Текст книги "Полный справочник медицинской аппаратуры"
Автор книги: авторов Коллектив
Жанры:
Медицина
,сообщить о нарушении
Текущая страница: 13 (всего у книги 41 страниц)
Иммунохимический анализ не ограничивается ИФА, РИА и ФИА, которые основаны на прямом взаимодействии антигена с антителом. Имеются другие методы обнаружения и количественного определения антигенов в зависимости от их физического состояния при взаимодействии с антителами. Если антиген расположен на поверхности клеток, то антитела вызовут слипание (агглютинацию) таких клеток. Этот принцип лежит в основе определения групп крови: склеивание эритроцитов при взаимодействии поверхностных антигенов с добавленными антителами – гемагглютинация. Антитела при добавлении в определенном соотношении к раствору макромолекулярных антигенов вызывают их преципитацию – образование крупных, визуально обнаруживаемых агрегатов из молекул антигена, связанных антителами. Во время проведения реакции преципитации в гелях возникают линии преципитации при образовании иммунных комплексов антиген-антитело, по форме этих линий можно судить о числе и иммунологическом родстве антигенов. Для идентификации белков широко применяется методика иммуноблоттинга: сначала смесь белков разделяют с помощью электрофореза в геле, затем на гель накладывают нитроцеллюлозную мембрану и на нее электрофо-ретически переносят (подвергают электроблоттингу) разделенные белки, которые идентифицируют посредством меченых антител. Меченые антитела широко используют в исследовании локализации компонентов клеток и тканей – это методы имму-ноцито– и иммуногистохимии. Клетки, меченные флуоресцирующими антителами, можно отделить от немеченых клеток – метод проточной цитофлуориметрии. Хроматографические колонки с сорбентом, с которым ковалентно связан антиген (или антитело), используются в аффинной хроматографии – отделении соответствующего антитела (или антигена) из смесей в результате образования иммунных комплексов. Еще одно применение иммунохи-мического анализа – иммуносенсоры: пьезокристалл, покрытый антигеном (антителом), в результате связывания антител (антигена) увеличивает свою массу и меняет частоту резонансных колебаний в переменном электрическом поле, что позволяет регистрировать изменение массы пьезоэлектрика порядка 10–12 г.
Таким образом, ИФА – это лишь один из способов определения антигенов, получивший широкое практическое распространение благодаря возможности количественных определений, высокой чувствительности и коммерческой доступности. В научно-исследовательской работе эти возможности иммунохимических методов всегда используются вместе с ИФА и даже с применением одних и тех же реагентов.
Возможности увеличения чувствительности ИФА ограничиваются фоном анализируемого соединения (т. е. его наличием не только в анализируемом образце, но и в используемых реактивах и растворителях), субстратной специфичностью фермента и аффинностью антител. К ограничениям ИФА относится также наличие в тестируемых образцах кофакторов, ингибиторов и стимуляторов активности ферментов. Еще один недостаток – ИФА не позволяет различать нативные белки и их биологически неактивные фрагменты, сохранившие антигенные детерминанты. Помехой для ИФА может быть изменение каталитической активности фермента при его конъюгировании с антигеном. Ограничением ИФА является его применимость лишь к хорошо изученным системам, где есть очищенные антигены и высокоспецифические антитела.
Высокая чувствительность в сочетании с быстротой анализа (от нескольких минут до нескольких часов), возможностью одновременного тестирования большого количества образцов и отсутствием особой необходимости предварительных операций по очистке и концентрированию анализируемого соединения в образце придают ИФА неоспоримые преимущества перед другими аналитическими методами. Поэтому сегодня ИФА находит широкое применение не только в здравоохранении, но и в различных областях сельского хозяйства, промышленной биотехнологии, природоохранной деятельности и научно-исследовательской работе.
Любое заболевание человека и животных можно быстро и точно диагностировать путем идентификации возбудителя, его отдельных антигенных компонентов, антител к этим компонентам или веществ, не свойственных здоровому организму и синтезируемых при его патологических состояниях (рак, сердечно-сосудистые и эндокринные заболевания). Диспансеризация населения, эпидемиологические обследования, выявление отравлений, наличия наркотиков в крови, определение содержания лекарственных соединений в тканях, вирусных заболеваний растений, определение антибиотиков, витаминов и других биологически активных соединений при отборе активных штаммов-продуцентов в промышленной биотехнологии, контроль за качеством медицинских препаратов из донорской крови на отсутствие вирусов-возбудителей СПИДа и гепатита В – это лишь небольшой перечень практического применения ИФА. Современные фундаментальные исследования в биохимии, клеточной физиологии и иммунологии, микробиологии, вирусологии, онкологии трудно представить без ИФА. Реагенты для проведения ИФА сегодня стали коммерческими продуктами и могут быть приобретены по каталогам известных фирм.
Автоматизированные ИФА-анализаторы представляют собой модульную систему и состоят из автоматического дозатора образцов, сканера штрих-кода пробирок, промывочного блока, инкубатора, устройства для считывания оптической плотности частиц, блока для обработки результатов, представленного, как правило, персональным компьютером с соответствующим программным обеспечением.
Дозатор образцов используется для раскапывания образцов из пробирок на любые форматы исследуемых носителей – микропланшеты, пробирки, специальные картриджи, а также дозирования реактивов.
Образцы могут находиться в пробирках различных размеров и диаметров в зависимости от конструкции прибора. Многие ИФА-анализаторы оснащены датчиком детекции уровня жидкости образцов и реактивов и наличия сгустков, учитывая это, они могут использовать первичные пробирки с осажденным (но не удаленным) сгустком и эритромассой.
Процесс дозирования образцов и реактивов строится обычно таким образом, что они дозируются за один проход в несколько планшетов (рабочий стол вмещает одновременно от 1 до 5 планшет и от 2 до 14 реактивов). Например, если образцы исследуются на ВИЧ, гепатиты В и С, то за один проход они дозируются во все три планшета. В сочетании с использованием до 12 наконечников такая технология обеспечивает скорость дозирования 96 образцов (вместе с чтением штрих-кода) и реактивов на 4 планшета (ВИЧ, гепатит В и С, сифилис) в среднем за 15–20 мин.
Встроенный сканер штрих-кода пробирок обеспечивает идентификацию образцов, что является основой последующей автоматизации обработки информации. Вместе со сканерами штрих-кода микропланшетов и реактивов это обеспечивает:
1) автоматическую идентификацию образцов и реактивов, устраняет возможные ошибки регистрации и загрузки реактивов;
2) автоматизирует процесс последующей обработки информации и выдачи результатов по конкретному образцу;
3) позволяет контролировать и регистрировать процесс обработки каждого образца (и соответственно лунки планшета), обеспечивая надежность результатов.
Модуль промывки (вошер) оснащен многоканальной промывочной головкой с функцией детекции уровня жидкости в лунках при промывке, что обеспечивает дополнительный контроль за качеством промывки и предотвращает возникновение ложных результатов.
Качество промывки обеспечивает отсутствие кросс-контаминации, а многократное применение наконечников позволяет резко снижать себестоимость исследования. При этом сохраняется возможность в особо критических приложениях использовать наконечники в качестве одноразовых.
Затем микропланшеты с дозированными образцами и реактивами переносятся в инкубатор. Инкубация планшетов осуществляется в ячейках инкубации с индивидуально контролируемой температурой, конструкция которых обеспечивает отсутствие испарения реакционной смеси во время инкубации.
Считывание результата выполняется с помощью многоканального фотометра в моно– или бихроматическом режимах. Фотометр оснащается несколькими светофильтрами, работающими в диапазоне длин волн 340–850 нм.
Полученные данные оптической плотности обрабатываются на ПК врача-лаборанта с помощью программ в соответствии с методикой интерпретации результатов, изложенной в инструкции к используемым тест-системам. Полученные после интерпретации данные сохраняются в базе данных ПК, распечатываются в требуемом формате отчетности (настраивается пользователем) и передаются в информационную сеть лаборатории.
Производительность, помимо конструктивных особенностей комплекса, определяется также используемыми тест-системами и их сочетанием, конфигурацией комплекса, длительностью работы оборудования и потому является достаточно индивидуальным параметром.
Аппараты экстракорпорального оплодотворения (ЭКО)
Экстракорпоральное оплодотворение (ЭКО) – это оплодотворение вне организма с последующим переносом развивающейся оплодотворенной яйцеклетки (эмбриона) в полость матки. Основными показаниями к процедуре ЭКО являются:
1) нарушения функции маточных труб;
2) снижение качества спермы;
3) некоторые формы эндометриоза;
4) патология слизи цервикального канала;
5) труднообъяснимое бесплодие (возможно, связанное с тем, что эмбрион не может покинуть блестящую оболочку, имплантироваться и развиваться) после проведенного полного клинического исследования, включая гормональное, эндоскопическое, иммунологическое.
Помимо причины бесплодия, большую роль играют возраст женщины и длительность бесплодия. Эффективность лечения определяется различными факторами.
Процедуру ЭКО можно разделить на несколько этапов лечения: отбор пациенток по показаниям; контроль за созреванием фолликулов (трансвагинальная эхография, исследование 17-эст-радиолы крови) и стимуляция созревания яйцеклеток, забор яйцеклеток (пункция), собственно экстракорпоральное оплодотворение (предынкубация, оплодотворение in vitro, культивирование, криоконсервация), перенос эмбрионов в полость матки (эмбрио-трансплантация), контроль развития беременности и лечение после переноса.
Необходимо отметить, что существуют условия проведения эмбриотрансплантации, к ним относятся:
1) сохраненная в полном объеме функциональная способность матки к имплантации и вынашиванию беременности;
2) отсутствие противопоказаний к беременности и родам (соматические, психические, генетические заболевания);
3) сохраненная способность яичников к адекватному ответу на стимуляцию овуляции – экзогенную и эндогенную;
4) отсутствие новообразований, воспалительных и анатомических изменений в органах малого таза. Эти условия должны быть соблюдены еще на этапе отбора пациенток.
Также при подборе больных следует обратить внимание на следующие факторы.
1. Возраст родителей. У женщин в возрасте 40 лет в 23 раза чаще рождаются дети с синдромом Дауна (Simpson, 1979).
2. Наличие доказанной способности к зачатию.
3. Наличие нарушений метаболизма, таких как сахарный диабет, аутоиммунный тиреоидит и дефицит антитрипсина, предрасполагающих к появлению анэуплоидии у плода.
4. Наличие анэуплоидии. Если один из родителей является анэуплоидом, то увеличивается риск рождения детей с хромосомными нарушениями.
Все супружеские пары, отобранные для лечения по методу ЭКО, должны понимать его суть, знать о возможном риске и дать продуманное согласие на лечение.
За 2 или 3 месяца до начала активного лечения по методу ЭКО следует произвести полное исследование спермы, включающее бактериологическое исследование и посев, одновременно с исследованием влагалищных и цервикальных мазков с целью исключения патологии, вызванной гонококками, микоплазмой, грибами, трихомонадами и другими возбудителями. Лечение инфекционных заболеваний половых органов предпринимается с целью предупреждения заражения культуры, в которой производится оплодотворение, и осложнений после переноса эмбриона. Помимо этого, рекомендуется сделать мазки по Папаниколау с целью исключения рака шейки матки и поражения половых органов вирусом герпеса.
Во время предовуляторной фазы исследовательского цикла берут кровь для приготовления эмбриокультуры и проведения серологических исследований на токсоплазмоз, краснуху, цитоме-галовирусы и вирусы герпеса, гепатит В и сифилис. Также следует исследовать кровь на хромосомы для идентификации лиц с повышенным риском воспроизводства анэуплоидных гамет. Сыворотку крови следует исследовать на предмет выявления ан-тиспермальных антител и антител на блестящей оболочке.
На этапе предварительного обследования необходимо измерить длину цервикального канала и полости матки с помощью маточного зонда, учитывая последующий перенос эмбриона катетером.
Хотя существует мнение, что при естественном цикле шансы на успех достаточно велики, большинство специалистов считают, что при «стимулированном» цикле частота наступления беременности выше. Хорошо известно, что с увеличением числа трансплантируемых эмбрионов возрастает вероятность имплантации. Но отмечено, что частота многоплодной беременности также возрастает с увеличением числа внесенных эмбрионов. Поэтому рекомендовано введение не более трех эмбрионов. В целях получения наибольшего количества яйцеклеток широко и успешно применяют методы гормональной стимуляции овуляции (см. табл. 5).
Главное отличие стимулированного цикла при ЭКО от естественного заключается в том, что под влиянием гормонов созревает не одна, а несколько яйцеклеток. Затем созревшие яйцеклетки извлекают из яичников, чтобы оплодотворить вне организма. Необходимость получения нескольких яйцеклеток обусловлена фактом, что не каждая яйцеклетка может быть оплодотворена, а также не все эмбрионы имеют одинаковые шансы на имплантацию. Наличие нескольких эмбрионов позволяет выбрать для переноса те из них, у которых вероятность имплантации наилучшая. Чтобы избежать осложнений и при этом получить максимальное количество зрелых яйцеклеток, гормональная терапия подбирается индивидуально.
Первый шаг лечения направлен на оптимальную подготовку организма к стимуляции гормонами. Регуляция менструального цикла проводится таким образом, чтобы временем овуляции и забора яйцеклеток можно было управлять. Это достигается с помощью медикаментов, которые подавляют продукцию собственных гормонов, стимулирующих работу яичников (ФСГ и ЛГ), – так называемая даунрегуляция. Медикаменты, используемые в фазе даунрегуляции, называются агонистами гонадотропин-рилизинг гормона (агонисты ГнРГ) и воздействуют на ту часть мозга, которая ответственна за выброс гормонов ФСГ и ЛГ. Даунрегуля-ция используется при проведении длинного протокола стимуляции и назначается с 19-22-го дня цикла. Препараты могут иметь различные названия и применяться в виде ежедневных инъекций, назального спрея или депо. Благодаря этой подготовке в дальнейшем улучшается возможность регулировать фазу стимуляции.
При проведении короткого протокола необходимы антагонисты ГнРГ, которые также применяются для подавления продукции собственных гормонов. Их оборот начинается только в фазе стимуляции, т. е. от начала менструации. Благодаря этому общее время лечения уменьшается и снижается риск появления симптомов гипоэстрогении.
Решение о выборе протокола принимает врач в зависимости от исходных данных пациентов.
Для стимуляции созревания яйцеклеток могут быть использованы различные препараты, которые соответствуют естественному гормональному циклу. Они различаются по технологии изготовления.
НМв (человеческий менопаузальный гонадотропин) получают из мочи женщин, находящихся в постменопаузе (климактерическом периоде). НМв содержит в одинаковой мере ФСГ и ЛГ.
Рекомбинантный ФСГ производят с помощью биологических технологий. Это чистый белок, полностью идентичный естественному гормону. Поэтому рекомбинантные препараты часто лучше переносятся пациентами.
В мочевых препаратах чистота и содержание ФСГ могут существенно колебаться, а также они чаще вызывают аллергию. Однако вероятность наступления беременности после стимуляции рекомбинантным ФСГ или мочевыми препаратами существенно не различается.
Стимуляция гонадотропинами (ФСГ) начинается, как правило, через 14 дней после начала даунрегуляции (длинный протокол) либо в течение первых трех дней цикла – короткий протокол (1-й день цикла = 1-й день менструации). Лечение гонадотропина-ми длится в среднем 11–13 дней. В течение этого периода в одно и то же время суток осуществляются внутрикожные (или внутримышечные) инъекции определенного количества гормона. Если для подавления собственных гормонов используется антагонист ГнРГ, его введение начинается с 5-7-го дня стимуляции.
Во время стимуляции проводится ультразвуковое наблюдение. Этот мониторинг служит для контроля за количеством и размерами фолликулов, а также толщиной эндометрия. Таким образом можно выбрать оптимальный момент для начала овуляции и пункции фолликулов. Также благодаря наблюдению удается снизить риск гиперстимуляции.
Овуляция и забор яйцеклетки
Когда созревание яйцеклеток в фолликулах подходит к концу, необходимо отменить введение ФСГ. Теперь с помощью другого гормона – ХГЧ (хорионический гонадотропин человека) – яйцеклетки подготавливаются к овуляции. ХГЧ берет на себя роль ЛГ, которую последний выполняет в естественном цикле. ХГЧ получают из мочи беременных женщин, а в последнее время в чистом виде с помощью биотехнологий. Спустя около 36 ч после введения ХГЧ, незадолго до овуляции, происходит забор яйцеклеток из фолликулов.
Существует несколько методов забора яйцеклеток для оплодотворения. Ооциты могут быть получены при лапароскопии, мини-лапаротомии или путем аспирации фолликулов под контролем УЗИ.
Методика лапароскопии
Премедикация и общая анестезия проводятся так же, как и при обычной лапароскопии. В брюшную полость вводится газовая смесь, содержащая 5 % СО, 5 % О, 90 % N. Аспирацию предовуля-торного фолликула производят длинной иглой (24 см), изогнутой под углом 45° с наружным диаметром 1,3 мм и просветом в 1,1 мм. Игла проводится через канюлю, введенную в брюшную полость в точке, расположенной на середине между лонным сочленением и пупком по средней линии живота.
Для аспирации фолликула применяется пониженное давление. Точка пункции фолликула должна располагаться в неваскуляризо-ванной области или примыкать к стромальным элементам яичника для того, чтобы предотвратить утечку фолликулярной жидкости из переполненного фолликула. Собранная фолликулярная жидкость может быть сразу исследована на содержание в ней яйцеклетки.
Забор яйцеклеток до момента овуляции необходим, так как после овуляции яйцеклетка попадает в маточную трубу или брюшную полость, где становится практически недоступной.
Предовуляторная яйцеклетка человека может быть обнаружена невооруженным глазом по наличию в аспирате массивных и клейких хлопьев размером до 5 мм и более. Однако важно убедиться, что яйцеклетка действительно находится в этих хлопьях путем их просмотра в препарационном микроскопе. Яйцеклетка 2 раза обмывается оплодотворяющей средой, которая удаляет большую часть фолликулярной жидкости. Затем она переносится в капле равновесной оплодотворяющей среды под стерильное парафиновое масло. В качестве оплодотворяющей среды применяется раствор тироде, содержащий пируват, альбумин, антибиотики.
Оплодотворение и перенос эмбрионов
Для оплодотворения яйцеклеток в день пункции необходимо наличие свежей спермы супруга. Сперму получают путем мастурбации. В редких случаях супруг сдает сперму заранее и она хранится в лаборатории при очень низкой температуре (криоконсервация спермы). Сперму с учетом ее разжижения при комнатной температуре разводят в 2 смывах оплодотворяющей среды. Удаление семенной плазмы производят следующим образом. Небольшое количество спермы разводят в 4-кратном объеме оплодотворяющей среды, затем суспензию сперматозоидов центрифугируют, удаляют надсадочную жидкость, ресуспензируют комочек сперматозоидов и повторяют эту процедуру. Полученный таким образом комочек сперматозоидов вновь ресуспензируют, определяют их концентрацию и подвижность и доводят эти параметры до значений, которые считаются стандартными для процедуры оплодотворения яйцеклетки.
Затем сперматозоиды переносят в специальный термостат, где уже находятся яйцеклетки. При осеменении на 1 яйцеклетку добавляют 200 000–300 000 сперматозоидов.
Процесс культивирования происходит в специальной среде с абсолютной влажностью, при температуре 37 °C в растворе с рН, равным приблизительно 7,6, в атмосфере, содержащей 5 % СО2, 5 % О2 и 90 % Яйцеклетку оставляют в суспензии сперматозоидов на 6-18 ч.
Следующие морфологические особенности яйцеклетки, большинство которых выявляют с помощью микроскопа, могут определить признаки произошедшего оплодотворения:
1) выталкивание второго полярного тельца в желточное пространство;
2) цитоплазма яйцеклетки сжимается, отступая от оболочки;
3) в ранней стадии оплодотворения в цитоплазме яйцеклетки может наблюдаться головка, срединный сегмент и хвост сперматозоида. Эти признаки могут отмечаться только при сильном увеличении, используя фазово-контрастную методику;
4) в более поздние стадии (около 12–18 ч после инсеменации) в цитоплазме могут быть мужские и женские проядра.
Деление зиготы
После завершения периода инсеменации яйцеклетку переносят в равновесную каплю среды по парафиновое масло. Среда состоит из свежеприготовленного раствора Ham F10 с добавлением 15 % сыворотки крови больной. Растущий эмбрион человека культивируется при температуре 37 °C в атмосфере, содержащей 5 % СО 2, 5 % О 2и 90 % N 2в среде с рН, равным 7,3.
О нормальном развитии эмбриона в культуре свидетельствует появление делящихся клеток приблизительно одинакового размера и формы, которые равномерно заполняют большую часть пространства в пределах блестящей оболочки. Деление клеток должно быть нарастающим и наблюдаться во время четко определенного времени. Так, эмбрион должен содержать 2 клетки через 35–46 ч, 4 клетки через 51–63 ч, 8 клеток через 68–86 ч после инсемена-ции, а стадия 16 клеток должна быть достигнута в пределах 84– 112 ч после оплодотворения.
Если клетки развивающегося эмбриона имеют неправильную форму или отходят от блестящей оболочки, или же скорость деления клеток существенно отличается от описанной выше, то развитие эмбриона считается патологическим и он непригоден для переноса в полость матки.
Оставшиеся эмбрионы хорошего качества могут быть сохранены при очень низкой температуре для дальнейших попыток (криоконсервация эмбрионов).
Так как в большинстве случаев эмбрион переносится в полость матки на стадии 8 или 16 клеток, то это означает, что эмбрион человека перед имплантацией должен содержаться в культуре в течение 3–4 суток.
Эмбрион в 0,05 мл культуральной среды осторожно засасывается в стерильный катетер диаметром 1,4 мм. Затем катетер проводится через цервикальный канал в полость матки, где в области дна эмбрион высвобождается из катетера. С целью облегчения проведения этой процедуры катетер следует разместить по длине для контроля положения его конца в полости матки. Помимо этого, следует очень аккуратно манипулировать шейкой матки во избежание сокращения мышц матки. Если в полость матки переносят более двух эмбрионов, существенно повышается риск многоплодной беременности. После переноса эмбрионов в полость матки назначают препараты прогестерона и эстрогены, чтобы поддержать имплантацию эмбриона. В этом случае говорят о поддержке лютеино-вой фазы.
Контроль подтверждения беременности
Для контроля ранних сроков развивающейся беременности проводят динамическое определение – субъединицы хориониче-ского гонадотропина, которое помогает определить беременность с 7-9-го дня после ТЭ. При наступлении беременности за женщинами ведется постоянное наблюдение методами, принятыми для ведения беременности и родов женщин с отягощенным акушерским анамнезом.
Должно производиться серийное ультразвуковое обследование плода. На 1-7-й неделе беременности определяются положение амниона и сердечная деятельность плода. После этого контроль должен производиться на 20, 28 неделе и далее с целью определения степени развития плода. На основании полученной информации можно наблюдать характеристики роста плода на протяжении беременности и выявить определенную патологию развития скелета. Пункцию амниона можно производить приблизительно на 16-й неделе беременности. Таким образом может быть определен кариотип и уровень фетопротеинов, определяющий наличие дефектов развития нервной трубки плода.
ИКСИ (инъекция сперматозоида в яйцеклетку) – это особая форма ЭКО, применяемая при тяжелых формах мужского бесплодия. При низком содержании подвижных сперматозоидов в эякуляте – тяжелой олигозооспермии и/или астенозооспермии, и/или тератозооспермии вероятность оплодотворения очень мала. Поэтому основной задачей ИКСИ является осуществление проникновения сперматозоида через оболочку яйцеклетки – оплодотворение. Для успешного проведения ИКСИ достаточно наличия в эякуляте единичных живых сперматозоидов.
Показанием к ИКСИ является также тяжелое аутоиммунное бесплодие у мужчин при титре антиспермальных антител в сперме более 50 %. В этом случае, как правило, количество подвижных сперматозоидов существенно снижено.
ИКСИ применяется также при недостаточном оплодотворении в предыдущих попытках (оплодотворено менее 50 %), при малом количестве яйцеклеток.
Под инвертированным микроскопом сперматозоид втягивают в очень тонкую стеклянную иглу и инъецируют непосредственно в яйцеклетку.
Такая микроинъекция имитирует естественный процесс проникновения сперматозоида в яйцеклетку. Эта процедура не оказывает отрицательного влияния на слияние пронуклеусов яйцеклетки и сперматозоида. Если оплодотворение и деление произошло, как и при процедуре ЭКО, спустя 2–5 дней эмбрион переносят в полость матки.
Как только оплодотворение произошло, качество эмбрионов и вероятность наступления беременности после ИКСИ не отличаются от таковых после традиционного ЭКО.
Для осуществления ЭКО необходима рабочая станция, в состав которой входят: ламинарные шкафы, термостаты и подогреваемые поверхности, антивибрационный стол, криоконсерватор, СО 2инкубаторы, стереомикроскопы.
Ламинарные шкафы и рабочие станции предназначены специально для работы с ооцитами, эмбрионами и спермой в лабораториях ЭКО. Они обеспечивают циркуляцию ламинарного потока воздуха для предотвращения контаминации, класс I биологической защиты (защита материала), имеют встроенную увлажнительную систему и большой выбор опций для формирования рабочей станции ЭКО нужной конфигурации.
Антивибрационные столы обеспечивают оптимальные условия для проведения процедур ЭКО и ИКСИ.
Термостаты и подогреваемый столы необходимы для культивирования и транспортировки половых клеток и эмбрионов в пределах лаборатории в условиях постоянной температуры, как правило, это около 37 °C.
Криоконсерватор необходим для криоконсервации спермы, яйцеклеток и эмбрионов. Имеет модульную структуру и состоит из контроллера температуры, криокамеры и криованны. Такие устройства поддерживают диапазон температур от -120 до +40 °C, имеют несколько предустановленных программ, предупреждающий сигнал при изменении температуры более чем на 1,5 °C, минимальный температурный шаг 0,04 °C, соединение с компьютером.
СО 2-инкубаторы могут быть настольными и портативными разнообразных размеров. Инкубаторы имеют несколько изолированных камер для биоматериала, диапазон поддерживаемой температуры зависит от конструкции прибора, производителя и поставленных целей. Портативные СО 2инкубаторы имеют встроенную батарею, обеспечивающую бесперебойную работу аппарата при транспортировке образцов, систему тревог по температуре и заряду батареи.
Также для нормальной работы ЭКО-лаборатории необходимы расходные материалы: среды для культивирования, для промывки спермы, пробирки, чашки Петри, 4-луночные планшеты, пипетки, криопробирки, криосоломки, микропипетки для ИКСИ, наконечники для стриппера для очистки ооцитов, наборы для пункций, катетеры для переноса, фильтры для шприцов, стерильное минеральное масло.