Текст книги "Статьи и речи"
Автор книги: Джеймс Максвелл
сообщить о нарушении
Текущая страница: 6 (всего у книги 32 страниц)
Согласно нашей теории, и в спокойном воздухе совершается такого же рода движение, как и в диффундирующих газах; разница только в том, что мы легче можем обнаружить движение молекул с места на место в том случае, когда они по природе отличны от тех, между которыми диффундируют.
Чтобы составить себе представление о том, что происходит с молекулами в спокойном воздухе, лучше всего наблюдать рой пчёл, где каждая отдельная пчела бешено летает то туда, то сюда, между тем как целый рой либо остаётся на месте, либо медленно плывёт в воздухе.
Иногда пчелиные рои бывают способны пролетать большие расстояния, и их хозяева, чтобы доказать свои права собственности, когда найдут их на чужой земле, посыпают рой пригоршней муки. Положим теперь, что мука, высыпанная в летающий рой, окрасила только тех пчёл, которые находились в это время в нижней половине роя, а на тех, которые оказались в верхней половине, мука не попала.
Если пчелы беспорядочно летают туда и сюда, то в верхнюю часть роя будет попадать посыпанных пчёл все больше и больше, пока они не распределятся равномерно во всех частях роя. Причина этой «диффузии» не в том, что пчелы были отмечены мукой, но в том, что они перелетали с одного места на другое. Отметка мукой только позволяет нам узнавать известных пчёл.
У нас нет никаких средств для отметки некоторого числа молекул воздуха, для того чтобы мы могли узнать их, когда они рассеятся между другими молекулами, но мы можем сообщить им некоторые свойства, которые свидетельствовали бы нам об их диффузии.
Например, если горизонтальный слой воздуха движется горизонтально, то молекулы, распространяясь из этого слоя между молекулами, находящимися выше и ниже его, несут с собой своё горизонтальное движение и стремятся сообщить движение соседним слоям, между тем как молекулы, диффундирующие из соседних слоёв в движущийся слой, стремятся остановить его движение. Это действие между слоями несколько похоже на действие двух шероховатых поверхностей, из которых одна скользит по другой и трётся о неё. Это действие называется трением, когда оно имеет место между твёрдыми телами; в случае жидкостей оно называется внутренним трением, или вязкостью.
На деле это – также диффузия, только иного рода – боковая диффузия количества движения; величина её может быть вычислена на основании данных, выведенных из наблюдений диффузии первого рода, диффузии вещества. Сравнительные значения вязкости различных газов были определены Грэхемом в его исследованиях о распространении газов в длинных узких трубках, а их абсолютные значения были получены из опытов над колебаниями дисков Оскаром Мейером и мною.
Другой путь, которым мы можем проследить диффузию молекул в спокойном воздухе, состоит в нагревании верхнего слоя воздуха в сосуде и в наблюдении скорости, с какой эта теплота сообщается нижним слоям. На деле это – третий род диффузии – диффузия энергии; скорость, с какой она происходит, была вычислена на основании данных, выведенных из опытов над вязкостью, прежде чем были сделаны какие-нибудь прямые опыты над теплопроводностью. Профессору Стефану в Вене удалось недавно, при помощи весьма тонкого метода, определить теплопроводность воздуха и найти, как он нам сообщил, полное согласие с значением, предсказанным теорией.
Все эти три рода диффузии – диффузия материи, количества движения и энергии – производятся движением молекул. Чем больше скорость молекул и чем дальше они уходят, прежде чем пути их будут изменены соударением с другими молекулами, тем быстрее будет совершаться диффузия. Но скорость молекул нам уже известна, а следовательно, опытами над диффузией мы можем определить, как далеко в среднем молекула пролетает, не наталкиваясь на другую. Профессор Клаузиус в Бонне, впервые давший нам точные понятия об этих движениях молекул, называет это расстояние средним свободным путём молекулы. Пользуясь опытами над диффузией профессора Лошмидта, я вычислил средний свободный путь молекул четырёх хорошо известных газов. Среднее расстояние, пробегаемое молекулой от одного столкновения до другого, дано в приведённой таблице. Это – очень маленькое расстояние, совершенно неуловимое для нас даже в лучшие микроскопы. Грубо говоря, оно составляет около 1/10 доли длины световой волны, величины, как вам известно, чрезвычайно малой. Само собой разумеется, время, употребляемое на такой малый путь столь быстролётными молекулами, весьма незначительно. Я вычислил, сколько соударений может совершиться в секунду. Числа даны в таблице (на стр. 83) и выражаются тысячами миллионов. Нет ничего удивительного, что быстрейшая молекула так медленно подвигается вперёд, если её ход совершенно изменяется тысячи миллионов раз в секунду.
Все три рода диффузии имеют место и в жидкостях, но соотношение между скоростями, с которыми они совершаются, не так просто, как в случае газов. Динамическая теория жидкостей не так хорошо изучена, как динамическая теория газов, но главное различие между газом и жидкостью состоит, по-видимому, в том, что в газе каждая молекула большую часть времени употребляет на прохождение свободного пути и только весьма малую долю времени тратит на встречи с другими молекулами, между тем как в жидкостях для молекулы свободный путь едва ли возможен и она всегда находится в состоянии тесной встречи с другими молекулами.
Таблица диффузии
Единица измерения:
(сантиметр)²
секунда
(Знаки:Н – водород; О—кислород; СО – окись углерода; СO
2
–углекислота)
Вычис
Наблю
ленное
денное
Н и О
0,7086
0,7214
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭
Диффузия материи по наблюдениям Лошмидта
Н и СО
0,6519
0,6422
Н и СО
2
0,5575
0,5558
O и СО
0,1807
0,1802
O и СО
2
0,1427
0,1409
CO и СО
2
0,1386
0,1403
H
1,2990
1,49
⎫
⎪
⎬
⎪
⎭
Диффузия количества движения (Грэхем и Мейер)
O
0,1884
0,213
CO
0,1748
0,212
CO
2
0,1087
0,117
Воздух
–
0,256
⎫
⎪
⎬
⎪
⎭
Диффузия температуры по наблюдениям Стефана
Медь
–
1,077
Железо
–
0,183
Тростниковый сахар в воде
0,0000035
⎫
⎬
⎭
(Фойт)
Диффузия за день
0,3144
Соль в воде
0,00000116
(Фикк)
Следовательно, в жидкости диффузия движения от одной молекулы к другой совершается гораздо быстрее, нежели диффузия самих молекул; по той же самой причине в тесной толпе гораздо легче переслать письмо, передавая его из рук в руки, нежели поручить передачу особому посыльному, которому пришлось бы прокладывать себе путь в толпе. У меня здесь банка, нижняя часть которой содержит раствор медного купороса, в верхней же находится чистая вода. Она стояла здесь с пятницы, и вы видите, как мало синей жидкости перешло путём диффузии вверх. Скорость диффузии раствора сахара тщательно наблюдал Фойт. Сравнивая результаты его наблюдений с результатами, полученными Лошмидтом в его опытах над газами, мы находим, что столько же диффундирует газа в течение секунды, сколько диффундирует жидкости в день.
Таким образом, скорость диффузии количества движения в жидкостях меньше, чем в газах, но никоим образом не в том же отношении. Для того чтобы то же самое количество движения прекратилось в воде, нужно почти вдесятеро больше времени, чем для прекращения его в воздухе, как вы увидите это из того, что произойдёт, когда я встряхну эти банки, из которых одна содержит воду, а другая воздух. Но разница между скоростями, с какими распространяется возрастание температуры в жидкостях и в газах, ещё меньше.
В твёрдых телах молекулы все ещё находятся в движении, но их движения ограничены весьма тесными пределами. Вследствие этого диффузия материи в твёрдых телах не имеет места, хотя диффузия движения и теплоты совершается в них весьма свободно. Тем не менее некоторые жидкости диффундируют в твёрдых коллоидах, каковы студень и камедь, а водород может распространяться в железе и в палладии.
За неимением времени мы можем только упомянуть об удивительнейшем молекулярном движении, называемом электролизом. Здесь имеется электрический ток, проходящий в подкислённой воде и выделяющий кислород на одном электроде, а водород на другом. В пространстве между ними вода совершенно спокойна; и, однако, в ней идут два противоположных течения кислорода и водорода. Физической теорией этого процесса занимался Клаузиус и дал основания к воззрению, что в обыкновенной воде молекулы не только движутся, но иногда и ударяются друг о друга с такой силой, что кислород и водород этих молекул отделяются друг от друга и толкутся в этой сумятице, отыскивая себе товарищей, которые диссоциированы подобным же путём. В обыкновенной воде этот обмен в целом не производит никакого заметного эффекта; но, как только начнёт действовать электродвижущая сила, она оказывает направляющее влияние на несвязанные молекулы и заставляет каждую двигаться к её электроду, до того момента, когда, столкнувшись со свободной молекулой противоположного рода, она опять вступает в более или менее прочное соединение с нею, пока не наступит новая диссоциация вследствие другого соударения. Следовательно, электролиз есть своего рода диффузия, которой помогает электродвижущая сила.
Другая ветвь молекулярной науки относится к обмену молекулами между жидкостью и газом. Сюда принадлежит теория испарения и конденсации, в которой рассматриваемый газ есть пар некоторой жидкости, а также теория поглощения газа различными жидкостями. Исследования д-ра Эндрюса о связи между жидким и газообразным состояниями показали нам, что хотя положения, изложенные в наших элементарных учебниках, и выражены так гладко, что они кажутся почти самоочевидными, но их истинная интерпретация может заключать в себе начало настолько глубокое, что, пока оно не выяснено, никто даже и не подозревает, чтобы здесь оставалось ещё что-либо неоткрытым.
Затем есть ещё кое-какие поля, с которых собраны данные молекулярной науки. Последние результаты мы можем разделить на три разряда, соответственно полноте наших познаний в этом направлении (см. табл. на стр. 84).
К первому разряду принадлежат относительные массы молекул различных газов и их скорости в метрах в секунду. Эти данные получены из опытов над давлением и плотностью газов и известны с высокой степенью точности.
Во втором разряде мы должны поместить относительные размеры молекул различных газов, длину их средних свободных путей и число соударений в секунду. Эти количества выведены из опытов над тремя родами диффузии. Полученные значения нужно рассматривать как грубые приближения, до тех пор, пока методы экспериментирования не будут значительно усовершенствованы.
Есть ещё ряд величин, которые мы должны отнести к третьему разряду, так как наше знание их не отличается ни такой точностью, как количественные результаты первого разряда, ни такой степенью приближения, как величины второго разряда, а представляет собой просто вероятные догадки. Таковы абсолютные массы молекул, их абсолютные диаметры и число молекул в кубическом сантиметре. Относительные массы различных молекул известны нам с большой точностью, а их относительные диаметры известны нам приблизительно. Отсюда мы можем вывести относительные плотности самих молекул. Здесь мы на твёрдой почве.
Таблица молекулярных данных
Водо
род
Кисло
род
Окись
угле
рода
Угле
кисло
та
I
разряд
Масса молекулы (водород-1)
1
16
14
22
Средняя скорость в метрах в секунду при 0° С
1859
465
497
396
II
разряд
Средний свободный путь в десятимиллионных долях миллиметра
965
560
482
379
Число соударений в секунду в миллионах
17750
7646
9489
9720
III
разряд
Диаметры в десятимиллионных долях миллиметра
5,8
7,6
8,3
9,3
Массы (единица-10
-22
миллиграмма)
46
736
644
1012
Большое сопротивление, оказываемое жидкостями сжатию, делает вероятным, что их молекулы должны находиться почти на таком расстоянии друг от друга, на каком две молекулы того же самого вещества в газообразной форме действуют одна на другую во время их встречи. Это предложение было подвергнуто проверке Лоренцом Мейером, который сравнивал плотности различных жидкостей с вычисленными относительными плотностями молекул их паров и нашёл замечательное соответствие между ними.
Недавно Лошмидт вывел из динамической теории следующее замечательное соотношение: объём газа относится к совокупному объёму всех содержащихся в нём молекул, как средний свободный путь молекулы относится к одной восьмой её диаметра.
Допуская, что объём вещества, приведённого в жидкое состояние, не слишком превышает совокупный объём молекул, мы получим из этой пропорции диаметр молекулы. Этим путём Лошмидт в 1865 г. впервые вычислил диаметр молекулы. Независимо от него и от других Стони в 1868 г. и сэр В. Томсон в 1870 г. обнародовали результаты подобного же рода, причём Томсон пришёл к своим результатам не только этим путём, но и из соображений, основанных на рассмотрении толщины мыльных пузырей и электрических свойств металлов.
Согласно таблице, вычисленной мной на основании данных Лошмидта, размеры молекул водорода таковы, что два миллиона их, положенные рядом, заняли бы всего миллиметр, а миллион миллионов миллионов миллионов их весили бы больше четырёх, но меньше пяти граммов.
В кубическом сантиметре газа при постоянных давлениях и температуре содержится около 19 миллионов миллионов миллионов молекул. Все эти числа, относящиеся к третьему разряду, как это само собой понятно, в настоящее время нужно рассматривать просто как основанные на догадках. Чтобы обеспечить себе некоторое доверие к числам, таким путём полученным, нужно было бы сравнить между собой большее число независимых данных, нежели до сего времени получено, и показать, что они ведут к согласным друг с другом результатам.
До сих пор мы рассматривали науку о молекулах как исследование естественных явлений. Но если прямая цель всякого научного труда – раскрывать тайны природы, то он имеет и иное действие, не менее ценное, на ум исследователя. Научная работа делает его обладателем методов, и к изобретению их ничто, кроме научной работы, не могло бы его привести; это ставит его в положение, с которого многие области природы, помимо тех, которые он изучал, являются перед ним в новом свете.
Изучение молекул привело к развитию особого метода, и этот метод также раскрыл новые аспекты природы.
Лукреций, желая дать нам картину движения атомов, советует нам взглянуть на солнечный луч, прорезывающий тёмную комнату (то же орудие исследования, посредством которого д-р Тиндаль делает для нас видимой пыль, которую мы вдыхаем), и наблюдать, как пылинки пляшут в луче друг вокруг друга во всех направлениях. Это движение видимых пылинок, рассказывает он нам, есть результат гораздо более сложного движения невидимых атомов, толкающих эти пылинки. В своих мечтах о природе, рассказывал нам Теннисон, «я видел сверкающие потоки атомов, видел, как они все разрушали в беспредельной пустыне, летая и сталкиваясь друг с другом, и вновь и вновь изменяя навеки порядок вещей во Вселенной». И нет ничего удивительного, что он пытался разорвать оковы рока, заставляя свои атомы отклоняться от их путей, в произвольные моменты и в произвольных местах, наделяя их таким образом чем-то вроде иррациональной свободной воли, которая, по его материалистической теории, только и может объяснить ту силу произвольного действия, которую мы сознаём в себе.
Пока мы имеем дело с двумя молекулами и имеем в своём распоряжении все данные, мы можем вычислить результаты их встречи, но когда приходится иметь дело с миллионами молекул, из которых каждая испытывает миллионы соударений в секунду, то сложность задачи, по-видимому, исключает всякую надежду на точное разрешение её.
Потому-то современные атомисты приняли метод, который, как я думаю, является совершённой новостью в математической физике, хотя им давно уже пользуются в статистике. Когда членам секции приходится работать над отчётами о переписи или над какими-нибудь другими документами, содержащими числовые данные экономической или социальной науки, то они начинают с того, что распределяют все население на группы по возрастам, по доходам, по воспитанию, по вероисповеданию либо по уголовным преступлениям. Число индивидуумов настолько велико, что изображать историю каждого в отдельности было бы невозможно, и потому, чтобы привести труд в границы человеческой возможности, сосредоточивают внимание на малом числе искусственных групп. Изменяющееся число индивидуумов в каждой группе, а не изменяющееся состояние каждого индивидуума – таковы начальные данные, исходя из которых они ведут свою работу.
Но, конечно, это не единственный метод изучения природы человека. Мы можем наблюдать поведение отдельного человека и сравнивать его с тем поведением, которого мы могли бы ожидать от него, согласно наилучшей из существующих теорий, принимая во внимание его прежний характер и настоящие обстоятельства. Те, кто пользуется этим методом, стараются усовершенствовать своё знание элементов человеческой природы совершенно таким же путём, каким астроном исправляет элементы планеты, сравнивая её настоящее положение с выведенным из полученных элементов. Изучение человеческой природы родителями и воспитателями, историками и государственными деятелями нужно, следовательно, отличать от изучения её статистиками и составителями таблиц и теми из государственных деятелей, которые верят в цифры, Один метод можно назвать историческим, другой – статистическим.
Уравнения динамики вполне выражают законы исторического метода в приложении к материи, но приложение этих уравнений требует совершённого знания всех данных. Самая малая часть материи, которую мы можем подвергнуть опыту, состоит из миллионов молекул, из которых ни одна, взятая отдельно, никогда не может стать для нас ощутимой. Следовательно, мы никогда не будем в состоянии узнать действительного движения какой-либо из этих молекул; поэтому мы вынуждены отказаться от строго исторического метода и обратиться к статистическому методу изучения обширных групп молекул.
Данные статистического метода в приложении к молекулярной физике суть суммы большого числа молекулярных количеств. Изучая соотношения между количествами этого рода, мы встречаемся с закономерностью нового рода, с закономерностью средних значений, и мы можем надеяться, что её совершенно достаточно для всяких практических целей; однако она не может иметь никаких притязаний на абсолютную точность, свойственную законам абстрактной динамики.
Таким образом, молекулярная физика учит нас, что наши опыты никогда не могут нам дать чего-либо, что было бы больше статистического знания, и что ни один закон, выведенный этим путём, не может претендовать на абсолютную точность. Но когда от рассмотрения наших опытов мы переходим к созерцанию самих молекул, мы оставляем мир случайностей и перемен и вступаем в область, где все достоверно и неизменно.
Молекулы образованы по одному и тому же типу с точностью, какой мы не находим в ощущаемых нами свойствах тел, ими образуемых. Во-первых, масса каждой отдельной молекулы и все другие её свойства абсолютно неизменны. Во-вторых, свойства всех молекул одного рода абсолютно тождественны.
Рассмотрим свойства двоякого рода молекул – молекул кислорода и молекул водорода.
Мы можем достать образчики кислорода из весьма различных источников – из воздуха, из воды, из скал, какой угодно геологической эпохи. История этих образчиков была весьма различна, и, если бы в продолжение тысячелетий разница условий могла бы произвести различие в свойствах, эти образчики кислорода обнаружили бы это.
Подобным же образом мы можем добыть водород из воды, из каменного угля или, как сделал Грэхем, из метеоритного железа. Возьмём два литра какого угодно образчика водорода, соединим их в точности с одним литром какого-либо образчика кислорода, и мы получим в точности два литра водяного пара.
Если бы в продолжение всей предшествовавшей истории каждого из этих образчиков – все равно был ли он заключён в скале, или плавал в океане, или носился в неизвестных пространствах вместе с метеоритами,– если бы изменения в молекулах случились бы, то эти соотношения не могли бы сохраниться.
Но у нас есть другой и совершенно отличный способ сравнения свойств молекул. Молекула, хотя и неразрушимая, не есть твёрдое тело, но способна к внутренним движениям, и, когда эти движения возбуждены в ней, она испускает лучи, и длина волны этих лучей служит мерой времени колебания молекулы.
При помощи спектроскопа длины световых волн разного рода можно сравнивать между собой до одной десятитысячной доли. Таким путём убедились, что не только молекулы каких угодно образчиков водорода в наших лабораториях имеют один и тот же ряд периодов колебаний, но что свет с тем же самым рядом периодов колебаний испускается Солнцем и неподвижными звёздами.
Таким образом мы убеждаемся, что молекулы такой же точно природы, как у нашего водорода, существуют и в отдалённых пространствах или по крайней мере существовали, когда посылался свет, посредством которого мы их видим.
Из сравнения размеров зданий египтян с сооружениями греков оказывается, что они имеют общую меру. Следовательно, если бы даже ни один из писателей древнего мира не отметил бы того факта, что оба народа употребляли мерой длины один и тот же локоть, мы могли бы доказать это самими постройками. Таким образом, мы вправе утверждать, что некогда материальная мера длины была перенесена из одной страны в другую либо что обе страны получили свои меры из одного и того же источника.
Но на небе посредством света, и только посредством одного света, мы открываем звезды, столь отдалённые от других, что никогда никакая материальная вещь не могла перейти от одной к другой. И, однако, этот свет, который служит для нас единственным свидетельством существования этих отдалённых миров, учит нас, что каждый из них создан из молекул того же самого рода, как и те, которые мы встречаем на Земле. Молекула водорода, например, находится ли она на Сириусе или на Арктуре, совершает свои колебания в точности в то же самое время.
Следовательно, каждая молекула во Вселенной носит на себе печать меры и числа, настолько же ясную, как и метр парижских архивов или как и двойной царский локоть карнакского храма.
Никакая теория эволюции не может объяснить однообразности молекул, ибо эволюция означает непрерывные изменения, а молекула не может ни расти, ни уменьшаться, ни возникать, ни разрушаться.
Ни один из естественных процессов, с тех пор, как существует природа, не привёл ни к малейшему различию в свойствах какой-либо молекулы. Следовательно, мы не можем приписать существование молекул и тождество их свойств какой-либо «естественной» причине.
С другой стороны, полное тождество каждой молекулы с любой молекулой того же рода придаёт им, как метко выразился сэр Джон Гершель, характерные признаки фабричных изделий и исключает мысль о возможности их вечного существования и самопроизвольного происхождения.
Итак, мы подошли, строго научным путём, весьма близко к той точке, дальше которой наука идти не может, не потому, что ей запрещено исследовать внутренний механизм молекулы, которую она не в состоянии разложить, или исследовать организм, который она не может сложить, а потому, что история вопроса убеждает нас в том, что, с одной стороны, молекулы должны создаваться, а с другой, что они не могут создаваться ни одним из тех процессов, которые мы считаем естественными. Наука не может рассуждать о сотворении материи из ничего. Допустив, что материя должна создаваться, так как она не может быть вечной, мы достигли предела наших мыслительных способностей.
Лишь рассматривая ту форму, в которой фактически существует материя, а не материю саму по себе, наш разум может за что-то ухватиться.
То, что материя как таковая непременно должна иметь определённые свойства – существовать в пространстве, двигаться и сохранять движение и т. п.,– истины того порядка, которые метафизики считают неизбежными. Мы можем использовать эти истины для целей дедукции, но они ничего не дают для спекуляции об их происхождении.
Однако то, что в каждой молекуле водорода имеется точное количество материи и не больше, это факт совсем иного свойства. Мы имеем здесь определённое распределение материи – расстановку вещества – по выражению д-ра Чальмерса, и мы легко можем себе представить иную расстановку.
Например, форма и размеры планетных орбит – не следствие каких-либо законов природы, а следствие определённой расстановки вещества. То же относится и к размерам Земли, определившим эталон так называемой метрической системы. Но научное значение этих астрономических и земных величин много ниже фундаментальных величин, образующих молекулярную систему. Как мы знаем, естественные процессы изменяют и, в конце концов, разрушают вес, порядок и размеры как Земли, так и всей солнечной системы. Но если случались и вновь могут случиться катастрофы, если старые системы могут разрушаться и на их развалинах могут возникать новые системы, то молекулы, из которых эти системы построены, неразрушимы и неизменны – это краеугольные камни материальной Вселенной.
Сейчас молекулы также неизменны по своему числу, по своим размерам и по весу, как и в то время, когда они были сотворены. Из этой неизменяемости их свойств мы можем заключить, что стремление к точности измерений, к правдивости в суждениях и к справедливости в поступках, почитаемых нами, как благороднейшие черты человека, присущи нам потому, что они представляют сущность образа того, кто сотворил не только небо и Землю, но и материю, из которой они составлены.








