Текст книги "Мутанты. О генетической изменчивости и человеческом теле."
Автор книги: Арман Мари Леруа
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 27 страниц)
Сформируйте меня
На седьмой день после зачатия человеческий эмбрион начинает зарываться. [24]24
Описание раннего эмбриогенеза у человека см. в ряде работ (Beddington and Robertson, 1999; Sadler, 2000). – прим. авт.
[Закрыть]Всего-навсего полый шар, состоящий из сотни или около того клеток, он способен внедриться в слизистую оболочку матки материнского чрева, которая размягчается и набухает за счет действия гормонов менструального цикла. Большая часть клеток полого шара занята проблемой закапывания, но есть и такие, которые ведут себя по-другому. Они начинают образовывать собственный шар, так что к девятому дню эмбрион становится похожим на одну из оригинальных китайских игрушек: вырезанные из слоновой кости шарики находятся один внутри другого – сфера внутри сферы внутри сферы и так далее... К тринадцатому дню он исчезает в выстилающем слое слизистой матки, и оставленная им рана обычно легко заживает. Эмбрион приступает к самоустройству.
Первая его задача – создать исходный материал для своих органов. Мы трехмерные существа: кожный чехол окружает слои костей и мышц, которые, в свой черед, служат опорой для лабиринта внутренней сантехники. Но перед эмбрионом встает проблема. Из той сложной структуры, которую он уже построил, лишь небольшая ее часть – крошечный комочек клеток внутренней сферы – действительно предназначена для продуцирования плода. Все остальное послужит только для создания вспомогательного оборудования: плаценты, пупочного канатика и других подобных атрибутов. А для того чтобы из этого конгломерата клеток получился плод, зародыш должен реорганизовать себя.
Процесс, с помощью которого это делается, называется гаструляцией. Примерно на тринадцатый день после зачатия комочек клеток превращается в диск с полостями над (будущая амниотическая полость) и под ним (будущий желточный мешок). Примерно на середине диаметра этого диска появляется желобок, так называемая "первичная полоска". Клетки начинают мигрировать в сторону этой полоски и погружаются в нее. Первые из клеток, которые проходят этот путь, образуют выстилку вокруг желточного мешка. Новые клетки, проникающие в полоску, образуют над первым другой слой. В результате эмбрион приобретает три слоя вместо одного и становится гаструлой.
Три слоя гаструлы – это предвестники наших органов. Верхний слой, эктодерма, станет наружными слоями кожи и большей частью нервной системы; ниже расположена мезодерма – будущие мышцы и кости; вокруг желтка находится эндодерма – исходный материал для кишок, поджелудочной железы, селезенки и печени. (Термины происходят от греческих слов ecto-, meso-и endo– –внешняя, средняя и внутренняя; и -derm –соответственно кожа.)
Это разграничение выглядит довольно четким, однако в действительности многие части нашего тела – зубы, молочные железы, руки, ноги, половые органы – представляют собой сложную комбинацию из эктодермы и мезодермы. Но еще важнее материала, из которого в дальнейшем строятся органы, является то, что эмбрион в это время также приобретает геометрическую структуру, которая сохранится на всю оставшуюся жизнь. Через две недели после встречи яйцеклетки и сперматозоида у зародыша появляются голова и хвост, перед и зад, левая и правая стороны. Вопрос состоит в том, откуда они берутся.
Весной 1920 года в немецкий университетский город Фрейбург приехала Хильда Прешельдт. Ей предстояло приступить к работе с Гансом Шпеманом, одной из наиболее значительных фигур в новой, в основном немецкой, науке – Entwicklungsmechanik, механике развития. Стекловидные зародыши морских ежей делились пополам; гидрыс зелеными щупальцами теряли головы с тем, чтобы отрастить их вновь; лягушки и тритоны существовали лишь для того, чтобы отложить икру, предназначавшуюся для сложных экспериментов по трансплантации. Шпеман был главой этого научного направления, и Прешельдт предстояло делать в его лаборатории кандидатскую диссертацию. Поначалу она с трудом пыталась понять, чего от нее хотят. Эксперименты, которые предложил ей Шпеман, казались технически невыполнимыми, и, оценивая их в ретроспективе, следует признать, что таковыми они и были. Но Хильда была способной, настойчивой и знающей сотрудницей. Весной 1921 года Шпеман предложил ей новое направление в работе. Его результаты должны были дать первые представления о том, как происходит упорядочивание эмбриона.
Тогда, как и сейчас, скрытая цель большинства исследований в области биологии развития состояла в том, чтобы понять, как строят себя человеческие эмбрионы, или, если это не удавалось, выяснить, что происходит с эмбрионами других млекопитающих. Но с эмбрионами млекопитающих трудно работать. Их нелегко найти и трудно сохранить живыми вне матки. Иначе обстоит дело с эмбрионами тритонов. Тритоны в изобилии откладывают мельчайшие яйцеклетки, которые, при определенной практике, поддаются хирургическим манипуляциям. Можно было даже пересаживать кусочки тканей от одного эмбриона к другому и наблюдать за их приживлением и ростом.
Эксперимент, предложенный Хильде на тот момент Шпеманом, заключался в иссечении кусочка ткани с дальнего конца бластопора (у тритонов эквивалентного первичной полоске человека) одного из эмбрионов и трансплантации его другому эмбриону. Заметив, что слои тканей и конфигурация эмбриона зависят от клеток, прошедших через бластопор, Шпеман предположил, что ткани губы бластопора обладают особым свойством инструктировать клетки, которые мигрируют мимо них. Если это так, тогда эмбрионы с дополнительно имплантированными в них участками губы бластопора будут отличаться – чем? Избыточным количеством мезодермы и эктодермы? Фатально нарушенной геометрической структурой? Совершенно нормальным развитием? Эксперименты, проведенные ранее самим Шпеманом, давали интригующие, но противоречивые результаты. Теперь Хильде Прешельдт предстояло сделать все как надо.
В промежутке между 1921 и 1923 годами она выполнила 259 экспериментов по трансплантации. Большинство ее эмбрионов не пережило операции. Но шестеро из тех, кому это удалось, стали в ряд наиболее знаменитых персонажей биологии развития, так как каждый из них содержал заготовку не для одного, а для двух тритонов. У них были зачатки двух голов, двух хвостов, двух нервных трубок, двух наборов мышц, двух спинных струн и двух кишечников. Хильда Прешельдт создала сросшихся близнецов тритонов, ориентированных живот к животу.
Это было невероятно, но истинная красота эксперимента состояла в том, что Прешельдт использовала в качестве донора и хозяина тритонов двух различных видов. Обычный тритон, сыгравший роль донора, отличался темнопигментированными клетками, в то время как большой гребенчатый тритон, выполнявший функцию хозяина, их не имел. Стало ясно, что дополнительные органы принадлежали эмбриону хозяина, а не донора. Это означало, что трансплантированный участок губы бластопора не сделалсядобавочным тритоном, а скорее индуцировалего из недифференцированных клеток хозяина. Этот крошечный кусочек ткани, по-видимому, обладал могущественными инструкциями по созданию совершенно новой особи, почти законченной во всех ее частях. Шпеман, без всякой склонности к преувеличению, назвал дальний конец губы бластопора тритона "организатором". Под этим наименованием он до сих пор фигурирует в науке. [25]25
О статье Хильды Мангольд (урожденной Прешельдт) см. в публикации Шпеман и Мангольд (Spemann and Mangold, 1924); перевод и комментарии приводят Уиллир и Оппенгеймер (Willier and Oppenheimer, 1964); биографию исследовательницы можно найти в нескольких работах (Hamburger, 1988; Fassler and Sander, 1996). – прим. авт.
[Закрыть]
В течение семидесяти лет специалисты по биологии развития тщетно искали источник могущества организатора, или организационного центра. Они приблизительно знали, что ищут: молекулу, секретируемую одной клеткой, которая сообщает другой клетке, что делать, кем стать и куда направиться.
Довольно скоро выяснилось, что сила организатора заключена в небольшом участке мезодермы, расположенном прямо под губой бластопора. Идея была проста: клетки, мигрирующие через бластопор внутрь эмбриона, наивны и несведущи, но их потенциал безграничен. Шпеман по этому поводу произнес следующий афоризм: "Мы стоим и ходим с помощью таких частей нашего тела, которые вполне могли использоваться для мыслительного процесса, если бы развивались в другой части эмбриона". Мезодермальные клетки края бластопора были источником сигнала, который проникал внутрь эмбриона, или, если пользоваться вскорости изобретенным термином, – морфогена.Этот сигнал сохранял всю свою силу возле его источника, но по мере удаления от него становился все слабее и слабее. Говоря вкратце, в концентрации морфогена существовал трехмерный пространственный градиент. Клетки воспринимали его и в точности знали, где и какими им следует быть. Если стимул был сильным, эктодермальные клетки образовывали спинной мозг, который проходит по всей длине нашего позвоночника. Если же он был слабым, они становились кожей, покрывающей наше тело. Та же логика применима и к другим зародышевым листкам. При сильном сигнале организатора мезодерма превращалась в мышцы, при слабом – в почки, при еще более слабом – в соединительную ткань и клетки крови. В обязанности организационного центра входило моделирование расположенных под ним клеток. [26]26
Краткую историю поисков молекул организатора описывает Гилберт (Gilbert, 2002) в труде "Из истории индукции":
http://zygote.swathmore.edu/.
В другой статье (Gilbert, 2000) он цитирует Шпемана. – прим. авт.
[Закрыть]
Утомительно перечислять здесь многочисленные фальстарты, рассказывать о годах, потраченных на поиски организатора морфогенеза, о гекатомбах эмбрионов лягушек и тритонов, измельченных в поисках неуловимой субстанции. В итоге к 1960-м годам выросло убеждение, что проблема не имеет решения и заниматься ею не следует. "Наука, – как однажды выразился Питер Медавар, – это искусство находить решение". Но решения-то искусство того времени как раз и не могло предложить.
В начале 1990-х годов для решения задачи была использована технология рекомбинантной ДНК. К 1993 году был выявлен белок, который при его инъекции в эмбрионы африканских шпорцевых лягушек приводил к появлению сросшихся близнецов головастиков. Наконец-то стало возможным повторить – без грубого хирургического вмешательства – те результаты, которые Хильда Прешельдт обнародовала много лет назад. Белок особенно подходил для того, чтобы превращать необученную эктодерму в спинной или головной мозг. По странной прихоти, которая господствует в этой области биологии, белок назвали "ноггин" ("noggin") [27]27
Голова (разг. англ.).
[Закрыть]. К этому времени были разработаны такие технологии, которые позволяли увидеть, где именно в организме зародыша включаются и выключаются гены. Ген ноггина включался на дальнем конце губы бластопора, как раз в том месте, где и должен был находиться ген, кодирующий организатор морфогенеза.
Ноггин – это сигнальная молекула, то есть молекула, с помощью которой одна клетка общается с другой. У животных имеется несчетное их число. Из 30 тысяч генов человеческого генома по меньшей мере 1200, по мнению генетиков, кодируют белки, участвующие в межклеточных коммуникациях. Они образуют большие семьи родственных молекул: трансформирующие факторы роста – бета (TGF-β), хеджхоги (hedgehogs) [28]28
Ежи (англ.).
[Закрыть], фибробластные факторы роста (FGF). Мы назвали лишь некоторые, а иные семьи содержат их больше десятка. Способ, с помощью которого они работают, может варьировать в деталях, но принцип его один и тот же. Секретируемые одной клеткой, они прикрепляются к рецепторам на поверхности других клеток и, действуя таким образом, вызывают последовательность молекулярных событий в клетке-реципиенте. Цепочка информации в конце концов достигает ядра, где батареи других генов либо активизируются, либо угнетаются, и клетка подчиняется судьбе и принимает свою идентичность. [29]29
Об изначальной идентификации ноггина ( 602991) см.: Lamb et al., 1993; современный комментарий приводится в Baringa, 1993; подробный обзор текстов об организаторе см.: Gilbert, 2000; новейшее техническое описание – Beddington and Robertson, 1999. В число молекул, включенных в межклеточные коммуникации, входят как сигнальные молекулы, так и их рецепторы ( International Sequencing Consortium, 2001).
[Закрыть]
Сразу после обнаружения ноггина предполагалось, что его необыкновенные свойства заключаются в способности отличать заднюю сторону эмбриона от передней – или, точнее, в способности давать такие инструкции необученным клеткам эктодермы, чтобы они становились спинным мозгом, а не кожей. Ноггин, размышляли далее, стимулировал эктодермальные клетки к более высокой организации; без него они прозябали бы в виде жалкой кожи.
Истина, однако, намного занимательнее. Вероятность того, что клетка дифференцируется в спинной мозг, а не в кожу, зависит не от количества ноггина, который связывается с ее рецепторами, а скорее от исхода молекулярного конфликта по поводу ее судьбы. Я уже говорил, что наши геномы кодируют несметное число сигнальных молекул. Это означает, что клетки нашего организма постоянно купаются во множестве сигналов, исходящих из множества источников. Некоторые из этих сигналов всегда однозначны, другие дают противоречивые советы. Ноггин организатора может побуждать клетки эктодермы становиться нейронами, но пока он это делает, с другой стороны эмбриона другая молекула – костный морфогенетический белок 4 (BMP-4) – дает инструкции тем же клеткам становиться кожей.
Способ, которым эмбрион разрешает конфликт между этими двумя стимулами, весьма остроумен. Каждый сигнал имеет свой собственный рецептор, к которому он прикрепляется, а ноггин с его невероятной подвижностью может также присоединяться к свободным молекулам BMP-4, проникающим через межклеточное пространство, и выводить их из строя. Клетки, расположенные вблизи организатора, не только получают стимул становиться нейронами, но и испытывают тормозящее влияние, дабы не сделаться кожей. Вдали от организационного центра происходит прямо противоположное. Судьба любой клетки зависит от равновесия концентраций между двумя соревнующимися молекулами. Этот оригинальный способ – лишь один из многих подобных, работающих в процессе развития организма позвоночных, в больших или меньших масштабах, для самых разнообразных целей. Однако в данном случае речь идет о том, чтобы особь, будь то головастик или ребенок, имела бы переднюю и заднюю стороны. Некоторым образом эмбрион – это микрокосм того мира познания, в котором мы обитаем, мира сигналов, которые настойчиво побуждают нас отправиться в путешествие по тому, а не другому маршруту, пренебречь одними целями во имя других, считать одни представления истинными, а другие – ложными. Короче, это аналог того, как мы становимся тем, что мы есть. [30]30
Об антагонизме между BMP-4, хордином ( 603475) и ноггином см. в ряде работ (Zimmerman et al., 1996; Piccolo et al., 1996). – прим. авт.
[Закрыть]
В действительности довольно трудно доказать, что ген или кодируемый им белок выполняют именно то, что им приписывают. Одно из таких доказательств – уничтожить ген и посмотреть, что из этого получится. Это все равно что вынуть из автомашины какую-то деталь – к примеру, какой-нибудь неприметный винтик, – чтобы понять, для чего он там находится. Иногда отваливается зеркало заднего вида – только и всего, а иногда – перестает заводиться машина. Так же обстоят дела с мышами и генами. Если ноггин и в самом деле та самая давно искомая организующая молекула, то всякая мышь с дефектным геном ноггина должна отличаться в корне неправильным геометрическим строением. Из-за отсутствия информации клетки такого эмбриона не будут знать, где им следует находиться и что делать. Можно полагать, что у мыши, выросшей при отсутствии ноггина, не будет спинного или головного мозга, зато повсюду окажется живот. На худой конец, можно ожидать, что она умрет задолго до рождения. Как ни странно, когда в 1998 году с помощью генной инженерии была получена такая мышь с дефектом ноггина, она оказалась вполне здоровой. Правда, в спинном мозге и некоторых мышцах у нее наблюдались кое-какие аномалии, но они были абсолютно банальными по сравнению с тем, какими могли бы быть.
Причины этого парадокса до сих пор до конца неясны. Вероятнее всего, они связаны со сложностью организатора. С момента обнаружения ноггина в нем найдено по крайней мере еще семь сигнальных белков, среди которых один получил зловещее название "цербер" ("cerberus", по имени трехголового пса, охранявшего вход в Аид), а другой – более простое, но обладающее не меньшим подтекстом название "диккопф" ("dickkopf") – по-немецки "упрямец". Такое многообразие озадачивает. Некоторые из этих белков, видимо, преследуют уникальные цели (например, смоделировать голову, а не хвост, или эктодерму, а не мезодерму). Но может быть и так, что одни из них могут заменять другие. Говоря о генах, выполняющих те же самые задачи, что и другие, биологи употребляют слово "излишний" в том же смысле, как это делают управляющие компаний, когда говорят о сотрудниках, увольнение которых не скажется на успехе дела. По меньшей мере два организационных сигнала – ноггин и другой, так называемый "хордин" ("chordin"), кажутся частично взаимозаменяемыми. Как и ноггин, хордин обучает клетки становиться спиной, а не животом, нейронами, а не кожей и при этом тормозит сигналы BMP-4, поступающие с противоположной стороны эмбриона. И, подобно мышам с дефектом ноггина, мыши, спроектированные с дефектом гена хордина, также имеют более или менее нормальное геометрическое строение, хотя они и родятся мертвыми. А вот мышам с двойной мутацией, когда повреждены гены и ноггина и хордина, вообще не суждено увидеть белый свет. Эмбрионы двойных мутантов умирают задолго до своего рождения с существенными изменениями геометрии тела. Их можно обнаружить только путем вскрытия материнского организма на ранних стадиях беременности. [31]31
Описание мыши с дефектом ноггина см.: McMahon et al., 1998; мыши с двойным дефектом – ноггина и хордина – Bachiller et al., 2000. – прим. авт.
[Закрыть]
Результаты экспериментов Хильды Прешельдт были опубликованы в 1924 году, но сама она не дожила до этого момента. На полпути к своей докторской степени она вышла замуж за Отто Мангольда, одного из коллег-аспирантов по лаборатории Шпемана. Под его фамилией она и известна сейчас в науке. В декабре 1923 года после получения степени она родила сына Кристиана и ушла из лаборатории. 4 сентября 1924 года, навещая родителей мужа в Швабии, она пролила керосин, когда разжигала печь. Платье ее вспыхнуло, и на следующий день она скончалась от ожогов. Ей было всего 26 лет, и она была типичным продуктом Веймарской школы. Студенткой, в промежутках между анатомированием эмбрионов, она читала Рильке и Стефана Георге, сидела на лекциях философа Эдмунда Гуссерля, украшала свое жилище репродукциями экспрессионистов и совершала долгие прогулки по Шварцвальду. Она в действительности выполнила лишь одну серию хороших экспериментов, но, по мнению многих, если бы осталась жива, то разделила бы со Шпеманом Нобелевскую премию 1935 года.
E pluribus unum? [32]32
В многообразии едины? (лат.)
[Закрыть]
Когда Энг и Чанг совершали турне по Соединенным Штатам, они рекламировали себя девизом, хорошо известным любому жителю республики: "Е pluribus unum" – "В многообразии едины", или "Из множества – один". Это выглядело весьма подходяще, но лишь отчасти было правдой. Сросшиеся близнецы – это прежде всего явный пример обратного: "Ех uno plures" ("Из единого – множество").
Сходство человеческих близнецов со сросшимися близнецами тритона, полученными Хильдой Прешельдт, позволяет понять один из способов того, как это может случиться. Все, что для этого нужно, – два организационных центра у одного эмбриона вместо обычного единственного. Прешельдт удваивала число организаторов у своих тритонов посредством искусной, хотя и несколько жесткой, трансплантационной хирургии. В настоящее время существуют намного более тонкие молекулярные способы добиться того же самого результата. Гены, кодирующие сигнальные белки организатора, – ноггин, цербер, диккопф и так далее, регулируются, в свою очередь, другими, "главными контрольными генами". Тогда появление двух эмбрионов из одного может быть просто результатом включения одного из этих главных контрольных генов, который обычно бывает выключен. Почему это происходит, до сих пор загадка. Сросшиеся близнецы у человека рождаются так редко (около 1 на 100 тысяч живых рождений) и так непредсказуемо, что явных путей к ее разгадке не существует. Может быть, они появляются под действием химических веществ в окружающей среде: было показано, что по крайней мере один препарат (хотя это весьма редкое и мощное химиотерапевтическое средство) вызывает рождение сросшихся близнецов у мышей. Каковы бы ни были окончательные причины появления сросшихся близнецов, теория "двух организаторов", хотя и предлагает довольно-таки убедительное объяснение того, как получить два эмбриона из одного, не может считаться законченным объяснением их существования. Она ничего не говорит об их главной характеристике и не разъясняет способа, которым они, "пришиты" друг к другу. [33]33
Теорию "двух организаторов" иногда называют моделью краудинга,чтобы отличить ее от моделей разделенияили слияния(J.-F. Oostra, личн. сообщ.). Большинство моделей слияния постулируют наличие отдельных эмбриональных дисков. Моя модель очень сходна с таковой Хамбургера (Hamburger, 1947). Она, по-видимому, также схожа с моделью, которую приводит Спенсер (Spencer, 2000 a, b; 2001), хотя последняя не дает точных указаний относительно того, происходят ли сросшиеся близнецы из одного или двух эмбриональных дисков. Даже если в большинстве случаев, как уже указывалось, сросшиеся близнецы имеют единый амниотический мешок и плаценту, есть свидетельства, что у некоторых –два амниона и, что совсем уж странно, две плаценты. Модель "двух организаторов" не подходит для таких близнецов. О воздействии химических веществ на появление сросшихся близнецов (и моноамниотических монозиготных близнецов) сообщают: Kaufman and O'Shea, 1978. – прим. авт.
[Закрыть]
Одним из тех, кто много размышлял о соединении сросшихся близнецов, был Этьен Жоффруа Сент-Илер. В 1829 году Жоффруа был профессором Музея естественной истории и, вслед за Кювье (его коллегой и отчаянным соперником), наиболее известным анатомом Франции. Ученик Жоффруа Этьен Серр написал монографию о вскрытии Риты и Кристины Пароди. Сын Жоффруа, Изидор, организовал само вскрытие. На самом деле именно Изидора подозревали в том, что он заставил чету Пароди отдать труп ученым.
Жоффруа-отец слыл одним из самых непредсказуемых умов своего времени: почти все, о чем он писал, носит печать гениальности и абсурдности одновременно. Он был романтиком по своему отношению к природе: по существу ученый-анатом, он изучал способы, посредством которых иглобрюх способен раздувать себя, но не гнушался и глобальных проблем, таких, например, как взаимоотношения "невесомых жидкостей" Вселенной (свет, электричество, нервная энергия и др.). Созданная им в результате этого дедуктивная теория никогда не была опубликована. С большим основанием Жоффруа также активно интересовался уродствами. Именно благодаря его усилиям тератология впервые действительно стала наукой.
Сросшиеся близнецы – парапагус дицефалус дибрахиус.
Из книги Б.К. Херста и Дж.А. Пирсола "Человеческие уродства", 1893 (Библиотека Уэллком, Лондон).
В 1799 году Жоффруа попал в число ученых мужей, которых Наполеон Бонапарт привез в Египет в безнадежной попытке заблокировать англичанам путь на Восток. Жоффруа провел свои египетские каникулы (сокращенные из-за появления на континенте британцев), отлавливая крокодилов, собирая ихневмонов и мумифицированных ибисов. Египет дал ему также возможность упорядочить представления об "уродах". Жоффруа был стойким последователем эпигенеза. Если уродства возникают вследствие неприятных событий, имевших место в утробе, рассуждал он, тогда их можно вызывать искусственно. С незапамятных времен крестьяне долины Нила выводили цыплят в своеобразных инкубаторах, используя для этой цели глиняные печи, в которых они сжигали коровий навоз. Вдохновленный их примером, Жоффруа завел у себя похожую инкубаторную станцию, где занялся тем, что подвергал развивающихся цыплят всевозможным насильственным действиям: встряхивал и переворачивал яйца, протыкал их или покрывал золотой фольгой. В итоге цыплята получались чаще мертвыми, чем изуродованными. Однако у некоторых были искривлены пальцы, клювы, черепа имели странный вид, а еще у нескольких отсутствовали глаза. Довольно-таки неприглядные результаты, но достаточные для того, чтобы убедить Жоффруа, что он окончательно разделался с преформизмом.
От уродов-цыплят было легко перепрыгнуть к монстрам человеческим, и начиная с 1822 года Жоффруа публикует серию статей об уродливых младенцах, которых он классифицирует так, как зоологи классифицируют насекомых. Например, ребенок, у которого голова снаружи не видна, принадлежал к роду Cryptocephalus. Жоффруа понимал, что выделенные им "роды" охватывали не только людей: собак, кошек, может быть, даже рыбы могли иметь сходные деформации. Его классификация работала в масштабах всей природы. Через несколько лет Изидор усовершенствует классификацию отца, приведя ее в систему, которой, с которыми модификациями, до сих пор пользуются тератологи. Согласно ей, Рита, Кристина и подобные им дети известны французам как ксифопаги [34]34
Суффикс "пагус" ( греч. – соединять) прибавляется к анатомическому наименованию места срастания; например, краниопагус – соединение головами, торакопагус – соединение грудными клетками, пигопагус – соединение тазовыми областями и т.д. – прим. перев.
[Закрыть], или как сросшиеся близнецы (парапагус дицефалус тетрабрахиус – соединенные боками, двухголовые, четверорукие), – всем остальным.
Однако самым грандиозным вкладом Этьена Жоффруа Сент-Илера в тератологию было его представление о том, что уродство – это естественное следствие законов, регулирующих человеческое тело. Более того, такие изуродованные дети могут, при правильном подходе, помочь обнаружитьэти законы. Это была, конечно, абсолютно бэконовская идея, и в одном из своих наполненных философским смыслом трактатов французский анатом тепло отзывался о гении лорда-канцлера при короле Якове I.
Нигде, по мнению Жоффруа, эти законы не выявлялись с большей очевидностью, чем в сросшихся близнецах. Еще до того, как ему пришлось увидеть Риту и Кристину Пароди в 1829 году, он провел несколько вскрытий сросшихся близнецов. Соединенность, утверждал он, – это просто отражение того, что обычно случается с единичным зародышем. Органы эмбриона развиваются из различных частей, которые затем притягиваются друг к другу загадочной силой, сходной с силой притяжения. Соединение сросшихся близнецов обусловлено той же силой, но неправильно приложенной, в результате чего части близнецов срастаются друг с другом. [35]35
Рассказ об искусственной инкубации приводит Нидэм (Needham, 1959, p. 22-25 и 203-204). О попытках Жоффруа искусственно создать цыплят-уродов см. в его работах (E. Geoffroy Saint-Hilaire, 1825), а также в статьях: Fischer, 1972; Appel, 1987. См. также рассказ сына о влиянии этих экспериментов (I. Geoffroy Saint-Hilaire, 1847). Основной тератологический труд Этьена: Жоффруа Сент-Илера "Философия анатомии человеческих уродств" (E. Geoffroy Saint-Hilaire. Philosophie Anatomique des monstruosités humaines,1822). Работа по классификации была выполнена Изидором в труде: Жоффруа Сент-Илер "История общая и частная аномалий организации у человека и животных" (I. Geoffroy Saint-Hilaire. Histoire générate et particutière des anomalies de l'organisation chez I'homme et les animaux, 1832-1837). Современную оценку тератологии Жоффруа см.: Morin, 1996. Некоторое представление об интеллектуальных предшественниках Жоффруа дает Аппель (Appel, 1987); о том, как высоко Жоффруа оценивал заслуги Бэкона, см. в его трудах (E. Geoffroy Saint-Hilaire, 1825). – прим. авт.
[Закрыть]
Жоффруа был в совершенном восторге от своего умозаключения и в свойственном его времени позитивистском духе сформулировал соответствующий закон: le loi d'affinité de soi pour soi – закон сродства подобного с подобным.В монографии Этьена Серра о вскрытии Риты и Кристины первая часть целиком посвящена закону сродства подобного с подобными некоторым другим закономерностям, сформулированным самим автором. [36]36
Изидор Жоффруа Сент-Илер (I. Geoffroy Saint-Hilaire, 1847) утверждал, что мысль о сродстве подобного с подобнымвпервые пришла в голову его отцу в 1826 году, за несколько лет до появления Риты и Кристины. Последняя, наиболее полная трактовка закона содержится в работе Э. Жоффруа Сент-Илера (E. Geoffroy Saint-Hilaire, 1838); об этом см. также: Appel, 1987. – прим. авт.
[Закрыть]Жоффруа считал закон сродства подобного с подобнымсвоим величайшим открытием и в последующие годы возвел его в ранг фундаментальных закономерностей Вселенной, вполне в духе представлений Гёте об "избирательном сродстве", с которыми он, собственно, и был сходен. Излишняя самонадеянность ученого привела к тому, что сегодня закон сродства подобного с подобнымпрактически забыт. Об этом можно пожалеть, так как хотя закон Жоффруа страдает нечеткостью и ошибочен в деталях, он сообщает нечто важное об устройстве человеческих эмбрионов. Это было первое научное объяснение причин срастания.