Текст книги "О движении
(Из истории механики)"
Автор книги: Феофан Бублейников
Жанры:
Прочая детская литература
,сообщить о нарушении
Текущая страница: 3 (всего у книги 15 страниц)
Развитие античной статики
Производство рабовладельческого общества было основано на применении грубых орудий, которые «как раз вследствие своей грубости и неуклюжести трудно подвергаются порче» (К. Маркс).
Однако несомненно, что после исследований Архимеда статика продолжала развиваться еще в античное время.
Сохранились сообщения о водяных мельницах, заменивших собой ручные зернотерки. Римлянами применялась для уборки хлеба жнейка.
Особенно же много изобретатели того времени занимались придумыванием различных приборов и автоматов-часов, движущихся птиц, автоматически открывающихся и закрывающихся дверей в храмах, дверных запоров и других приспособлений. Эти изобретения возбуждали у них интерес к механике.
Знаменитыми механиками в древности после Архимеда были Ктезибий и Герон.
Ктезибий, живший около середины I века до н. э., впервые в Греции устроил водяные часы, изобрел пожарную машину, водяной орган и другие механизмы и приборы.
В водяных часах Ктезибия, по мнению некоторых историков науки, уже применялись зубчатые колеса. Устройство этих водяных часов очень просто. Главная часть их – большой сосуд, в который поступает равномерная струйка воды. Вода на дне этого сосуда постепенно поднимается. На ее поверхности плавает легкий поплавок с человеческой фигуркой. В руках у фигурки – указка, конец которой скользит по поверхности вращающегося цилиндрического циферблата. Часы градуировались по солнцу.
Правильность их показаний зависела от равномерности поступления воды в большой сосуд, что обеспечивалось остроумными приспособлениями.

Водяные часы Ктезибия. Вода льется из трубочки в большой резервуар с поплавком, который по мере поднятия уровня воды всплывает. Фигурка на поплавке показывает часы на вращающемся цилиндре.
Пожарная машина Ктезибия почти не отличалась от современной. Она была снабжена особыми клапанами, не позволявшими воде при нагнетании возвращаться в цилиндры. Идея устройства клапанов также принадлежала творцу пожарной машины.
Об изобретениях Ктезибия остались рассказы и описания живших позднее историков.
Еще большей славой пользовался ученик Ктезибия – греческий изобретатель и механик Герон. Подобно своему учителю, он также изобрел множество физических приборов и любопытных автоматических устройств. От Герона остались и сочинения по механике. Герону принадлежит несколько десятков различных приборов. Простейший из них – сифон. Это изогнутая трубка, короткое колено которой опускается в сосуд с жидкостью. Если удалить воздух из длинного колена, то жидкость наполнит всю трубку и станет выливаться через нее наружу. Истечение будет продолжаться до тех пор, пока конец колена трубки будет погружен в воду.
Это простое изобретение широко применяется в технике нашего времени.

Сифон Герона. Когда из дугообразной трубки будет удален воздух и она заполнится водой, то вода вытекает из длинного колена до тех пор, пока короткое будет погружено в воду. Поплавок на коротком колене трубки позволяет сохранить постоянство разности уровней жидкости и нижнего конца длинного колена. Вследствие этого скорость истечения постоянна.
Сложнее – двойной сифон, который используется фокусниками, удивляющими зрителей «волшебным кубком».
Стоящий на столе глубокий кубок с поднимающимся с его дна столбиком не возбуждает никаких подозрений.
В него можно наливать воду, которая остается, как в любом другом сосуде. Но как только уровень воды поднимется до верха столбика, то он начинает быстро понижаться, и кубок скоро опорожняется.
Этот фокус объясняется просто: столбик в кубке – двойной сифон; это широкая трубка, закрытая сверху и сообщающаяся через незаметное отверстие в ее стенке с кубком; внутри нее есть не видная зрителю, открытая с обеих сторон узкая трубка, доходящая почти до верха широкой трубки, а нижним концом выходящая наружу; наливаемая в кубок вода стоит на такой же высоте и в широкой трубке; как только она заполнит ее доверху, то начинает вытекать через узкую трубку наружу до тех пор, пока кубок не опорожнится.
Действие сифона объясняется разностью давлений на поперечное сечение водяного столба у концов изогнутой трубки.

«Волшебный кубок» – двойной сифон Герона.
Герон, не зная о давлении атмосферы, сравнивал струю, вытекающую из сифона, с веревкой, огибающей блок. Нельзя, впрочем, в связи с этим не упомянуть, что столб воды в трубке сифона действительно оказывает большое сопротивление разрывающему усилию.
В своих многочисленных изобретениях Герон постоянно сталкивался с вопросами механики. Действие всех приборов Ктезибия и Герона было основано на равновесии твердых и жидких тел. Герон развивал основы статики, заложенные еще Архимедом.
Сохранилось сочинение Герона «Механика». В нем автор математически доказывал закон рычага, выводил условия равновесия и описывал устройство других простых машин.
«Желая поднять тяжесть, – писал Герон, – мы должны тянуть привязанную к ней веревку с силой, равной весу тяжести. Если же мы привяжем один конец этой веревки к неподвижному месту, а другой перекинем через привязанный к тяжести блок, то поднять тяжесть будет легче».
Итак, Герону было известно свойство подвижного блока. Пользуясь этим, он уже сконструировал полиспаст.

Подъемная машина античного времени. Тяжелое бревно поднимается при помощи полиспаста.
Рассмотрев действие простых машин, Герон вывел так называемое «золотое правило» механики. Он высказал это правило в такой форме: «отношение времен равно обратному отношению движущих сил».
В наше время «золотое правило» выражается так: «сколько выигрывается в силе, столько теряется в скорости».
Только теории клина и винта не мог создать Герон. Для этого нужно было знать закон наклонной плоскости, открытый лишь в XIII веке строителями зданий.
Античная техника получила большое развитие в эпоху расцвета Рима. Завладев во II веке до н. э. Грецией, римляне быстро восприняли культуру древних греков.
В Римской империи устраивались греческие школы. Появились подражания греческим литературным произведениям и скульптуре. Римляне сильно развили греческую технику. Они применили в большом количестве в военном деле баллисты, катапульты и другие машины; в строительном деле – подъемные краны и различные механизмы.
Из сочинений римских техников до нашего времени дошла работа «Об архитектуре» Витрувия (конец I века до н. э. и начало н. э.).
Под архитектурой Витрувий понимал вообще технику сооружения зданий, производства часов и построения машин. Из его сочинения можно видеть, какого развития достигла техника в эпоху расцвета цивилизации в Римской империи.

«Ступальное» колесо, вращающееся под тяжестью человека, переступающего по ступенькам на ободе колеса. Черпаки забирают воду из реки и выливают ее в желоб.
При возведении зданий в большом употреблении были подъемные машины. Они строились из дерева. Даже блоки были деревянные, хотя железо широко использовалось для изготовления инструментов. Выигрыш в силе достигался применением полиспастов. С помощью таких машин поднимались бревна и другие громоздкие, тяжелые строительные материалы.
Орошение полей производилось с помощью водочерпальных колес. Задолго до римлян искусственное орошение полей было распространено в Вавилонии, в Индии и в Египте. В этих странах водочерпальные колеса приводились в движение силой упряжных животных. Применялись также колеса, приводимые в движение и тяжестью человека, поднимавшегося по ступеням на ободе колеса.
От водочерпального колеса было нетрудно прийти к идее простейшего водяного двигателя – колеса, снабженного по ободу поперечными лопатками. Течение воды захватывает лопатки и вращает колесо. От него при помощи передач приводили в движение рабочие машины. Примером может служить римская водяная мельница.

Римская водяная мельница. Водяное колесо А через зубчатую передачу В приводит во вращение жернов С.
На ось водяного двигателя насаживалось зубчатое колесо. Оно зацепляло шестерню значительно меньшего диаметра, ось которой получала более быстрое вращение.
Ось второго колеса, установленная перпендикулярно к оси первого, укреплялась в жернове. Вращаясь, жернов истирал в муку зерна, поступавшие из находящегося над ним ковша.
Все эти механизмы доказывали, что римские техники были хорошо знакомы с большинством простых машин. Они с успехом пользовались ими для передачи движения от водяных двигателей и производства работы.
Но теория машин не разрабатывалась римскими техниками и механиками. В этой области они довольствовались статикой Архимеда. То же самое можно сказать о гидростатике. И в этой науке древние римляне не дали ничего нового.
Отсутствие разработанной теории простых машин при широко развитом применении их должно было вредно отражаться на античной технике.
В соответствии с механическими познаниями составлялись в античное время и представления о «механизме» вселенной.
Античные ученые были знакомы лишь с некоторыми законами статики. Им были известны также простые машины. Но свободное движение тел в пространстве совершенно не было изучено ими. Поэтому греческим философам казалось самым простым объяснять движение небесных тел как связанных между собой частей машины.
Античная механика и система мира
Вселенная – это солнца-звезды и планеты, свободно движущиеся в пространстве. Чтобы понять ее строение, нужно знать законы движения тел.
Первое, что поражает наблюдателя неба, – кажущееся суточное круговращение светил.
В северной части неба звезды движутся, как в хороводе, вокруг небесного северного полюса, лежащего вблизи Полярной звезды. В южной части они восходят, описывают дугу по небесному своду и заходят под горизонт. Остальная часть их кругового пути скрыта от наших глаз.
В суточном вращении, происходящем, как кажется наблюдателю, вокруг Земли, участвуют также Луна, Солнце и планеты.
Эти наблюдения и легли в основу естественно-научного мировоззрения древних греков.
Ученые античного мира были далеки от мысли, что суточное вращение неба – только кажущееся явление. Они считали восходы и заходы действительным круговым движением светил. Но в то же время они не могли представить себе, чтобы свободные тела совершали такое движение в пространстве. Поэтому греческие астрономы решили, что звезды, планеты, Луна и Солнце прикреплены к твердой вращающейся сфере. Внутренняя поверхность этой сферы, по мнению древних ученых, и есть видимое нами голубое небо.
Такая простая модель вселенной недолго удовлетворяла ученых. Луна, Солнце и планеты совершают, кроме суточного вращения, и другие движения: в то время как звезды сохраняют неизменным свое положение относительно друг друга, эти светила перемещаются среди них в направлении, обратном суточному вращению. Поэтому восход этих светил каждый день запаздывает.
Луна в течение 27,3 суток обращается с запада на восток вокруг Земли, перемещаясь среди неподвижных звезд, что каждый может легко видеть, понаблюдав за ней в течение нескольких дней. Одновременно с этим она участвует также и в суточном вращении неба с востока на запад.
Сложное движение Луны греческие астрономы объясняли так: Луна прикреплена к сфере, совершающей оборот на оси с запада на восток в течение 27,3 суток. Звездная же сфера в своем суточном вращении увлекает лунную сферу.
Значит, лунная сфера в течение суток перемещает Луну на 360°/27,3, или около 13,2° к востоку. Суточное же вращение ее к западу на 360°/24 = 15° в час. Поэтому восход Луны каждый день запаздывает на 13,2/15 часа, или приблизительно на 52,8 минуты.
Солнце также совершает круговой путь среди звезд, переходя из одного созвездия Зодиака в другое. В течение года оно делает полный круг, в чем легко убедиться, понаблюдав некоторое время восходы и заходы звезд.
Заметим какую-либо яркую звезду в южной части неба. Она, как говорят, «загорается», когда Солнце достаточно низко опустилось под горизонт и небо потемнело. В это время звезда находится к востоку от Солнца. Через некоторое время эта звезда будет видна в тот же час ближе к горизонту. Значит, она приблизилась к Солнцу.
Но звезды не меняют своего положения относительно друг друга.

Видимое движение планеты Марс среди звезд.
Следовательно, Солнце передвинулось среди них к востоку.
Действительно, в дальнейшем звезда станет невидима по вечерам, потонув в солнечных лучах. Но зато по прошествии еще некоторого времени она будет появляться по утрам, перед восходом Солнца, то-есть к западу от него.
Так, перемещаясь равномерно все время на восток, Солнце переходит из одного созвездия в другое. Поэтому те созвездия, которые сияют на летнем небе, не видны зимой.
В действительности, как известно, это – кажущееся движение. Оно является отражением движения Земли вокруг Солнца.
Но древние греческие астрономы принимали кажущееся перемещение Солнца среди звезд за реальное движение. Они объясняли его вращением с запада на восток особой сферы, к которой будто бы прикреплено Солнце.
Еще труднее было понять видимое перемещение среди звезд внешних планет: планета то движется с запада на восток, то останавливается и пятится, а затем снова движется в прежнем направлении. Полный круг среди звезд планеты совершают в разные сроки. Но в течение года каждая из них делает «петлю».
Греческие астрономы считали невозможным приписать небесному механизму какое-либо иное движение, кроме равномерного и кругового.
Поэтому для объяснения видимого перемещения планет предположили, будто каждая из них связана с четырьмя концентрическими, вложенными одна в другую сферами.

Планета Р увлекается движением сферы III, ось вращения которой укреплена концами в сфере II и разделяет ее вращательное движение.
Эти сферы вращаются около различно направленных осей, концы каждой из которых упираются в стенки внешней сферы. Вращение этих сфер объясняло как поступательное движение планеты с запада на восток, так и попятное движение, когда она делает петлю.
Так была создана необычайно сложная модель вселенной, все части которой вращались равномерно около одного центра – Земли. А комбинация этих вращательных движений давала наблюдаемое перемещение светил.
Описанная модель мира хотя и объясняла в общих чертах видимое перемещение светил, но не позволяла пред-вычислять их положение на небе.
Чтобы решить эту последнюю задачу, античным астрономам пришлось отказаться от вращающихся сфер. Александрийский математик и астроном Клавдий Птолемей (70—147) построил чисто геометрическую схему движения планет.
О жизни Клавдия Птолемея не сохранилось сведений. Известно только, что он был родом из Верхнего Египта и жил в Александрии. Но созданная им система мира, господствовавшая в Европе в течение около двух тысячелетий, увековечила его имя в истории науки.
Схема Птолемея давала возможность предсказывать наперед, среди каких звезд будет видна планета в тот или иной момент.
В схеме Птолемея каждая планета движется по кругу, центр которого обращается вокруг Земли. Комбинация этих двух движений и дает кажущееся перемещение планет. Однако эта схема, позволяя предвычислять положение планет, не давала понятия о строении вселенной: нельзя было представить себе, почему планеты могут совершать такие движения. Поэтому система Птолемея оставалась чисто геометрической схемой.
Необходимость в столь сложной схеме отпала бы, если предположить, что сама Земля вращается около оси и обращается вокруг Солнца. Греческие астрономы понимали это.
«Существуют люди, – писал Птолемей, – которые утверждают, будто бы ничто не мешает допустить, что небо неподвижно, а Земля вращается около своей оси от запада к востоку и что она делает такой оборот каждые сутки. Правда, говоря о светилах, ничто не мешает для большей простоты допустить это, если принимать в расчет только видимые движения».
Но состояние механики того времени не позволяло остановиться на этом предположении. Вращение Земли казалось невозможным, хотя ее шарообразность была признана всеми греческими астрономами.
Не зная инерции, древние греческие механики были уверены, что если бы Земля вращалась, то птицы, поднявшиеся на воздух, отставали бы от земной поверхности. Никакое тело не могло бы двигаться к востоку, потому что Земля в своем вращении опередила бы их движение.
Как думал Птолемей, тяжелые предметы на вращающейся Земле отрывались бы от нее подобно камню при круговом взмахе пращи. Подобными же соображениями он отвергал мысль и об обращении Земли вокруг Солнца.
Только прогресс динамики позволил через много веков отказаться от мнения о неподвижности Земли.

Схема движения планет по Птолемею.
Крушение античной культуры
Наивысшего расцвета античная культура достигала в период от начала I века до н. э. и до конца I века н. э.
Рабовладельческий строй был прогрессом по сравнению с предшествовавшим ему общинно-родовым строем, но он характеризовался жестокой эксплуатацией рабов и низкой производительностью труда.
Однако уже в первые века н. э. в рабовладельческом обществе Римской империи началось изменение экономических условий. Зарождались новые производственные отношения. Возникло революционное движение рабов и мелких арендаторов земли – колонов.
Эти внутренние потрясения совпали с нападениями на Римскую империю извне.
Германские племена вторгались из-за Рейна в пределы Римской империи и разрушали города. В конце IV века кельты заняли Северную Италию и даже ворвались в Рим.
Правда, римляне скоро снова завоевали захваченные кельтами земли. Они «романизировали» вторгшиеся племена, то-есть привили им римскую культуру. После этого кельты, занявшие Северную Италию, вошли в состав римского рабовладельческого общества.
Но нападения «варваров» продолжались. Предводители наемных войск приобретали все большее влияние в Риме. Наконец в 476 году римский император Ромул Августул был низложен ими и сослан в далекую провинцию. Так кончилось существование Западной Римской империи, на территории которой образовалось несколько самостоятельных государств.
Задолго до этого события культура в Римской империи стала клониться к упадку. С развитием крупного землевладения промышленность и торговля в городах замирали. Забывались техника и наука.
Крупные землевладельцы не нуждались в наемных плотниках, кузнецах и других ремесленниках, имея этих специалистов среди своих рабов. Они обучали молодых рабов музыке, живописи и архитектуре, чтобы не обращаться к свободным художникам, музыкантам и инженерам.
Большую роль в гибели античной культуры сыграло христианство, признанное в конце античной эпохи государственной религией. Руководители церкви видели в науке древних философов-язычников врага религии. Они боролись с распространением античной науки.
В 390 году толпа христиан-фанатиков под предводительством епископа уничтожила значительную часть рукописей Александрийской библиотеки. Знаменитая в V веке ученая, дочь математика Феона – Гипатия, была убита при возмущении христиан в 415 году в Александрии.
С концом Западной Римской империи как государства, объединяемого Римом, быстро угасли античная культура и наука. Упадок науки наблюдался и в Восточной Римской империи. Под влиянием христианской церкви византийский император Юстиниан в 529 году закрыл афинские философские школы.
Последние греческие философы уехали в Персию, чтобы там продолжать преподавание античной мудрости. Но и в Персии они не нашли благоприятных условий, хотя персидский царь и был любителем философии.
Не удалось сохраниться античной науке также в Сирии и Месопотамии. Там были греко-христианские философские школы, которым покровительствовал епископ Несторий. Но в 431 году Несторий был низложен вселенским собором руководителей церкви. Он должен был бежать, после чего закрылись и философские школы.
Наконец в 640 году Александрия была взята арабами, разрушавшими научные учреждения: библиотеки, обсерватории, школы. Погибла и сохранившаяся еще до того времени часть Александрийской библиотеки.
Рассказывают, что предводительствовавший арабскими войсками халиф Омар приказал уничтожить библиотеку, сказав: «Если в этих книгах говорится то, что есть в Коране, то они бесполезны. Если же в них говорится что-нибудь другое, то они вредны. Поэтому в том и другом случае их надо сжечь».
Прекращение деятельности Александрийской академии было роковым событием для античной науки.
Все знания древних ученых оказались надолго похороненными в покрытых пылью фолиантах на полках сохранившихся частных и монастырских библиотек. Они не были известны широким массам, потому что греческие и римские ученые не стремились к популяризации знаний.
Только значительно позднее античная наука возродилась среди арабов и народов Средней Азии.








