого вращения, мы установили его непрямыми методами.

Если вы сидите в поезде и смотрите в окно, у вас может сложиться впечатление, что вы неподвижны, а весь ландшафт проносится мимо вас. А наблюдательница, стоящая в поле и глядящая на ваш поезд, сделает противоположное наблюдение – что она сама неподвижна, а поезд движется. Когда мы говорим, что Земля летит вокруг Солнца, а не Солнце вокруг Земли, мы проводим тонкое различие, потому что оба описания верны – в зависимости от того, какая система отсчета выбирается. Если система отсчета движется вместе с Солнцем, то Земля движется относительно этой системы отсчета, а Солнце неподвижно. Но если система отсчета движется вместе с Землей – как все обитатели планеты, – то тогда движущимся объектом является Солнце.

К чему же тогда все переживания по поводу гелиоцентрической системы, согласно которой Земля вращается вокруг Солнца, а не наоборот? Несчастного Джордано Бруно сожгли за то, что он говорил, будто верно одно описание, в то время как Церковь предпочитала второе. Получается, что он погиб из-за простого недоразумения?

Не совсем. Бруно высказывал целый ряд утверждений, которые Церковь считала еретическими, – всякие мелочи типа несуществования Бога. Его судьба сложилась бы примерно так же, даже если б он никогда и не заикнулся о гелиоцентрической системе. Однако имеется важный смысл, в котором высказывание «Земля обращается вокруг Солнца» лучше высказывания «Солнце обращается вокруг Земли». Важное различие состоит в том, что математическое описание движения планет относительно Солнца намного проще, чем описание их движения относительно Земли. Теория, согласно которой в центре находится Земля, возможна, но очень сложна. Красота важнее, чем истина сама по себе. Многие точки зрения приводят к истинным описаниям природы, но некоторые позволяют глубже понять происходящее.

А если все движение относительно, то ничто не может находиться в абсолютном «покое». Ньютонова механика согласована со следующим по простоте предположением: все инерциальные системы отсчета эквивалентны. Но для уравнений Максвелла это не верно [59]59
  Верно, если для согласования описаний в разных инерциальных системах отсчета применять не ньютоновские преобразования. Проблема состояла именно в наличии двух разных симметрий. (Примеч. перев.)


[Закрыть]
.

По мере того как девятнадцатое столетие приближалось к концу, надо было рассмотреть еще одну интригующую возможность. Поскольку свет считался волной, распространяющейся через эфир, возможно, в покое находился эфир. Вместо относительности всех движений можно было бы считать движения относительно эфира абсолютными. Однако это по-прежнему не объясняло, почему уравнения Максвелла не одни и те же во всех инерциальных системах отсчета.

Связующее звено здесь – симметрия. Переход от одной системы отсчета к другой есть операция симметрии на пространстве-времени. Инерциальные системы отсчета имеют дело с трансляционными симметриями, вращающиеся системы отсчета – с вращательными симметриями. Сказать, что законы Ньютона одни и те же во всякой инерциальной системе отсчета, – это все равно что сказать, что эти законы симметричны относительно трансляций с постоянной скоростью. По некоторым причинам уравнения Максвелла не обладают этим свойством. Отсюда вроде бы должно получаться, что некоторые инерциальные системы отсчета более инерциальны, чем другие. И если какие-либо инерциальные системы отсчета чем-то выделены, то это наверняка должны быть те, которые неподвижны относительно эфира.

Суть проблемы формулировалась в двух вопросах, одном – физическом, а другом – математическом. Физический вопрос был в том, можно ли движение относительно эфира наблюдать в эксперименте. Математический вопрос состоял в том, каковы симметрии уравнений Максвелла.

Ответ на первый вопрос нашли Альберт Майкельсон – американский военно-морской офицер, оставивший службу, чтобы изучать физику под руководством Гельмгольца, – и химик Эдвард Морли. Они построили чувствительный прибор для измерения тонких различий в скорости света при его распространении в различных направлениях и пришли к выводу, что таких различий нет. Или Земля находится в покое относительно эфира – что сомнительно, коль скоро Земля обращается вокруг Солнца, – или же никакого эфира нет, а свет не подчиняется обычным правилам, применимым к случаю относительного движения.

Эйнштейн рассмотрел проблему с математической точки зрения. В своих статьях он не упоминает опыт Майкельсона-Морли, но позднее он говорил, что знал о нем и что этот опыт повлиял на ход его мыслей. Вместо ссылки на эксперимент он вывел некоторые симметрии уравнений Максвелла, которые обладали неожиданным свойством – они перемешивали пространство и время [60]60
  Симметрии уравнений Максвелла были известны до Эйнштейна. Также до Эйнштейна делались разнообразные попытки примирить эти симметрии с симметриями ньютоновской механики. Ключевой шаг, сделанный Эйнштейном, состоял в провозглашении того физическогопринципа, что это примирение не требуется, поскольку ньютоновская механика перестает быть верной при больших скоростях движения. (Примеч. перев.)


[Закрыть]
. (У Эйнштейна роль симметрии не обсуждается явно, но находится совсем неглубоко под поверхностью.) Одно из следствий из этих необычных симметрий состоит в том, что равномерное движение относительно эфира (если предполагать, что такая среда существует) ненаблюдаемо.

Теория Эйнштейна получила название «теория относительности», потому что в ней делались неожиданные предсказания об относительном движении и электромагнетизме.

«Теория относительности» – очень неудачное название. Оно вводит в заблуждение, потому что наиболее важное свойство теории Эйнштейна состоит в том, что некоторые вещи не являются относительными. Скажем, скорость света абсолютна. Если вы направляете луч света на наблюдательницу, стоящую в поле, и на наблюдателя в движущемся поезде, то оба измерят одну и ту жескорость света.

Это целиком и полностью противоречит интуиции и на первый взгляд представляется абсурдным. Скорость света составляет примерно 186 000 миль в секунду [61]61
  Чуть меньше, чем 300 000 километров в секунду. (Примеч. перев.)


[Закрыть]
. Ясно, что эту скорость должна измерить наблюдательница в поле. А что насчет человека в поезде? Пусть поезд едет со скоростью 50 миль в час. Сначала представим себе, что по параллельному пути едет другой поезд, также со скоростью 50 миль в час. Вы выглядываете в окно и смотрите на него. Какой вывод вы сделаете о его скорости движения? Если он едет в одном направлении с вами, то ответ – 0 миль в час. Второй поезд будет ехать вровень с вашим, он будет находиться рядом, и его движение относительно вашего поезда не будет заметно. Если же он едет во встречном направлении, то он пронесется мимо со скоростью 100 миль в час, потому что скорость вашего поезда в 50 миль в час, по существу, складывается со скоростью встречного поезда.

Если вы выполните измерения с поездами, именно это вы и получите.

Теперь вместо второго поезда возьмем луч света. Скорость света, выраженная в подходящих единицах, составляет 670 616 629 миль в час. Если бы ваш поезд удалялся от источника света, то, согласно вашим ожиданиям, должна быть измерена скорость 670 616 629 − 50 = 670 616 579 миль в час, потому что свету придется «догонять» поезд. Наоборот, если ваш поезд движется по направлению к источнику света, то, согласно вашим ожиданиям, скорость света относительно поезда должна быть равна 670 616 629 + 50 = 670 616 679 миль в час, потому что движение поезда вносит свой вклад в наблюдаемую скорость света.

Согласно Эйнштейну, оба числа неправильны. В обоих случаях вы получите из наблюдений, что свет распространяется со скоростью 670 616 629 миль в час – точно с той же скоростью, которую зафиксирует наблюдательница в поле.

Звучит дико. Если ньютоновы правила для относительного движения применимы к поездам, то почему они не работают для света? Ответ Эйнштейна состоит в том, что для очень быстро движущихся объектов законы физики отличаются от ньютоновских.

Или, еще точнее, законы физики отличаются от ньютоновских. Точка. Но различие делается заметным, только когда объекты движутся со скоростями, очень близкими к скорости света. На малых скоростях, таких как 50 миль в час, законы Ньютона дают такое хорошее приближениек более общим законам, предложенным Эйнштейном, что никаких отличий не заметно. Но при увеличении скоростей различия становятся достаточно большими, чтобы стать наблюдаемыми.

Основной физический момент здесь состоит в том, что симметрии уравнений Максвелла сохраняют не только эти уравнения; они сохраняют и скорость света. Действительно, скорость света встроена в эти уравнения. Так что скорость света должна быть абсолютной.

Лишь по иронии судьбы эта идея выражается словами «теория относительности». Эйнштейн в действительности хотел назвать ее Invariantentheorie —теория инвариантов. Но название «теория относительности» укоренилось, и, во всяком случае, уже существовала область математики, называемая теорией инвариантов, так что первоначально задуманное Эйнштейном название могло бы создать путаницу. Хотя и вдвое меньшую, чем та, которую порождает использование слов «теория относительности» для описания инвариантности скорости света во всех инерциальных системах отсчета.

Следствия из «теории относительности» довольно причудливы. Скорость света является предельной скоростью. Нельзя путешествовать быстрее света, нельзя послать сообщение быстрее света. Никаких гипердвижков из «Звездных войн».При приближении к скорости света длины сокращаются, время замедляется до черепашьего шага, а масса увеличивается без предела. Но – что и замечательно – вы этого не замечаете, потому ваши измерительные инструменты тожесокращаются в длине, испытывают замедление (в том смысле, что время течет медленнее) или делаются тяжелее. Поэтому-то, согласно измерениям наблюдательницы в поле и наблюдателя в поезде, скорость света одна и та же, несмотря на относительное движение: изменения в длине и времени точно компенсируют ожидаемые эффекты относительного движения. Вот почему Майкельсон и Морли не смогли зафиксировать движение Земли относительно эфира.

Когда вы движетесь, все выглядит для вас точно так же, как когда вы не двигались. Законы физики не могут сказать вам, движетесь вы или находитесь в состоянии покоя. Они могут сказать вам, ускоряетесь вы или нет, но не могут сообщить, сколь быстро вы движетесь, если только ваша скорость постоянна.

Это все еще может показаться странным, однако эксперименты подтверждают теорию в самых тонких деталях. Другое следствие – это знаменитая формула Эйнштейна E = mc 2, связывающая массу с энергией; эта формула непрямым способом привела к атомной бомбе, хотя роль первой в создании последней часто преувеличивают.

Свет настолько нам привычен, что мы редко задумываемся о том, насколько загадочным он является. Он, как кажется, ничего не весит, он проникает всюду и позволяет нам видеть. Что же такое свет? Это электромагнитные волны. Волны в чем? В пространственно-временном континууме, что представляет собой хитрый способ сказать: «Мы не знаем». В начале двадцатого столетия считалось, что среда для этих волн – светоносный эфир. После Эйнштейна стала понятна одна вещь по поводу эфира: его нет. Эти волны – не волны вчем-то.

Квантовая механика, как мы увидим, пошла еще дальше. Не только световые волны не являются волнами вчем бы то ни было, но и вообще всевещи – волны. Вместо среды, переносящей волны, – ткани пространства-времени, по которой бегут складки при прохождении волны, – сама ткань состоит из волн.

Эйнштейн был не единственным, кто заметил, что симметрии пространства-времени, возникающие из уравнений Максвелла, не совпадают с очевидными ньютоновскими симметриями. В рамках ньютоновских представлений пространство и время отделены друг от друга и различны. Симметрии законов физики даются комбинациями движений пространства без деформаций и независимых сдвигов по времени. Но, как я упомянул, эти преобразования не оставляют уравнения Максвелла инвариантными.

Размышляя об этом, математики Анри Пуанкаре и Герман Минковский пришли к новому взгляду на симметрии пространства и времени на чисто математическом уровне. Если бы они дали описание этих симметрий в физических терминах, то опередили бы эйнштейновскую теорию относительности, но они воздержались от высказываний о физической природе. Они поняли, что симметрии законов электромагнетизма не действуют на пространство и время независимо, а перемешивают их. Математическая схема, описывающая эти переплетающие замены, известна как группа Лоренца, названная по имени физика Хендрика Лоренца.

Минковский и Пуанкаре рассматривали группу Лоренца как абстрактное выражение определенных свойств законов физики, и описания типа «время течет медленнее» или «объекты уменьшаются в длине по мере увеличения их скорости» воспринимались как расплывчатые аналогии, а не как что-то реальное. Но Эйнштейн утверждал, что эти преобразования имеют настоящий физический смысл. Объекты, а также время действительно ведут себя подобным образом. Он пришел к формулировке физической теории – специальной теории относительности, – которая включала математическую схему группы Лоренца в физическое описание не пространства и времени по отдельности, а объединенного пространства-времени.

Минковский предложил геометрическую картину для этой не-ньютоновской физики, называемую теперь пространством-временем Минковского. В ней пространство и время представлены как независимые координаты, а движущаяся частица по мере течения времени описывает кривую, которую Эйнштейн назвал мировой линиейэтой частицы. Поскольку частица не может двигаться быстрее света, наклон мировой линии не может превышать 45° от временного направления. Прошлое и будущее частицы всегда лежат внутри двойного конуса – светового конуса.

Геометрия пространства-времени Минковского.

Таким образом решился вопрос с электричеством и магнетизмом – двумя фундаментальными силами в природе. Но одна фундаментальная сила по-прежнему не была включена в описание – гравитация. Пытаясь развить более общую теорию, включающую гравитацию, и снова опираясь на тот принцип, что законы природы должны быть симметричны, Эйнштейн пришел к общей теории относительности – к идее, что само пространство-время искривлено и что его кривизна соответствует массе. Из этих идей выросла наша современная космология Большого Взрыва, согласно которой вселенная возникла из крошечной крупинки около 13 миллиардов лет назад, а также замечательная концепция черных дыр – объектов столь массивных, что свет не может вырваться из их гравитационного поля.

Общая теория относительности восходит к ранним работам по неэвклидовой геометрии, которые привели Гаусса к идее «метрики» – формулы для расстояния между любыми двумя точками. Новые геометрии возникают, когда эта формула не является классической эвклидовой формулой, отвечающей теореме Пифагора. Коль скоро такая формула подчиняется нескольким простым правилам, она определяет осмысленную концепцию «расстояния». Основное правило состоит в том, что расстояние от одной точки Aдо другой точки не может стать меньше, если по дороге пройти через какую-то промежуточную точку B.Другими словами, расстояние от Aдо Cменьше чем или равно сумме расстояний от A до Bи от Bдо C. Это – «неравенство треугольника», называемое так потому, что в эвклидовой геометрии оно утверждает: любая сторона треугольника короче, чем сумма двух других его сторон.

Пифагорова формула выполнена в эвклидовой геометрии, то есть там, где пространство является «плоским». Так что когда метрика отличается от эвклидовой, можно приписать это различие некоторой «кривизне» пространства. Это можно представлять себе как изгибание пространства, но на самом деле это не идеальная картина, потому что тогда потребуется большее пространство, в котором исходному предстоит изогнуться. Лучше думать о «кривизне» таким образом, как будто области пространства или сжаты, или растянуты, так что изнутри кажется, что они вмещают меньше (или больше), чем снаружи. (Фанаты британского телесериала Doctor Whoвспомнят Тардис – космический корабль и машину времени, которая изнутри больше, чем снаружи.) Блестящий ученик Гаусса Риман обобщил идею метрики с размерности два на любое число измерений и модифицировал идею таким образом, что расстояния стало возможно определять локально – для точек, расположенных очень близко друг к другу. Такая геометрия называется Римановым многообразием, и она представляет собой наиболее общий вид искривленного пространства.

Физика происходит не в пространстве, а в пространстве-времени, где, согласно Эйнштейну, естественная «плоская» геометрия есть не геометрия Эвклида, а геометрия Минковского. Время входит в формулу для «расстояния» иначе, нежели пространство. Такое геометрическое устройство представляет собой искривленное пространство-время. Оно оказалось именно тем, что заказывал патентный служащий.

Эйнштейн долго бился, изобретая свои уравнения общей теории относительности. Сначала он исследовал, как свет распространяется в гравитационном поле, и это привело его к мысли положить в основу единый фундаментальный принцип – принцип эквивалентности. В ньютоновской механике гравитация проявляет себя как сила, притягивающая все тела друг к другу. Силы вызывают ускорение. Принцип эквивалентности утверждает, что ускорение всегда неотличимо от эффектов, вызванных подходящим гравитационным полем. Другими словами, способ включить гравитацию в теорию относительности состоит в том, чтобы понять ускорение.

К 1912 году Эйнштейн убедился, что теория гравитации не может быть симметричной относительно всех преобразований Лоренца; симметрия такого вида применима точнои повсюду,только когда отсутствует материя, гравитация нулевая, а пространство-время является пространством-временем Минковского. Отбросив это требование «лоренцевой инвариантности», он избежал массы бесплодных усилий. «Единственная вещь, в которую я твердо верил, – писал он в 1950 году, – состояла в том, что в фундаментальные уравнения надо было включить принцип эквивалентности». Но он осознавал и пределы этого принципа: он должен быть верен только локально, как некое инфинитезимальное приближение к истинной теории [62]62
  «Истинная теория» в данной фразе ничего не значит. Принцип эквивалентности верен локально (т.е. в малом). Именно таков фундаментальный постулат эйнштейновской теории гравитации. (Примеч. перев.)


[Закрыть]
.

В 1907 году друг Эйнштейна Гроссманн стал профессором геометрии в ETH, и Альберт также согласился занять там пост. Ненадолго – через год он уехал в Берлин, а позднее в Прагу. Но он не прерывал контакта с Гроссманном, и это принесло щедрые плоды. В 1912 году Гроссманн помог Эйнштейну осознать, какого типа математику ему следовало искать: «Эта задача оставалась для меня неразрешимой, пока я внезапно не понял, что Гауссова теория поверхностей содержит ключевой элемент для разгадки тайны… Однако я в то время не знал, что Риман исследовал основания геометрии даже на еще более глубоком уровне. Когда я вернулся из Праги в Цюрих, там был мой дорогой друг математик Гроссман. От него я впервые узнал о Риччи, а затем о Римане. Так что я спросил своего друга, можно ли решить мою задачу, применяя теорию Римана».

Риччи – это Грегорио Риччи-Курбастро, который вместе со своим студентом Туллио Леви-Чивитой изобрел анализ на римановых многообразиях. Тензор Риччи дает более простую меру кривизны, чем исходная концепция Римана.

Согласно другим источникам, Эйнштейн сказал Гроссманну: «Ты должен мне помочь, а не то я сойду с ума!» – и Гроссманн исполнил это требование. Как позднее писал Эйнштейн, он «не только избавил меня от изучения соответствующей математической литературы, но и поддержал меня в моем поиске полевых уравнений гравитации». В 1913 году Эйнштейн и Гроссманн опубликовали первые результаты своих совместных усилий, закончив гипотезой о виде искомых полевых уравнений: тензор энергии-импульса должен быть пропорционален… чему-то.

Чему?

Ответа на этот вопрос они пока не знали. Там должен был стоять некий другой тензор, дающий другое измерение кривизны.

Здесь они оба сделали математические ошибки, которые увели их в долгую погоню за несбыточным. И Эйнштейн, и Гроссман были убеждены (вполне справедливо), что их теория должна давать ньютоновскую гравитацию в соответствующем предельном случае – случае плоского пространства-времени, слабой гравитации. Отсюда они получили некоторые технические требования на искомые уравнения, т.е. требования к природе этого самого «чего-то». Но их аргументация была ошибочной, и эти требования на самом деле не следовало предъявлять.


    Ваша оценка произведения:

Популярные книги за неделю