355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Феофан Бублейников » О движении
(Из истории механики)
» Текст книги (страница 6)
О движении (Из истории механики)
  • Текст добавлен: 13 июня 2017, 14:00

Текст книги "О движении
(Из истории механики)
"


Автор книги: Феофан Бублейников



сообщить о нарушении

Текущая страница: 6 (всего у книги 15 страниц)

Ниспровержение аристотелианства

Интерес к астрономическим открытиям и системе мира Коперника охватил в XVI веке широкие слои общества в Италии. Шли оживленные разговоры не только во дворцах герцогов, но и в мастерских художников и ремесленников. По вечерам на паперти собора во Флоренции сходились врачи, учителя, аптекари, ремесленники, художники, чтобы беседовать о новостях литературы и науки.

Хотя прошло всего несколько лет после выхода в свет (и к тому же на латинском языке) бессмертного труда Коперника, а его идея уже обсуждалась флорентийцами.

Одним из постоянных собеседников того времени, собиравшихся на соборной паперти Флоренции, был маэстро Антонио, известный своим согражданам под шутливым прозвищем «Карафулла».

Часто возникал спор о том, неподвижна ли или движется Земля. В этих случаях Карафулла защищал мнение о движении ее, приводя самые невероятные, иногда даже шутливые доказательства. Он говорил, например, будто океанские приливы и отливы – это «колыхание» водных масс, вызываемое движением Земли.

Не только строение мира – вопросы механики также живо интересовали ремесленников и мастеров Италии. Поэтому нет ничего удивительного, что недовольные схоластикой простые люди стали объединяться в свободные научные общества и кружки.

Первый такой кружок – «веселая бригада» – образовался в 1540 году в той же Флоренции. Члены этого кружка приняли шутливое прозвище – «Мокрые».

Один из основателей кружка, аптекарь Граццини, был известен как автор популярных новелл и комедий. Другой, сапожник Джелли, слыл большим знатоком философии, но врагом латыни. К ним присоединился прославленный в XVI веке математик Козимо Бартоли.

Члены кружка начали делать переводы литературных произведений и ученых трудов на разговорный итальянский язык.

Герцог Тосканы заинтересовался их работой. Он надеялся получить от кружка помощь в решении вопросов строительства и военного дела. Чтобы облегчить кружку его работу, герцог присвоил ему наименование «Флорентийской академии», а президент «академии» был поставлен одновременно во главе университета.

«Флорентийская академия» занялась популяризацией науки. Члены ее читали общедоступные лекции по физике, механике, астрономии и другим отраслям знания.

«Нужно снять у народа с носа синие очки, надетые ему учеными-латинистами и рисующие ему ложную и искаженную картину мира, – говорил Джелли. – Ново-основанная академия сорвет с них всех маску».

Не только непонятная народу латынь ставилась в вину университетам. Члены «академии» указывали на отсутствие связи между университетской наукой того времени и потребностями техники, на господство неверных мнений признанных авторитетов, на отсутствие их проверки экспериментом.

Один из видных флорентийских академиков, Бенедетто Варки, писал: «Хотя у современных философов в обычае верить всему, что написано у хороших авторов и особенно у Аристотеля, и никогда этого не доказывать, но было бы не менее надежно и интересно идти другим путем и в обоих случаях иногда нисходить до опыта, например в вопросе о движении тел. Аристотель и все остальные философы без всяких колебаний верили и утверждали, что тело тем скорее падает, чем оно тяжелее, между тем как опыт доказывает, что это неверно».

В призывах к опыту, в стремлении познакомить с наукой широкие массы состояла заслуга этого флорентийца.

Вскоре стали возникать подобные «академии» и в других городах Италии. В них объединялись также люди, не имевшие отношения к схоластической науке. Деятельность этих свободных научных кружков сыграла важную роль в развитии механики.

Наука университетов первой половины XVI века продолжала оставаться далекой от практической жизни. Студенты изучали философские труды Аристотеля и Платона. Технические науки вовсе не входили в программу университетов. Во многих университетах того времени не преподавались ни математика, ни механика. Эти науки нашли приют в «академиях». Оттуда раздавались призывы следовать «указаниям самого Аристотеля», признававшего важность опыта для познания природы.

Во второй половине XVI века промышленность некоторых стран уже сделала большие успехи. Все более усиливалась буржуазия – владельцы промышленных предприятий и купцы, – боровшаяся с феодализмом. Она поддерживала нужное для промышленности экспериментальное направление в науке.

Церковь защищала феодализм, гибель которого грозила ей потерей привилегий. Она боялась духа исследования, охватывавшего широкие массы. Одно из средств поддержания феодализма церковники видели в схоластике, отвлекавшей умы людей от изучения природы.

Но уже поднималась волна возмущения против пленения умов аристотелианством. Все смелее и громче звучали голоса против него.

Около середины XVI века в Англии, быстрее чем в других странах, начал развиваться капитализм. Буржуазия приобрела большое влияние. Она стремилась порвать со средневековой схоластикой.

Ярким выразителем нарождавшегося мировоззрения явился английский философ Фрэнсис Бэкон (1561–1626). Ловкий царедворец, Бэкон сделал блестящую карьеру. Он достиг поста лорда-канцлера и получил звание барона Веруламского.

Несмотря на занятость государственными делами, Бэкон нашел время написать и издать прославившее его сочинение «Новый Органон». Это сочинение он противопоставил сочинению Аристотеля «Органон».

Бэкон был ярым врагом Аристотеля и других натурфилософов, учение которых основывалось на умозрениях. Он призывал к экспериментированию в исследовании природы. Осуждая сторонников умозрительного метода, переоценивавших разум человека, он писал: «Тонкость природы неизмеримо превосходит тонкость наших чувств и нашего ума, так что все эти прекрасные созерцания, размышления, толкования – бессмысленная вещь».

Но Бэкон далек от грубого эмпиризма. Он требует, чтобы результаты опыта и наблюдений служили лишь материалом для логических выводов. «Те, кто занимались науками, – писал он, – были или эмпириками, или догматиками. Эмпирики, подобно муравью, только собирают и пользуются собранным. Рационалисты, подобно пауку, из самих себя создают ткань. Пчела же избирает средний способ: она извлекает материал из цветов сада и поля, но располагает и изменяет его собственным уменьем».

Ф. Бэкон не знал математики – могущественного метода обработки наблюдений и результатов опытов. Несвойственен был ему и талант экспериментатора. Поэтому сам он не двинул вперед науку о природе. Но призыв к эксперименту имел тогда огромное значение. Вот почему Бэкон признан родоначальником английского материализма и вообще опытных наук новейшего времени.

Бэкон ниспровергал в глазах общества того времени умозрительный метод аристотелианцев. Он указывал на огромные успехи техники и бесплодность схоластики.

Союзником Бэкона в борьбе с аристотелианством выступил его современник – французский философ, физик и математик Ренэ Декарт (1596–1650).

Дворянин, воспитанник иезуитской школы, Декарт в молодости вел рассеянный образ жизни. Он много путешествовал, принимал участие в Тридцатилетней войне. Однако, увлекшись философией, Декарт оставил военную службу и поселился в Голландии, чтобы полностью отдаться размышлению. Он умер в Стокгольме, куда переселился в конце жизни.

Обладавший большими средствами к жизни, Декарт вел дружбу с ремесленниками, мелкими промышленниками и купцами. Он учил математике, астрономии и механике этих простых людей и своих слуг. Один из таких его учеников был приглашен в качестве профессора физики и математики в Лувенский университет. Сапожник Рембранц стал астрономом, а слуга Декарта, по имени Жилло, – искусным математиком, помогавшим самому Декарту в решении трудных математических задач.

Размышляя над проблемами механики, Декарт обращался к опыту инженеров, ремесленников и вообще практиков. «Мне казалось, – писал он, – что я мог встретить гораздо больше истины в рассуждениях, которые каждый делает о делах, непосредственно его касающихся, и результат которых, в случае ошибки, немедленно должен его наказать, чем в кабинетных рассуждениях ученого».

Декарт был выдающимся математиком. Он создал новую науку – аналитическую геометрию, объединившую анализ и геометрию. Эта наука способствовала развитию механики, так как позволяла аналитически изучать кривые линии, описываемые движущимися материальными точками.

В своих воззрениях на мир Декарт был материалистом. Он утверждал, что мир – пространство, сплошь заполненное материей (веществом). Эта материя охвачена вихреобразным движением, служащим причиной обращения планет и всех явлений природы. В мире нет ничего, кроме движущейся материи. Поэтому все происходящее в нем подчинено законам механики.

Декарт отвергал твердые планетные сферы древних греческих астрономов. Он объяснял движение планет вокруг Солнца тем, что они увлекаются вихрями межпланетной материи («эфира»), кружащимися около центрального светила нашей планетной системы.

Грандиозность этой картины поразила ученых того времени. Физики, астрономы стали последователями учения Декарта о «вихрях», движущих планеты вокруг Солнца.

Но, обладая большим математическим дарованием, Декарт не приложил его к разработке теории своих вихрей. Он удовольствовался построением общей картины мира, не отыскивая управляющих им законов.

Подобные гипотезы носят в науке название «качественных», в отличие от количественных построений, которые только и могут удовлетворить современного ученого. Вихри Декарта были забыты, но его материалистические взгляды оказали сильное влияние на развитие естествознания.

Как механик Декарт не признавал существования в природе сил. Он утверждал, что не силы двигают материю, а извечно присущее частицам материи движение проявляется как сила. Именно материи, по выражению К. Маркса, Декарт приписывал творческую силу.

Декарт не сделал открытий в механике. Он даже не признал законов динамики, выведенных Галилеем. Но его воззрения на природу силы до настоящего времени привлекают большое внимание физиков.

Галилей – основоположник динамики

Для введения экспериментального метода в механику было недостаточно лишь сознания его необходимости. Требовалось не только уметь ставить опыты, но и выводить из них теоретические правила – законы. Вывод законов мог быть сделан путем математической обработки результатов экспериментов.

В XVI веке в Италии уже работало много математиков – последователей Тартальи. Эти ученые обладали достаточными познаниями для вывода законов механики. Но они не были экспериментаторами и не могли дать новое направление этой науке. Делавшие же опыты художники, техники и ремесленники не обладали систематической научной подготовкой. Поэтому и они также не были в состоянии из результатов своих опытов выводить общие законы.

Только гениальному Галилею, обладавшему талантом экспериментатора и математическими познаниями, удалось заложить основы учения о движении – динамики.

В детстве Галилей увлекался изготовлением действующих моделей машин и игрушек. Уже тогда он проявил большие способности. Видя это, его отец изменил свои намерения в отношении будущности Галилея: вместо торговой конторы он отдал его в Пизанский университет.

Галилей принялся усердно за изучение физики по Аристотелю, астрономии – по Птолемею, геометрии – по Евклиду. По выходе из университета он должен был стать врачом.

Но схоластическое естествознание было основано на безусловном признании мнений авторитетов. Оно исключало самую возможность критики, если даже она исходила из результатов опыта и наблюдений.

Исследовательский дух Галилея не мог примириться с мертвой схоластикой. Незадолго до окончания университета Галилей в возрасте двадцати лет оставил его.

Галилей чувствовал большой интерес к технике, к прикладной математике и к механике. Эти науки не преподавались в университетах. С ними Галилей мог познакомиться только в Художественной академии, бывшей одновременно и высшей технической школой. Он стал посещать лекции в академии и брал частные уроки механики и прикладной математики.

Учителем Галилея был математик школы Тартальи – Остилио Риччи, преподававший прикладную математику молодым людям. Он решал со своим учеником задачи, встречающиеся в практической деятельности инженеров, артиллеристов и других техников.

Стремление связать теорию с практикой было отличительной чертой Галилея как ученого. Поэтому, оставив оторванную от жизни схоластику, Галилей охотно взялся за изучение прикладной математики.

Образование, полученное Галилеем под руководством Риччи, вполне соответствовало духу, господствовавшему в академиях и среди художников-инженеров той эпохи.

Галилей близко познакомился с проведением каналов, подъемными машинами, регулированием рек и другими вопросами практической гидравлики. Он, повидимому, участвовал в наблюдении за работами по сооружению крепостей, по постройке мостов и водопроводов.

Эти занятия вполне отвечали наклонностям Галилея, который и в дальнейшем в течение всей своей научной деятельности занимался практической техникой. Сделанные Галилеем записи лекций Риччи свидетельствуют, что эти лекции определили, по крайней мере вначале, деятельность его ученика.

В 1586 году Галилей построил чувствительные и точные гидростатические весы для определения относительной плотности тел. В небольшой работе он описал эти весы и способ их применения, проявив стремление к необычной для того времени точности.

Тогда же Галилей собирался написать «несколько книг для солдат, чтобы не только познакомить их с теорией, но и сообщить им также точные познания обо всех заслуживающих внимания, зависящих от математики вопросах, как, например, о технике рытья окопов, боевого строя, возведения крепостей, топографических съемок, артиллерийской техники и т. п.».

Как техник Галилей выступил с изобретенным им прибором для топографических съемок, приспособленным для военных целей.

Но интересы Галилея не исчерпывались практической техникой. С самого начала своей деятельности он отдавал много времени и сил теоретическим исследованиям.

Для Галилея была характерна его способность от вопросов техники переходить к глубоким теоретическим соображениям. В отличие от его предшественников и современников, у него теория всегда получала перевес над техникой.

Первой его теоретической работой было исследование о центре тяжести тел, написанное вскоре же после начала изучения им математики. В этой работе Галилей показал себя хорошим геометром. Его исследование в духе статики Архимеда обратило на себя внимание упомянутого ранее геометра Гвидо Убальди дель Монте.

Этот ученый очень знатного происхождения пользовался большим влиянием. По его рекомендации Галилей в возрасте двадцати пяти лет был приглашен на должность профессора в университет Пизы, покинутый им для занятий математикой. Он должен был преподавать студентам элементарную геометрию по Евклиду и излагать школьную астрономию по Птолемею.

Понятно, что эти занятия не увлекали Галилея. Все интересы великого ученого уже тогда сосредоточились на механике. Равновесие и движение тел – вот над чем размышлял молодой Галилей в свободное время.

Чтобы найти законы движения, например свободного падения тел, нужно было оторваться от представлений статики. Динамика была новой областью исследования. Общепринятое тогда деление движений на «естественные» и «насильственные» только затуманивало вопрос о движении тел.

Став открытым противником механики Аристотеля, Галилей приобрел много врагов. Профессора Пизанского университета увидели в нем опасного противника схоластики. Они создали невыносимую для Галилея обстановку, и молодой ученый должен был оставить университет Пизы, хотя срок его договора еще не истек.

Тогда покровительствовавший Галилею Убальди дель Монте помог ему перейти в 1592 году в университет Падуи.

В этом городе Галилей продолжал как свои теоретические исследования, так и занятия техникой. Он устроил там мастерскую, в которой изготовлял различные приборы и инструменты. Желающим изучать технические науки он преподавал искусство сооружения крепостей, баллистику и топографическую съемку.

От практических вопросов баллистики Галилей перешел к теоретическим исследованиям движения тел.

В Падуе Галилей начал свою раннюю работу – «О движении», в набросках к которой отразилось негодование молодого исследователя по поводу невежества его противников. Да и сам Галилей, получивший схоластическое образование, еще испытывал затруднения в изложении своих идей.

Но позднее, работая над сочинением «Учение о движении под действием тяжести», законченным в 1609 году, Галилей уже показал себя замечательным исследователем. В этой работе он изложил и результаты своих наблюдений над падением тел, сбрасываемых с высоты.

Даже в этих ранних работах Галилей полностью отказался от умозрительных методов аристотелианцев.

«Мы будем, – писал он, – пользоваться таким методом, чтобы требующее доказательства выводилось из доказанного; и я никогда, если будет возможно, не буду класть в основу то, что еще нужно доказать, а лишь истинное».

Это метод математики. Сам Галилей говорил, что он заимствовал его у своих учителей-математиков. Иронизируя над университетскими схоластами, он указывал, что математическим методом «недостаточно пользуются некоторые философы… преподавая элементы физики, кладут в основу то, что сказано или в книгах о душе, или в книгах о небе, или даже в метафизике… и выводят свое учение не из того, что хорошо известно, а попросту из неизвестного и неслыханного».

Галилей был гораздо более опасным врагом схоластов, чем эмпирики – художники и техники, признающие опыт единственным источником познания. Он обладал основательным знанием аристотелианской физики. По его собственным словам, изучению схоластической физики он посвятил больше дней, чем математике часов. Поэтому, выступая против схоластов, он мог наносить удары их же собственным оружием.

Вместе с этим Галилей был ярким представителем нового мировоззрения: в отличие от Аристотеля, он хотел знать, не «почему», а «как» движутся тела.

Галилей не ставил и не пытался разрешать философских вопросов о природе движения, пространства и времени. Он был прежде всего механик и математик и с такой точки зрения изучал движение.

Обладая редким талантом экспериментатора, Галилей искал приложимых к технике результатов исследования, а не отвлеченного знания. Ему было важно предсказать, по какому пути, с какой скоростью и какое расстояние пройдет движущееся тело в определенный промежуток времени.

Галилей понимал, что тело движется под действием сил природы. Движение зависит как от самого тела, так и от действующей на него силы. А свойства тел и сил природы, конечно, можно постичь только из наблюдений и опыта.

В упомянутых выше ранних трудах Галилея уже были заложены основы динамики. Но ему не удалось тогда опубликовать эти работы. Позднее же, после астрономических открытий 1610 года, Галилей надолго посвятил свое время защите идеи о движении Земли.

Только после осуждения Галилея в 1633 году инквизиторами, лишившего его возможности продолжать борьбу за идеи Коперника, он снова обратился к механике.

В уединении заключения Галилей написал свой знаменитый труд – «Беседы и математические доказательства о двух новых науках», – изданный в Лейдене в 1638 году. В этот труд вошли не только результаты его более ранних исследований в Пизе и Падуе о движении, но и размышления о строении вещества и причине твердости тел.

Хотя в то время физика была еще далека от знания молекулярного строения вещества и действующих между молекулами сил, но Галилей высказал некоторые ценные мысли. Как всегда, и в этих размышлениях Галилей шел от вопросов техники, которые возникали у него при работе в мастерской.

При жизни Галилей прославился своими астрономическими открытиями. Но в наше время уже по достоинству оценены его гениальные исследования в механике. Именно на это указал знаменитый французский механик XVIII века Лагранж, сказав, что «открытие спутников Юпитера, фаз Венеры, солнечных пятен и так далее потребовало лишь наличия телескопа и известного трудолюбия, но нужен был необыкновенный гений, чтобы открыть законы природы в таких явлениях, которые всегда пребывали перед глазами, но объяснение которых всегда ускользало от изыскания философов».

Открытие равномерности колебаний маятника

Несомненно, что с древнейших времен люди были знакомы с колебаниями подвешенных тяжестей. Например, моряки часто наблюдали, как колеблется подвижный блок, который спускают сверху, чтобы захватить корабельную снасть. Но ученые долго не интересовались законами колебаний. Впервые изучать их экспериментально начал Галилей.

Еще в студенческие годы Галилей заметил, что хотя размах колебаний маятника с течением времени становится все меньше, но период их остается одинаковым. Это открытие было сделано им в соборе, где он наблюдал качание люстр, измеряя время биениями своего пульса.

Это постоянство периода колебаний навело Галилея на мысль применить маятник для измерения времени.

Галилей устроил для этой цели маленький маятниковый прибор, но колебания маятника быстро затухали. Поэтому его прибор был пригоден лишь для коротких промежутков времени, например для определения врачами частоты биения пульса.

Тень, падающая от столбика (гномона) на коническую поверхность часов, показывает время.

Между тем проблема измерения времени еще не была удовлетворительно разрешена в эпоху, когда жил Галилей.

Древние греческие ученые изобрели много разных солнечных часов. У одних тень столбика падала на вертикальную стену, у других – на поверхность шара, конуса или цилиндра. Эта тень, служившая стрелкой солнечных часов, по мере движения по небу солнца поворачивалась, указывая концом деления циферблата. Но эти часы годились только для измерения времени днем.

При астрономических наблюдениях пользовались водяными часами, усовершенствованием которых занимался еще Ктезибий в I веке до н. э. Этими часами время измерялось по количеству вытекавшей из сосуда воды.

Для градуирования водяных часов открывали кран верхнего сосуда в тот момент, когда восходящее солнце только касалось верхним краем горизонта. Когда же оно, передвинувшись на ширину диска, касалось горизонта нижним краем, количество вытекшей воды определяло «шаг» солнца.

В XIV веке уже строились и колесные часы, приводившиеся в действие тяжестью гирь. Так как опускание гири – ускоренное движение, то колесные часы нуждались в регуляторе. Они регулировались особым приспособлением, «билянцем», – горизонтальной штангой на вертикальной оси с насаженными на ней двумя лопатками. Храповое колесо часов при вращении упиралось зубцом то в верхнюю, то в нижнюю лопатку. Зацепив верхнюю лопатку, храповик двигал его в одну сторону. Через короткое время этот зубец терял соприкосновение с верхней лопаткой, но другой зубец зацеплял нижнюю лопатку и поворачивал ось «билянца» в обратную сторону.

Скорость хода зависела от инерции горизонтальной штанги. Чтобы замедлить его, «билянц» нагружали гирями, а иногда, в башенных часах, даже просто кирпичами.

Колесные часы, регулируемые колебаниями в горизонтальной плоскости рычага w – «билянца».

Такие часы были установлены, например, в 1348 году на башне в Дувре (ими пользовались до 1872 года). Столетием позднее подобными же часами пользовались на обсерватории в Нюрнберге.

Открытие равномерности (изохронности) колебаний маятника навело на мысль конструкторов, что он может быть прекрасным регулятором колесных часов.

Галилей лишь в конце жизни пытался применить маятник в колесных часах.

Он составил проект таких часов и поручил выполнение его своему сыну Винченцо. Но и Винченцо не успел закончить конструкцию часов. После смерти Галилея изобретенные им часы были проданы в 1649 году в числе других предметов оставшегося имущества.

Так погиб для науки этот замечательный памятник деятельности великого Галилея.


    Ваша оценка произведения:

Популярные книги за неделю