Текст книги "Истина и красота. Всемирная история симметрии."
Автор книги: Иэн Стюарт
Жанр:
Математика
сообщить о нарушении
Текущая страница: 23 (всего у книги 26 страниц)
Напомним, что Киллинг организовал почти все простые группы Ли в четыре бесконечных семейства, два из которых составляют на самом деле две части одного большего семейства специальных ортогональных групп SO( n) в четных и нечетных размерностях. Два другие семейства – это специальные унитарные группы SU( n) и симплектические группы Sp(2 n).
Теперь мы знаем, что все эти семейства представляют собой вариации на одну и ту же тему. Они состоят из всех n× n-матриц, удовлетворяющих некоторому конкретному алгебраическому условию – они «косо-эрмитовы» [119]119
Если речь идет об алгебрахЛи. Для групп Ли соответствующее условие выглядит по-другому. (Примеч. перев.)
[Закрыть]. Единственное различие состоит в том, что для получения ортогональных алгебр Ли надо использовать матрицы из вещественных чисел, для получения унитарных алгебр Ли – матрицы из комплексных чисел, а для получения симплектических алгебр Ли – матрицы из кватернионов. Эти алгебры образуют бесконечные семейства, потому что матрицы могут иметь какой угодно размер. Чудесно видеть, что алгебры Ли, соответствующие естественным преобразованиям в гамильтоновом описании механики – первом великом открытии Гамильтона, – допускают естественное описание в терминах кватернионов – его последнего великого открытия.
Но теперь самое время задуматься, а что же происходит, если в качестве матричных элементов используются октонионы. К сожалению, из-за отсутствия ассоциативности не удается получить новое бесконечное семейство простых алгебр Ли. На самом деле лучше бы сказать «к счастью», поскольку мы ведь знаем, что такого семейства не существует. Но если играть с октонионами в правильные игры, да еще заручиться поддержкой закона малых чисел, можно получить самые настоящие алгебры Ли.
Первый намек на то, что так может случиться, появился в 1914 году, когда Эли Картан ответил на очевидный вопрос и получил удивительный ответ. Руководящий принцип в математике и физике состоит в том, что если имеется некоторый интересный объект, то первое, что про него надо спросить, – это какова его группа симметрии. Группа симметрии системы вещественных чисел тривиальна и состоит только из одного тождественного преобразования – преобразования «не делаем ничего». Группа симметрии системы комплексных чисел содержит тождественный элемент и одну зеркальную симметрию, которая преобразует iв − i. Группой симметрии кватернионов является SU(2), которая почти совпадаете группой вращений SO(3) в трехмерном вещественном пространстве.
Вопрос, который задал Картан, – это «Какова группа симметрии октонионов?». Если вы – некий Картан, то ответ на этот вопрос вам известен. Группой симметрии октонионов является наименьшая из исключительных простых групп Ли – та, которая известна под именем G 2. 8-мерная система октонионов имеет 14-мерную группу симметрии. Исключительная нормированная алгебра с делением непосредственно связана с первой из исключительных групп Ли.
Чтобы двигаться дальше, нам надо подружиться с одной идеей, восходящей к эпохе Возрождения – но только не к математикам, а к художникам того времени.
В те дни математика и искусства были довольно близки друг к другу – не только в архитектуре, но и в живописи. Художники времен Возрождения открыли, как применить геометрию к перспективе. Они нашли геометрические правила для изображения на бумаге таким образом, чтобы объекты и пейзажи выглядели как трехмерные. При этом они изобрели новый и удивительно красивый вид геометрии.
Работы более ранних художников часто не выглядят, на наш взгляд, реалистичными. Даже такой художник, как Джотто (Амброджио Бондоне), мог создавать работы почти фотографического качества, но при более внимательном рассмотрении оказывалось, что перспектива в них не совсем последовательна. Лишь Филиппо Брунелески в 1425 году сформулировал последовательный математический метод получения точной перспективы и передал свое знание другим художникам. В 1435 году вышла первая книга по данному предмету – Delia PitturaЛеоне Альберти.
Метод был доведен до совершенства в живописи Пьеро делла Франческа, который был также замечательным математиком. Пьеро написал три книги по математике перспективы. И нельзя не упомянуть Леонардо да Винчи, книга которого Trattato della Pitturaначинается с утверждения «Пусть никто, не являющийся математиком, не читает мои работы», что перекликалось с лозунгом «Да не войдет сюда ни один не знающий геометрии», который, согласно легенде, помещался над входом в Платоновскую Академию в Древней Греции.
Суть перспективы состоит в понятии «проекции», согласно которой трехмерный пейзаж переносится на плоский лист бумаги таким способом, что (в идеале) каждая точка пейзажа соединяется с глазом наблюдателя, после чего надо определить, где эта линия пересекает лист бумаги. Ключевая идея состоит в том, что проекции искажают формы некоторыми способами, которых не допускает Эвклид. В частности, проекция может превратить параллельные линии в пересекающиеся.
Мы наблюдаем такой эффект каждый день. Стоя на мосту и глядя на длинную прямую полосу уходящей вдаль железной дороги или автотрассы, мы видим, что прямые линии сходятся и, как кажется, пересекаются на горизонте. В действительности прямые остаются на одном и том же расстоянии друг от друга, но из-за перспективы воспринимаемое нами расстояние уменьшается по мере того, как прямая уходит от нас. В математической идеализации бесконечно длинные параллельные прямые на плоскости также пересекаются, если их подходящим образом спроектировать. Но место, где они пересекаются, не является образом какой бы то ни было точки в плоскости – оно и не может им быть, поскольку на плоскости прямые не пересекаются. Это кажущийся «горизонт», в направлении к которому продолжаются прямые и плоскость. С точки зрения самой плоскости горизонт бесконечно удален, но его проекция – полностью осмысленная прямая, проходящая через середину картины.
Эта прямая известна как «прямая в бесконечности». Как и квадратный корень из минус единицы, это фикция, но исключительно полезная фикция. Возникающая таким образом геометрия называется проективной геометрией, и, в духе эрлангенской программы Клейна, это геометрия свойств, которые не меняются при проекциях. Проективную геометрию использует каждый художник, который рисует изображения с перспективой, с линией горизонта и с «точкой схода», для того чтобы изображаемые объекты выглядели как реальные.
Как проекция заставляет параллельные прямые пересекаться на горизонте.
Геометрия проективной плоскости исключительно изящна. Через любые две точки можно провести единственную прямую, равно как в эвклидовой геометрии. Но, кроме того, любые две различные прямые пересекаются, причем ровно в одной точке. Параллельных, которые так занимали Эвклида, не существует.
Если это напоминает вам плоскость Фано, то вы совершенно правы. Плоскость Фано – это конечная проективная геометрия.
От перспективы Возрождения до исключительных групп Ли остается теперь только небольшой шаг. Проективная плоскость, которая неявно присутствовала в методах Альберти, явно возникла в новой геометрии. В 1636 году Жирар Дезарг – армейский офицер, позднее ставший архитектором и инженером – опубликовал «Предполагаемый набросок попытки рассматривать результаты пересечения плоскости конусом». Звучит это как название книги о конических сечениях, и книга таковой и была, но вместо использования традиционной греческой геометрии Дезарг использовал проективные методы. В точности как эвклидову геометрию можно превратить в алгебру, используя декартовы координаты (x, y)– пару вещественных чисел, – так и проективную геометрию оказалось возможным превратить в алгебру, если разрешить буквам xили yпринимать бесконечное значение (ситуация хитрым способом ставится под контроль таким образом: рассматриваются отношения трех координат и считается, что 1 : 0 = бесконечность).
То, что можно делать с вещественными числами, можно делать и с комплексными, так что у нас появляется комплексная проективная плоскость. А если тут все работает, то почему бы не попробовать кватернионы или октонионы?
Здесь возникают сложности. Очевидные методы не работают из-за отсутствия коммутативности. Однако в 1949 году математический физик Паскуаль Жордан нашел осмысленный способ построить октонионную проективную плоскость вещественной размерности 16. В 1950 году Арман Борель – математик, специализировавшийся в теории групп – доказал, что вторая исключительная группа Ли F 4является группой симметрии октонионной проективной плоскости – вполне в духе комплексной плоскости, но только образованной из двух 8-мерных «линеек», деления на которых – октонионы, а не вещественные числа.
Итак, нашлось октонионное объяснение двух из пяти исключительных групп Ли. А что насчет трех оставшихся – E 6, E 7и E 8?
Взгляд на исключительные группы Ли как на грубые порождения злонамеренного божества был довольно распространенным, пока в 1959 году Ханс Фрейденталь и Жак Тите независимо не изобрели «магический квадрат» и не объяснили появление групп E 6, E 7и E 8.
Строки и столбцы магического квадрата соответствуют четырем нормированным алгебрам с делением. Если заданы любые две нормированные алгебры с делением, можно посмотреть в соответствующую строку и соответствующий столбец и найти в магическом квадрате – который определяет результат согласно не столь уж простому математическому предписанию – некоторую группу Ли. Появление некоторых из этих групп понять несложно; например, группа Ли, соответствующая строке с вещественными числами и столбцу с вещественными числами, есть группа SO(3) вращений в трехмерном пространстве. Если и строка, и столбец соответствуют кватернионам, то мы получаем ничуть не менее близкую математикам группу SO(12) вращений в двенадцатимерном пространстве. Если теперь взять октонионную строку или октонионный столбец, то там будут стоять исключительные группы Ли F 4, E 6, E 7и E 8. [120]120
Не удержимся и приведем магический квадрат в явном виде, но без дополнительных пояснений, за исключением того, что здесь фигурируют не группы, а алгебры Ли. (Прим. перев.)
[Закрыть]Отсутствующая здесь исключительная группа G 2также тесно связана с октонионами – как мы уже видели, она представляет собой их группу симметрии.
R | C | H | O | ||||||
---|---|---|---|---|---|---|---|---|---|
R | SO(3) | SU(3) | Sp(3) | F 4 | |||||
C | SU(3) | SU(3) SU(3) | SU(6) | E 6 | |||||
H | Sp(3) | SU(6) | SO(12) | E 7 | |||||
O | F 4 | E 6 | E 7 | E 8 |
Итак, общее мнение состоит в том, что исключительные группы Ли существуют потому, что божество в своей мудрости дозволило существование октонионов. Надо было сразу догадаться. Как заметил Эйнштейн, господь изощрен, но не злонамерен. Все пять исключительных групп Ли являются симметриями различных октонионных геометрий.
Около 1956 года российский геометр Борис Розенфельд, размышляя, быть может, о магическом квадрате, предположил, что три оставшиеся исключительные группы E 6, E 7и E 8также являются группами симметрии проективных плоскостей. Однако вместо октонионов здесь надо использовать следующие структуры:
• для E 6: биоктонионы, построенные из комплексных чисел и октонионов;
• для E 7: кватероктонионы, построенные из кватернионов и октонионов;
• для E 8: октооктонионы, построенные из октонионов и октонионов.
Единственная небольшая загвоздка состояла в том, что никто не знал, как внятно определить проективные плоскости над такими комбинациями числовых систем. Тем не менее имеется ряд свидетельств в пользу осмысленности данной идеи. По ситуации на настоящий момент, мы можем доказать гипотезу Розенфельда, но только с использованием групп для построения проективных плоскостей. Это не полностью удовлетворительно, поскольку замысел состоял в том, чтобы продвигаться в другом направлении – от проективных плоскостей к группам. Тем не менее лиха беда начало. На самом деле для групп E 6и E 7уже найдены независимые способы построения проективных плоскостей. Лишь одна E 8пока держит оборону.
Если б не октонионы, то вся история о группах Ли выглядела бы попроще – как первоначально и надеялся Киллинг, – но была бы далеко не столь интересной. Не то чтобы у смертных была возможность выбирать – октонионы и все с ними связанное существуют. И некоторым таинственным образом само существование вселенной может зависеть от них.
Связь между октонионами и жизнью, вселенной и всем на свете возникает из теории струн. Ключевое свойство там – необходимость дополнительных измерений, в которых могли бы помещаться струны. Эти дополнительные измерения могут в принципе принимать огромное число самых разнообразных форм, и серьезная проблема – найти ту самую, правильную форму. В старой квантовой теории ключевым принципом являлась симметрия, и такова же ситуация в теории струн. Так что, без сомнения, группы Ли появляются на сцене в нужный момент. Все держится на этих симметриях по отношению к группам Ли, причем исключительные группы снова занимают особое место – не как типун на языке, но как возможности для реализации неожиданных совпадений, которые обеспечивают физике ее существование.
Что возвращает нас к октонионам.
Приведем пример влияния, которое они оказывают. В 1980-х годах физики заметили, что в пространстве-времени размерностей 3, 4, 6 и 10 выполняются некоторые занятные соотношения. Векторы (направленные отрезки) и спиноры (алгебраические штучки, исходно созданные Полем Дираком в его теории спина электрона) весьма тесно связаны между собой в размерности три, и только в ней. Почему? Оказывается, что соотношение между векторами и спинорами имеет место в точности тогда, когда размерность пространства-времени на 2 превосходит размерность некоторой нормированной алгебры с делением. Вычитая 2 из 3, 4, 6 и 10, получаем как раз 1, 2, 4 и 8.
Математический аспект здесь состоит в том, что в 3-, 4-, 6– и 10-мерных теориях струн [121]121
Следует читать «в 3-, 4-, 6– и 10-мерных пространствах». (Примеч. перев.)
[Закрыть]каждый спинор можно представить, используя два числа из соответствующей нормированной алгебры с делением. Такого не случается ни в каком другом числе измерений, и отсюда следует набор замечательных следствий для физики. Таким образом, у нас имеются четыре кандидата на теорию струн: вещественные, комплексные, кватернионные и октонионные. И дело складывается таким образом, что, по современным представлениям, из этих возможных теорий струн наибольшие шансы соответствовать реальности имеет 10-мерная теория, отвечающая октонионам. Если эта 10-мерная теория действительно соответствует реальности, то наша вселенная построена из октонионов.
И это не единственное место, где эти странные «числа», едва заслуживающие называться этим именем в силу минимума необходимых алгебраических соотношений, которые для них выполнены, оказываются весьма влиятельными. Та самая модная гипотетическая теория струн – M-теория – включает в себя 11-мерное пространство-время. Чтобы редуцировать воспринимаемую часть пространства-времени от 11 измерений к нашим четырем, следует избавиться от 7 измерений путем такого плотного их скручивания, чтобы они перестали быть заметными. И как же сделать такое для 11-мерной супергравитации? Надо использовать исключительную группу Ли G 2– группу симметрии октонионов.
И вот они снова, более не милые безделушки викторианской эпохи, а увесистая отмычка к возможной Теории Всего. У нас тут октонионный мир, господа.
Глава 16
Искатели Истины и Красоты
Что же, Китс был прав? Красота есть истина, а истина – красота?
Эти два понятия тесно связаны, быть может, по той причине, что наш мозг примерно одинаково реагирует на каждое. Но то, что работает в математике, не обязано работать в физике, и наоборот. Отношения между математикой и физикой глубоки, деликатны и головоломны. Философская головоломка высшего рода – как наука открыла так называемые «законы» природы и почему природа вроде бы говорит на языке математики.
Поистине ли вселенная в природе своей математическая? Не являются ли ее видимые математические черты всего лишь изобретением человека? Или же она кажется нам математической потому, что математика – самый глубинный аспект ее бесконечно сложной природы, который доступен нашему уму?
Математика – это не некоторый развоплощенный вариант окончательной истины, как полагают некоторые. Если из нашего рассказа что-то и следует, так это что математику создают люди. Нас трогают их радости и их горе. Кто остался бы равнодушным к ужасным смертям Абеля и Галуа, ведь оба они умерли в возрасте 21 года? Один из них был объектом глубокой любви, но не располагал достаточными для женитьбы средствами; другой же, блестящий, но неуравновешенный молодой человек, влюбился, но был отвергнут и умер, быть может, из-за этой любви. Успехи современной медицины спасли бы Абеля и даже помогли бы Гамильтону сохранять трезвость.
Поскольку математики – живые люди, живущие обычной человеческой жизнью, создание новой математики является частью общественных процессов. Однако ни математика, ни наука в целом не есть исключительнорезультат общественных процессов, как то нередко утверждают обществоведы-релятивисты. В каждом случае требуется удовлетворить некоторым внешним требованиям – требованиям логики в случае математики, требованиям эксперимента в случае наук. Сколь отчаянно математики ни желали бы разделить угол на три части эвклидовыми методами, голый факт состоит в том, что это невозможно. Сколь бы сильно физики ни желали вывести из ньютоновского закона гравитации окончательное описание вселенной, движение перигелия Меркурия доказывает, что это невозможно.
Вот почему математики столь упрямо следуют логике, крайне беспокоясь при этом о вещах, до которых большинству людей просто нет дела. А важно лив самом деле, можно или нельзя разрешить уравнение пятой степени в радикалах?
Приговор истории по этому вопросу не допускает толкований. Это – важно. Не так уж, возможно, важно для повседневной жизни, но, без всякого сомнения, важно для человечества в целом – не потому, что нечто важное основано на нашей способности решить уравнение пятой степени, а потому, что понимание причин, по которым это невозможно, открывает тайную дверь в новый математический мир. Если бы Галуа и его предшественники не были одержимы задачей найти условия, при которых уравнение можно решить в радикалах, открытие человечеством теории групп сильно задержалось бы, а возможно, его никогда бы и не произошло.
Вы не обязательно встречаетесь с группами у себя на кухне или во время поездки на работу, и тем не менее без них современная наука оказалась бы серьезно урезанной, а наша жизнь – устроенной в сильной степени по-другому. Не столько в отношении таких штук, как широкофюзеляжные реактивные лайнеры, или GPS-навигаторы, или даже мобильные телефоны – хотя и их это касается, – сколько в отношении нашего понимания природы. Никто не смог бы предсказать, что занудный вопрос об уравнениях прояснит глубокую структуру физического мира, однако именно так и случилось.
История посылает нам столь же простой, сколь и ясный сигнал. Исследование глубоких математических вопросов не следует отвергать или умалять только на том основании, что эти вопросы не обещают прямых практических применений. Ценность хорошей математики выше, чем у золота, и по большей части неважно, откуда она взялась. Что важно, так это куда она нас ведет.
Потрясающая вещь состоит в том, что математика высшего уровня обычно приводит к чему-то неожиданному, причем значительная ее часть оказывается актуальной для науки и технологии, пусть даже исходно изобретение совершалось для каких-то совершенно иных целей. Эллипс, который греки изучали как коническое сечение, оказался той путеводной нитью, которая привела стопами Кеплера, основывавшегося на наблюдениях Тихо Браге за движением Марса, к ньютоновской теории гравитации. Теория матриц, за бесполезность которой извинялся ее изобретатель Кэли, стала неотъемлемым инструментом в статистике, экономике и едва ли не в каждом отделе науки. Октонионы могут сыграть роль вдохновителей Теории Всего. Разумеется, теория суперструн может оказаться всего лишь симпатичным фрагментом математики, не имеющим связи с физикой. Если и так, то существующие применения симметрии в квантовой теории все равно демонстрируют, что теория групп позволяет нам глубоко проникнуть в природу вещей, несмотря на то что создавалась она для ответа на некий вопрос в рамках чистой математики.
Почему математика столь полезна для целей, ни в коей мере не предусмотренных ее изобретателями?
Греческий философ Платон говорил, что «Бог во всем геометр». Ему вторил Галилей: «Великая книга Природы написана на языке математики». Иоганн Кеплер задался целью обнаружить математические закономерности в орбитах планет. Часть из его изысканий привела Ньютона к его закону гравитации, другая же часть оказалась мистической чепухой.
Многие современные физики отмечали потрясающую мощь математического мышления. Вигнер говорил о «непостижимой эффективности математики» в деле познания природы; эта фраза фигурирует в заглавии статьи, написанной им в 1960 году. Он пишет, что в статье рассматриваются два основных вопроса:
Первое – это то обстоятельство, что колоссальная эффективность математики в естественных науках граничит до некоторой степени с мистикой и что этому нет никакого рационального объяснения. Второе – это то, что именно эта сверхъестественная эффективность математических понятий поднимает вопрос о единственности физических теорий.
И еще:
Математический язык удивительно приспособлен для формулировки физических законов – это чудесный дар, который мы не понимаем и которого не заслуживаем. Нам остается лишь благодарить за него судьбу и надеяться, что в своих будущих исследованиях мы сможем по-прежнему им пользоваться. Мы думаем, что сфера его применимости, хорошо это или плохо, будет непрерывно возрастать, принося нам не только радость, но и новые головоломные проблемы.
Поль Дирак полагал, что законы природы должны быть не только математическими, но еще и красивыми. Красота и истина были для него двумя сторонами одной монеты, и математическая красота в сильной степени подсказывала физическую истину. Он даже зашел столь далеко, что говорил, будто предпочтет прекрасную теорию правильной и что красота представляет большую ценность, нежели простота: «Исследователь в своих усилиях выразить фундаментальные законы природы в математическом виде должен главным образом стремиться к математической красоте. Он также должен принимать во внимание и простоту, но в подчинении у красоты… Там же, где они вступают в конфликт, следует отдавать предпочтение красоте».
Интересно, что дираковская концепция математической красоты значительно отличалась от той, которую разделяют большинство математиков. Она не включала в себя логическую строгость, и многие шаги в его работах содержали логические скачки – больше всего известен пример его «дельта-функции», обладающей внутренне противоречивыми свойствами. Тем не менее он весьма эффективно использовал эту «функцию», и в конце концов математики дали строгую формулировку его идеи, после чего она и в самом деле стала частью прекрасного.
Тем не менее, как было отмечено в книге Хельге Краф «Дирак. Биография ученого», «Все его [Дирака] великие открытия были сделаны до [середины 1930-х годов], а после 1935 года ему, в общем, не удавалось производить физические результаты, имеющие непреходящую ценность [122]122
Трудно согласиться. Помимо формулировки своего уравнения Дирак заложил основы теории квантования систем со связями в рамках гамильтоновой механики. Его небольшая книга на эту тему с неброским названием «Лекции по квантовой механике», вышедшая в 1966 году, вводит ряд концепций и понятий. Среди них – фундаментальная конструкция, которую вскоре стали повсеместно называть скобкой Дирака.Она, без сомнения, изящнав той же мере, в какой эффективна и востребована. (Гамильтоново квантование систем со связями – фундаментальный подход к построению квантовых калибровочных теорий поля, лежащих в основе современной картины микромира.) (Примеч. перев.)
[Закрыть]. Уместно замечание, что принцип математической красоты управлял его мышлением только в течение более позднего периода».
«Уместно» – возможно, но не верно. Дирак мог явно выразить этот принцип в позднейший период, но он пользовался им и ранее. Всеего лучшие работы математически изящны, причем он опирался на изящество как на проверку того, движется ли он в правильном направлении. Отсюда следует не то, что математическая красота тождественнафизической истине, а то, что она необходимадля достижения физической истины. Одной ее недостаточно. Много прекрасных теорий при столкновении с экспериментом оказались полной бессмыслицей. Как заметил Томас Хаксли, «наука – это вышколенный и организованный здравый смысл, где погибло немало прекрасных теорий, убиенных уродливыми фактами».
Тем не менее имеется много свидетельств, что в основе своей природа прекрасна. Математик Герман Вейль, соединивший в своих исследованиях теорию групп и физику, говорил: «В своих работах я всегда пытался соединить истину с красотой, и когда мне приходилось выбрать между ними, я обычно останавливал выбор на красоте». Основатель квантовой механики Вернер Гайзенберг писал Эйнштейну: «Вы можете возразить, что, говоря о простоте и красоте, я ввожу эстетические критерии истины, и я честно признаюсь, что меня в сильной степени привлекают простота и красота математических схем, которые нам предлагает природа. Вам должно быть это знакомо – почти пугающая простота и целостность связи, которую природа неожиданно перед нами раскрывает».
Эйнштейн же полагал, что неизвестно столь много фундаментальных вещей – природа времени, источники упорядоченного поведения материи, форма вселенной, – что нам следует напоминать самим себе, сколь далеки мы от какого бы то ни было «окончательного» понимания. По мере своей полезности математическое изящество дает нам всего лишь локальные и временные истины. Тем не менее это – наилучший способ двигаться вперед.
На протяжении всей истории математика обогащалась из двух различных источников. Один – это естественный мир, а другой – абстрактный мир логической мысли. Именно комбинация этих двух источников придает математике мощь, позволяющую ей сообщать нам об устройстве вселенной. Дирак прекрасно понимал эту связь: «Математик играет в игру, где он сам изобрел правила, тогда как физик играет в игру, правила которой задаются природой, но со временем становится все более и более очевидно, что правила, которые оказываются интересными для математика, – это те же правила, что установлены природой». Чистая и прикладная математика дополняют друг друга. Они представляют собой не два противоположных полюса, а два конца единого, связного спектра мыслей.
Наш рассказ о симметрии показывает, как даже отрицательный ответ на хороший вопрос («возможно ли решить уравнение пятой степени?») может привести к глубокой и фундаментальной математике. Здесь имеет значение, почемуответ оказался отрицательным. Методы, которые это выясняют, можно использовать для решения множества других проблем – и среди них глубоких вопросов физики. Но наш рассказ также показывает, что здоровье математики зависит и от того, вдыхает ли она новую жизнь из физического мира.
Истинная сила математики лежит именно в этом замечательном слиянии человеческого чувства гармонии («красота») с физическим миром, причем оба действуют как критерий реальности («истина») и как неистощимый источник вдохновения. Нельзя решить выдвигаемые наукой задачи без новых математических идей. Однако сами по себе новые идеи, если довести их до предела, могут выродиться в бессмысленную игру. Требования науки удерживают развитие математики на той линии, где она плодотворна, а также часто подсказывают новые направления ее развития.
Если бы математика полностью зависела от внешних потребностей – была бы служанкой наук, – мы бы получали от нее то, чего и следует ожидать от служанки: она была бы угрюмой, ворчливой и медлительной. Если бы математика руководствовалась исключительно собственными интересами, мы бы получили испорченное, дурно воспитанное дитя – избалованное, эгоистичное и раздувшееся от собственной важности. Математика высшего разряда балансирует между двумя этими крайностями, сопоставляя свои собственные потребности с потребностями внешнего мира.
Отсюда и проистекает ее непостижимая эффективность. Уравновешенная личность учится на опыте и применяет полученное знание в новых обстоятельствах. Вдохновителем великих математических достижений служил реальный мир, но великая математика может выйти за пределы, установленные ее происхождением.
Неизвестный вавилонянин, открывший, как решать квадратное уравнение, и представить себе не мог, даже в самых невероятных мечтах, во что превратится его наследие три с лишним тысячи лет спустя. Никто не мог бы предположить, что вопросы о разрешимости уравнений приведут к одной из ключевых концепций в математике – концепции группы – или что группы окажутся языком, на котором описывается симметрия. Еще менее того можно было полагать, что симметрии откроют нам дверь к тайнам физического мира.
В физике польза от умения решать квадратные уравнения очень ограниченна. Пользы от умения решать уравнение пятой степени и того меньше – уже по той причине, что всякое решение по необходимости будет численным, а не аналитическим или же будет выражаться с помощью символов, специально для этой цели изобретенных и едва ли поэтому пригодных на что-либо, кроме как прикрывать проблему фиговым листком. Но понимание того, почему уравнения пятой степени не решаются, осознание ключевой роли симметрии и развитие сопутствующих идей настолько далеко, насколько возможно, – все это открыло целые области физического мира.
Процесс идет. Следствия из симметрии для физики, а на самом деле и для науки в целом, остаются в достаточной степени неисследованными. Многого мы еще не понимаем. Но что мы понимаем наверняка, так это тот факт, что группы симметрии – наш проводник через неисследованные земли, по крайней мере до тех пор, пока не появится некая более мощная концепция (уже, быть может, ожидающая своего часа в какой-нибудь безвестной диссертации).
В физике красота не дает автоматической гарантии истинности, но она ей способствует.
В математике красота должнабыть истиной – поскольку все ложное уродливо.