355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Максвелл » Статьи и речи » Текст книги (страница 12)
Статьи и речи
  • Текст добавлен: 29 апреля 2017, 15:00

Текст книги "Статьи и речи"


Автор книги: Джеймс Максвелл


Жанры:

   

Биофизика

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 32 страниц)

Итак, ценность фабричных изделий зависит от трёх качеств: дешевизны, пригодности и точности. Какое из этих трёх качеств имел в виду сэр Д. Гершель, сейчас достоверно установить мы не можем, но вернее – что последнее, а не первое, хотя кажется правдоподобным, что он подразумевал невозможность извечного существования совершенно одинаковых тел и, следовательно, необходимость их сотворения; тогда выражение «фабричные изделия» может означать, что они были сотворены в большом количестве.

Притяжение

Ежедневное наблюдение показывает, что различные части материальной системы влияют одна на движение другой. В некоторых случаях нам не удаётся открыть никакой материальной связи, которая простиралась бы от одного тела к другому. Эти случаи мы называем действием на расстоянии, в отличие от тех случаев, где мы можем проследить существование между телами непрерывной материальной связи. Взаимное действие между телами называется напряжением. Когда взаимное действие стремится сблизить тела или помешать им отделиться друг от друга, оно называется натяжением или притяжением. Когда оно стремится отделить одно тело от другого или помешать их сближению, оно называется давлением или отталкиванием. Названия «натяжение» и «давление» употребляются, когда действие видимо совершается чрез некоторую среду. Названия «притяжение» и «отталкивание» применяются в случаях действия на расстоянии. Конфигурацию материальной системы всегда можно определить посредством взаимных расстояний частей системы. Всякое изменение конфигурации должно изменить одно или несколько из этих расстояний. Таким образом, сила, производящая подобное изменение или ему противодействующая, может быть разложена на притяжение или отталкивание между теми частями системы, расстояние между которыми изменилось.

Существует множество гипотез о причине таких сил, причём предполагается, что одна из них – давление между соприкасающимися телами – гораздо более понятна, нежели всякого рода иные напряжения. Поэтому сделано было немало попыток сведения случаев кажущегося притяжения и отталкивания на расстоянии к случаю давления. Одно время предполагалось, что возможность притяжения на расстоянии опровергается утверждением, что тело не может действовать там, где его нет, и что, следовательно, всякое действие между различными частями материи должно происходить посредством прямого прикосновения. На это возражали, что у нас нет никаких свидетельств, чтобы между двумя телами всегда имело место действительное соприкосновенно и что на деле, когда тела давят друг на друга и, по-видимому, соприкасаются, мы можем иногда действительно измерить отделяющее их расстояние, как, например, в случае, когда один кусок стекла лежит на другом и когда нужно приложить значительное давление, чтобы поверхности их сблизить настолько, чтобы появилось чёрное пятно в ньютоновых кольцах, указывающее на то, что расстояние достигает почти одной десятитысячной миллиметра. Если, желая освободиться от идеи действия на расстоянии, мы вообразим себе материальную среду, через которую действие передаётся, то все, что мы при этом делаем, есть не более как замена одного действия на большом расстоянии рядом действий на меньших расстояниях между частями среды, так что и таким путём мы не можем освободиться от действия на расстоянии.

В последнее время изучение взаимного действия между частями материальной системы было значительно упрощено введением понятия энергии системы. Энергия системы измеряется количеством работы, которую она может совершить, преодолевая внешние сопротивления. Эта энергия зависит от конфигурации в данный момент и от движения системы, а не от того способа, каким система приобрела данную конфигурацию и движение. Если мы вполне знаем, каким образом энергия системы зависит от её конфигурации и движения, то этого достаточно для определения всех сил, действующих между частями системы. Например, если система состоит из двух тел и если энергия зависит от расстояния между ними, то если при увеличении расстояния энергия увеличивается, то между телами должно существовать притяжение, а если при увеличении расстояния энергия уменьшается, то между ними должно быть отталкивание. В случае двух тяготеющих масс m и m', находящихся на расстоянии r, часть энергии, зависящая от r, есть -mm'/r. Тот факт, что между обоими телами существует притяжение, мы можем выразить, сказав, что энергия системы, состоящей из двух тел, увеличивается, когда их расстояние увеличивается. Следовательно, вопрос, почему два тела притягивают друг друга, можно выразить другим способом. Почему энергия системы увеличивается, когда расстояние увеличивается?

Д. К. Максвелл

Но мы должны помнить, что научное или научно-плодотворное значение усилий, которые были сделаны, чтобы ответить на эти старые вопросы, должно измерять не надеждой получить окончательное решение, а тем, что они побуждают людей к тщательному изучению природы. Всякая постановка научных вопросов предполагает наличие научных познаний, и вопросы, которые занимают человеческий ум при современном состоянии науки, весьма вероятно, могут оказаться такими, что несколько большее развитие науки покажет нам, что ответ вообще невозможен. Научное значение вопроса, как действуют тела друг на друга на расстоянии, нужно искать в стимуле, который этим вопросом был сообщён исследованиям о свойствах промежуточной среды.

Ньютон в своих «Principia» из наблюдаемых движений небесных тел выводит факт, что они притягивают друг друга по определённому закону. Он даёт его как результат строго динамических умозаключений и при посредстве их показывает, каким образом не только более простые явления, но и все кажущиеся неправильности небесных движений могут быть предвычислены как следствия единого принципа. В своих «Principia» он ограничивается доказательством и развитием этого великого шага в науке о взаимодействии тел. Он ничего не говорит о том, почему именно тела тяготеют друг к другу. Но его ум на этом не успокаивается. Мы знаем, что он не верил в непосредственное действие тел на расстоянии.

«Непонятно, каким образом неодушевлённая косная материя, без посредства чего-либо, что нематериально, могла бы действовать на другую материю без взаимного прикосновения, как это должно бы было иметь место, если бы тяготение в смысле Эпикура было присуще материи и с ней нераздельно... Что тяготение должно быть врождённым, присущим и необходимым свойством материи, так что одно тело может взаимодействовать с другим на расстоянии, через пустоту, без участия чего-то постороннего, при посредстве чего и через что их действие и сила могут быть передаваемы от одного к другому – это мне кажется столь большим абсурдом, что я не представляю себе, чтобы кто-либо, владеющий способностью компетентно мыслить в области вопросов философского характера, мог к этому прийти». (Письмо к Бентли). И мы знаем также, что он думал найти механизм тяготения в свойствах эфирной среды, наполняющей всю Вселенную.

«Из его писем к Бойлю явствует, что таково было его давнишнее мнение, и если он не обнародовал его раньше, то это произошло только вследствие того, что, как он нашёл, ему не удавалось из опыта и наблюдений дать удовлетворительных сведений об этой среде и о том, каким образом она действует, производя основные явления природы».16*

В самом деле, в своих «Optical Queris» он показывает, что если давление этой среды меньше вблизи плотных тел, нежели на больших от них расстояниях, то эти плотные тела будут притягиваться друг к другу, и что если уменьшение давления обратно пропорционально расстоянию от плотного тела, то закон будет законом тяготения. Ближайший шаг, как он указывает, должен объяснить это неравенство давления в среде; и так как ему не удавалось сделать этого, то задачу объяснения причины тяготения он завещал следующим поколениям. Что касается тяготения, то в решении этой задачи со времён Ньютона не сделано почти никаких успехов. Фарадей показал, что передача электрической и магнитной силы сопровождается явлениями, происходящими в каждой части промежуточной среды. Он проследил ход силовых линий в среде, и он приписал им стремление укорачиваться и отделяться от соседних с ними линий, вводя, таким образом, идею о напряжении в среде в иной форме, нежели предполагал Ньютон; ибо в то время как ньютоновское напряжение было гидростатическим давлением по всем направлениям, фарадеевское напряжение есть натяжение вдоль силовых линий, соединённое с давлением во всех направлениях, нормальных к ним. Показав, что плоскость поляризации светового луча, проходящего через прозрачную среду в направлении магнитной силы, испытывает вращение, Фарадей не только доказал действие магнетизма на свет, но, воспользовавшись светом для обнаружения состояния намагничения среды, он, по его собственному выражению, «осветил линии магнитной силы».

Впоследствии Томсон, основываясь на этом явлении, чисто динамическим рассуждением доказал, что передача магнитной силы сопровождается вращательным движением малых участков среды. В то же время он показал, каким образом центробежная сила, производимая этим движением, может объяснить магнитное притяжение.

Подобного рода теория с большими подробностями разработана в «Трактате об электричестве и магнетизме» Клерка Максвелла. Там показано, что если допустить, что среда находится в состоянии напряжения, состоящего из натяжений вдоль силовых линий и из давлений во всех направлениях, перпендикулярных к силовым линиям, причём натяжение и давление равны по числовой величине и пропорциональны квадрату силы поля в данной точке, то это даёт полный отчёт о наблюдаемых электростатических и электромагнитных действиях.

Ближайший шаг состоит в том, чтобы объяснить это состояние напряжения в среде. В случае электромагнитной силы мы воспользовались способом рассуждения Томсона, применённым им для объяснения указанного выше открытия Фарадея. Мы допускаем, что малые участки среды вращаются вокруг осей, параллельных силовым линиям. Центробежная сила, вызываемая этим вращением, производит избыток давления, перпендикулярного к силовым линиям. Объяснение электростатического напряжения менее удовлетворительно, но не может быть сомнения в том, что теперь открыт путь, посредством которого мы можем приписать воздействию среды все силы, которые, подобно электрическим и магнитным силам, изменяются обратно пропорционально квадрату расстояния и являются силами притягательными между телами разноимёнными и отталкивательными между телами одноимёнными.

Сила тяготения также обратно пропорциональна квадрату расстояния, но она отличается от электрического и магнитного взаимодействий тем, что тела, между которыми она действует, нельзя разделить на два противоположные рода, один – положительный, другой – отрицательный. В отношении тяготения они все одного рода, и сила, с которой они действуют друг на друга, всегда притягательная. Чтобы объяснить такую силу посредством напряжения в промежуточной среде способом, принятым для электрического и магнитного взаимодействий, мы должны допустить существование напряжения противоположного рода, по сравнению с тем, о чем шла речь выше. Мы должны предположить существование давления в направлении силовых линий, соединённого с натяжением во всех направлениях, лежащих под прямым углом к силовым линиям. Такое состояние напряжения объяснило бы наблюдателю эффект тяготения. Однако до сих пор нам не удалось придумать никакой физической причины для такого состояния напряжения. Легко вычислить, какое напряжение потребовалось бы, чтобы объяснить действительные действия тяжести на поверхности Земли. Потребовалось бы давление в 37 000 тонн на кв. дюйм в вертикальном направлении, соединённое с натяжением такой же численной величины во всех горизонтальных направлениях. Следовательно, состояние напряжения, существующее, как мы должны предположить, в невидимой среде, в 3000 раз больше напряжения, какое может выдержать самая прочная сталь.

Другая теория механизма тяготения, теория Лесажа, объясняющая его ударами «внемировых корпускул», была уже разобрана в статье «Атом».

Сэр Вильям Томсон17* показал, что если предположить, что все пространство наполнено однообразной несжимаемой жидкостью, если, далее, предположить, что либо материальные тела всегда производят и испускают эту жидкость с постоянной скоростью, причём жидкость течёт в бесконечность, либо что материальные тела всегда поглощают и уничтожают жидкость, причём недостающее количество пополняется притоком из бесконечного пространства, то в том и другом случаях имело бы место притяжение между всякими двумя телами, обратно пропорциональное квадрату расстояния. Напротив, если бы одно из тел испускало жидкости, а другое поглощало, то тела отталкивали бы друг друга.

Здесь, следовательно, мы имеем многообещающую гидродинамическую иллюстрацию действия на расстоянии, так как она позволяет показать нам, как тела одного и того же рода могут притягивать друг друга. Но эта концепция жидкости, постоянно вытекающей из тела без всякого пополнения откуда-либо извне или втекающей без всякого пути для выхода её из тела, так противоречит всему нашему опыту, что гипотезу, существенной частью которой она является, нельзя назвать объяснением явления тяготения.

Роберт Гук, человек, одарённый необычайной изобретательностью, пытался в 1671 г. приписать причину тяготения волнам, распространяющимся в некоторой среде. Он нашёл, что тела, плавающие на воде, приводимые в движение волнами, притягивались к центру возмущения18*. Однако, кажется, он не исследовал этого наблюдения в такой мере, чтобы вполне определить действие волн на погруженное тело.

Профессор Чэллис исследовал математическую теорию действия волн сгущения и разрежения в упругой жидкости на погруженные в неё тела. Но трудности исследования были так велики, что он не мог прийти ни к каким числовым результатам. Однако он приходит к заключению, что действием таких волн было бы притяжение тела к центру возмущения либо отталкивание его от этого центра, смотря по тому, будет ли длина волны весьма велика или она будет весьма мала сравнительно с размерами тела. Иллюстрации на практике действия таких волн были даны Гюйо, Шельбахом, Гютри и Томсоном19*.

Приводят в колебание камертон и подносят к свободно подвешенному лёгкому телу. Тело тотчас же притягивается к камертону. Если подвесить сам камертон, то он, видимо, притягивается ко всякому соседнему телу.

Сэр В. Томсон показал, что это действие во всех случаях можно объяснить общим принципом, что в движущейся жидкости среднее давление имеет наименьшую величину там, где средняя энергия движения всего больше. Но волновое движение больше всего вблизи камертона, следовательно, давление здесь всего меньше; и так как давления на привешенное тело с противоположных сторон не равны, то оно и движется оттуда, где давление наибольшее, в сторону наименьшего давления, т. е. к камертону. Ему удалось также воспроизвести отталкивание в случае малого тела, которое легче окружающей среды.

Замечательно, что из трёх гипотез, приводящих некоторым образом к физическому объяснению тяготения, каждая вводит постоянную затрату работы. Что так именно обстоит дело в случае лесажевской гипотезы внемировых корпускул, мы показали в статье «Атом». Гипотеза испускания или поглощения жидкости требует не только постоянной затраты работы на испускание жидкости под давлением, но и действительного сотворения и разрушения вещества. Гипотеза волн требует некоторого агента в отдалённых частях Вселенной, способного производить волны. Согласно подобным гипотезам, мы должны смотреть на процессы природы не как на иллюстрации великого принципа сохранения энергии, но как на примеры, в которых путём соответствующим образом подобранных мощных агентов, не подчинённых этому принципу, поддерживается кажущееся сохранение энергии. Отсюда мы вынуждены заключить, что объяснения причины тяготения нельзя найти ни в одной из этих гипотез.

Герман Людвиг Фердинанд Гельмгольц

Вклад, сделанный Гельмгольцем в математику, физику, физиологию, психологию и эстетику, хорошо известен всем, занимающимся этими различными предметами. Большинство тех, кто достиг известности в любой из этих областей, добился этого, посвящая все своё внимание исключительно этой науке, так что лишь в очень немногих случаях люди, работающие в различных областях науки, могут быть друг другу полезны, внося в одну из них навыки, полученные при изучении другой.

Обычно рост человеческих знаний происходит путём накопления их вокруг ряда отдельных центров. Однако рано или поздно должно прийти время, когда два или более раздела науки не смогут долее оставаться независимыми друг от друга и должны будут слиться в одно согласованное целое. Но хотя люди науки и могут быть глубоко убеждены в необходимости такого слияния, сама эта операция чрезвычайно затруднительна. Действительно, хотя явления природы все согласуются друг с другом, мы должны иметь дело не только с ними, но и с гипотезами, изобретёнными для их систематизации; но отсюда не следует, что, поскольку ряд исследователей работал, систематизируя одну группу явлений, созданные ими гипотезы будут согласны с гипотезами, которыми другие исследователи объясняют другую группу явлений. Каждая из наук может быть достаточно согласованной внутри себя, но прежде чем соединять их воедино, нужно очистить каждую от следов цемента, служившего для предварительного соединения её частей.

Поэтому операция слияния двух наук в одну обычно включает критику установленных методов и разрушение многих считавшихся истинными теорий, которые долго ещё сохраняли бы свою научную репутацию.

Большинство тех физических наук, которые имеют дело с объектами неживой природы, либо уже подверглись этому слиянию, либо как раз находятся в состоянии подготовки к нему, и принимаемый ими вид в конце концов есть вид одной из отраслей динамики.

Многие работники биологических наук были убеждены, что для изучения их предмета необходимо основательное знание динамики. Но та манера, с которой некоторые из них кроили и урезывали факты для того, чтобы ввести явления в рамки своей динамики, вела к дискредитации всех попыток применения методов динамики к биологии.

Мы собираемся сделать несколько замечаний об одной из областей научной работы Гельмгольца, являющегося замечательнейшим примером учёного, у которого широкое знакомство с наукой соединилось с глубиной и основательностью знаний, с основательностью, требовавшей овладения многими науками и этим самым оставившей свой след на каждой из них.

Герман Людвиг Фердинанд Гельмгольц родился 31 августа 1821 г. в Потсдаме, где его отец, Фердинанд Гельмгольц, был учителем гимназии. Мать его, Каролина Пэн, происходила из семьи английских эмигрантов. Ограниченные средства отца не позволили ему учиться ничему другому, кроме медицины. Поэтому он стал военным врачом и оставался им до конца 1848 г., когда был принят ассистентом в Берлинский анатомический музей и преподавателем анатомии в Академию художеств. В следующем году он переехал в качестве профессора физиологии в Кенигсберг, в Пруссию. В 1856 г. он стал профессором анатомии и физиологии Боннского университета, в 1859 г.– профессором физиологии Гейдельбергского университета и в 1871 г.—профессором физики Берлинского университета.

Свою знаменитую работу «О сохранении энергии» он опубликовал в бытность военным врачом.

Наука о динамике уже так давно основана, что вряд ли можно предположить о возможности дополнения её основных принципов. Но в приложениях чистой динамики к реальным телам остаётся ещё очень много сделать. Великой задачей учёных нашего века является распространение наших знаний о движении вещества от тех случаев, в которых мы можем видеть и измерять движение, к тем, в которых наши чувства не могут его обнаружить. Для этой цели мы должны воспользоваться принципами динамики, применяемыми в тех случаях, когда нельзя непосредственно наблюдать истинную природу движения, и мы должны также найти такие методы наблюдения, при помощи которых можно измерять действия, указывающие на природу невидимого движения. Здесь нет нужды ссылаться на работы различных учёных, содействовавших, каждый в своём направлении, опытами, расчётами или рассуждениями утверждению принципа сохранения энергии. Но несомненно, этим исследованиям был сообщён сильный толчок опубликованной в 1847 г. работой Гельмгольца «Ueber die Erhaltung der Kraft» («О сохранении силы»), заглавие которой мы теперь должны (и, с точки зрения науки, правильно) переводить «Сохранение энергии», хотя в переводе, появившемся в «Scientfic Memoirs» Тэйлора, слово Kraft переведено словом «сила», согласно обычному словоупотреблению того времени.

В этой работе Гельмгольц показал, что если бы силы, действующие между материальными телами, были эквивалентны силам притяжения или отталкивания, которые действуют между частицами этих тел и интенсивность которых зависит только от расстояния, то расположение и движение любой материальной системы подчинялось бы определённому уравнению, словесное выражение которого и есть принцип сохранения энергии.

Вопрос о том, приложимо ли это уравнение к реальным материальным системам, может установить только опыт, но поиски того, что называли «вечным движением», производились, и всегда безуспешно, уже со столь давних времён, что мы можем обратиться теперь к объединённому опыту большого числа изобретательнейших людей, из которых каждый, найдя какое-нибудь нарушение этого принципа, использовал бы его наилучшим образом.

Кроме того, если бы этот принцип был в какой-либо мере неправилен, то обычные в природе процессы, происходящие беспрерывно и во всех возможных комбинациях, наверное, давали бы время от времени заметные и поразительные явления, возникающие благодаря накоплению действия какого-нибудь небольшого отклонения от принципа сохранения энергии.

Однако научное значение принципа сохранения энергии зависит не только от точности установления факта и даже не от замечательных заключений, которые из него можно вывести, но от плодотворности методов, основанных на этом принципе.

Заключается ли наш труд в создании науки путём связывания воедино уже известных фактов или в поисках объяснения непонятных явлений путём постановки ряда опытов – принцип сохранения энергии остаётся нашим надёжным руководителем. Он даёт нам схему, при помощи которой мы можем представить факты любой физической науки, как примеры превращения энергии из одной формы в другую. Он также говорит нам, что при изучении любого нового явления нашим первым вопросом должно быть: каким образом объяснить это явление с точки зрения превращения энергии? Какова первоначальная форма энергии? Каков её конечный вид? И каковы условия её превращения?

Для того чтобы полностью оценить все научное значение небольшой работы Гельмгольца по этому вопросу, нужно было бы спросить тех, кому мы обязаны величайшими открытиями в области термодинамики и в других областях современной физики, сколько раз они перечитывали эту работу и как часто во время изысканий веские утверждения Гельмгольца воздействовали на их ум, подобно непреоборимой движущей силе.

Теперь мы переходим к его исследованиям глаза и зрения, изложенным в книге «Физиологическая оптика». Каждый современный окулист признает, что офтальмоскоп, изобретённый в своём первоначальном виде Гельмгольцем, позволил заменить при диагнозе заболеваний внутренних частей глаза предположения наблюдениями и дал возможность производить операции глаза с большей уверенностью.

Хотя офтальмоскоп и является необходимым орудием окулиста, знание оптических принципов имеет ещё большее значение. Все сведения по оптике черпались окулистом раньше из учебников, единственной практической целью которых, казалось, являлось объяснение конструкции зрительной трубы. Они были наполнены весьма неизящными математическими вычислениями, и большая часть результатов была совершенно неприложима к глазу.

Уже давно настаивали на важности для физиолога и врача основательного знакомства с физическими принципами, но до тех пор, пока эти физические принципы не представлены в форме, позволяющей непосредственно применять их к сложному строению живого тела, они им очень мало полезны. Но Гельмгольц, Дондерс и Листинг, применив к глазу гауссову теорию об основных точках инструмента, сделали возможным получение при помощи немногих непосредственных наблюдений достаточных сведений о природе оптических явлений в глазу.

Но, пожалуй, наибольшей услугой, оказанной науке этим замечательным трудом, является метод применения изучения глаза и зрения для того, чтобы иллюстрировать условия ощущения и произвольного движения. Ни в одной области исследования нет такой необходимости в объединённой и сосредоточенной помощи всех наук, как в исследовании ощущений. Чисто субъективная школа физиологов утверждала, что для анализа ощущений не требуется никаких аппаратов, кроме тех, которые каждый человек носит внутри себя, так как, поскольку ощущения не могут возникать нигде, кроме нашего сознания, единственным возможным методом изучения ощущений должно быть непосредственное рассмотрение совокупности наших восприятий. Другие могут изучать условия, при которых импульс распространяется вдоль нерва, и могут предполагать, что, поступая таким образом, они изучают ощущения. Но хотя такая процедура опускает самую сущность явления и рассматривает явление осознания ощущений так, как будто бы оно было электрическим током, однако подсказываемый ею метод даёт большие результаты, чем когда-либо давал метод самонаблюдения.

Наилучшие результаты получаются тогда, когда мы пользуемся всеми средствами физики, как, например, в том случае, когда, варьируя природу и интенсивность внешних раздражений, мы наблюдаем затем осознание изменений получаемых ощущений. Именно этим способом Иоганнес Мюллер установил тот замечательный принцип, что разница в ощущениях, доставляемых различными чувствами, зависит не от возбуждающих их действий, но от различий устройства нервов, воспринимающих эти возбуждения. Следовательно, ощущение, зависящее от определённого нерва, может изменять свою интенсивность, но не свой характер, и поэтому анализ осознанных нами бесконечно различных комплексов ощущений должен состоять в установлении числа и природы тех простых ощущений, которые, становясь каждое в своей мере осознанным, образуют действительное состояние чувствования в каждое мгновение.

Если после этого анализа самого ощущения мы обнаружили бы анатомически, что нервный аппарат объединён в естественные группы, соответствующие по числу элементам ощущения, это было бы веским подтверждением правильности нашего анализа, а если бы мы могли изобрести средства возбуждения или торможения каждого отдельного нерва нашего собственного тела, мы могли бы даже сделать это исследование исчерпывающим с точки зрения физиологии.

Два замечательных труда Гельмгольца – «Физиологическая оптика» и «Восприятие звука» – представляют собой великолепные примеры этого метода анализа в приложении к двум родам ощущений, доставляющих наибольшее количество сырого материала для мышления.

В первой из этих работ исследуется восприятие цвета и показано, что оно зависит от трёх изменяющихся величин или элементарных ощущений. В другом исследовании, в котором применяются чрезвычайно тонкие методы, речь идёт о движении глаз. Каждый глаз имеет шесть мышц, комбинированным действием которых его угловое положение может изменяться по любой из своих трёх осей, а именно: в горизонтальном и вертикальном направлениях относительно оптической оси и вращаясь вокруг этой оси. Между этими мышцами или их нервами нет материальной связи, которая заставляла бы вызывать движением одной из них движение какой-нибудь другой, так что все три движения одного из глаз механически независимы от трёх движений второго глаза. Однако хорошо известно, что движение оси одного глаза всегда сопровождается соответственным движением оси другого. Это происходит даже тогда, когда мы закрываем один глаз пальцем; мы чувствуем, как роговая оболочка закрытого глаза движется под нашими пальцами, когда мы поднимаем или, опускаем открытый глаз, смотрим налево или направо: действительно, совершенно невозможно произвести движение одним глазом без того, чтобы соответственно не двигался второй.

Однако, хотя движение глаза вверх и вниз происходит благодаря действию соответственных мышц обоих глаз, движение вправо и влево происходит иначе и вызывается действием внутренней мышцы одного глаза и внешней мышцы второго. И все же соединённое движение их настолько правильно, что мы можем совершенно свободно поворачивать наши глаза, соблюдая все время условие пересечения их оптических осей в какой-нибудь точке предмета, за движением которого мы следим. Кроме того, оказывается, что движение каждого глаза вокруг своей оптической оси замечательным образом связано с движением самой оси.

Метод, которым Гельмгольц разбирает эти явления и иллюстрирует условия управления движениями наших тел, достоин внимания всех тех, которые полагают, что они обладают неограниченной возможностью двигать заданным образом любой, способный к этому роду движения, орган нашего тела.

В своей второй замечательной работе «Восприятие звука как физиологическая основа теории музыки» он ещё более ясным образом иллюстрирует условия, при которых наши чувства приобретают навык.

«При пользовании нашими органами чувств упражнение и опыт играют, однако, гораздо большую роль, чем мы это обычно склонны предполагать, и так как мы только что заметили, что наши ощущения важны нам главным образом лишь постольку, поскольку мы в состоянии, благодаря их помощи, правильно судить об окружающем нас внешнем мире, то наша способность к наблюдению этих ощущений простирается обычно лишь настолько, насколько этого требует указанная цель. Мы, конечно, слишком склонны думать, что должны сразу осознать все, что мы ощущаем и что заключается в наших ощущениях. Это естественное мнение основывается, однако, лишь на том, что мы в действительности всегда быстро и без труда осознаем то в наших ощущениях, что интересно нам для нашей практической цели – правильного восприятия внешнего мира, так как в течение всей нашей жизни, ежедневно и ежечасно упражняясь в употреблении наших чувств именно для этой цели, мы приобрели для этого большой опыт» (Helmholtz, Tonempfindungen», стр. 102, 3-е изд. 1870 г.).


    Ваша оценка произведения:

Популярные книги за неделю