Текст книги "Мутанты. О генетической изменчивости и человеческом теле."
Автор книги: Арман Мари Леруа
Жанр:
Биология
сообщить о нарушении
Текущая страница: 21 (всего у книги 27 страниц)
Морщины
Даже если свободные радикалы служат не единственным и вовсе не главным источником мутаций, последние все же порождают, по крайней мере некоторые, характерные признаки старения. Мутации могут быть особенно разрушительными в таких тканях, как кожа, клетки которой делятся постоянно в течение жизни. Некоторые из нас сохраняют относительно моложавую внешность вплоть до глубокой старости, другие, будучи совсем молодыми, покрываются морщинами. Эти различия отчасти обусловлены воздействием на кожу атмосферных факторов, в первую очередь солнечного света, который получает каждый из нас, поскольку ультрафиолетовые лучи – мощный мутаген. Но даже защищенная от солнца кожа стареет. И сколько бы зонтиков, вуалей и защитных кремов мы ни использовали, кожа в тридцать пять лет никогда не будет такой сверкающей и гладкой, какой она была в пятнадцать.
Появление морщин – это признак глубинной неспособности клеток эпидермиса к замещению и поддержанию целостности соединительной ткани слоев кожи. Эта проблема касается всего нашего организма. Ее с очевидностью демонстрируют люди, кожа и соединительные ткани которых стареют с необыкновенной, можно сказать катастрофической, скоростью. Жертвы наследственного заболевания, именуемого синдромом Вернера, вынуждены седеть и лысеть еще в подростковом возрасте. В двадцать с небольшим лет у мужчин атрофируются яички, а у женщин – фолликулы яичников, что приводит к специфической преждевременной менопаузе. На четвертом десятке больные нуждаются в трансплантации хрусталика для лечения катаракты, а их артерии отвердевают и покрываются жировыми отложениями. В сорок с лишним они умирают, обычно от инфаркта. [287]287
Синдром Вернера ( 277700) вызывается рецессивными мутациями в хеликазах RECQL2 (известного также как WRN) ( 604611) (Yu et al., 1989); см. обзор этой работы: Martin and Oshima, 2000. – прим. авт.
[Закрыть]
Синдром Вернера входит в группу наследственно обусловленных заболеваний ускоренного старения, объединенных под общим названием "прогерия". Сам синдром вызывается мутациями, которые выводят из строя белок, поддерживающий целостность ДНК во время репликации. В отсутствие этого протеина в клетках развивается очень высокая скорость мутаций. Мутационный обвал приводит к гибели, а не пролиферации клеток, или даже к продуцированию аномальных белков. Ткани, которые для сохранения целостности зависят от наличия большого количества делящихся клеток, такие, например, как кожа, деградируют. Возможно, нечто подобное происходит со всеми нами, только значительно медленнее.
По мере старения жизненная сила уходит из наших клеток. Это можно продемонстрировать в лаборатории. Давно известно, что с помощью сложных и тонких методов можно выращивать человеческие клетки в чашках Петри. Однако вне зависимости от качества условий окружающей среды, сколь бы благоприятными они ни были, свежевыращенные клетки будут делиться лишь ограниченное число раз, а затем прекратят деление. Их упадок происходит постепенно и вызывается некоторыми внутренними ограничениями. По мнению многих, клеточное старение есть не просто следствие старения организма, а его непосредственная причина.
В подтверждение этой идеи клетки, взятые от плодов человека, прежде чем погибнуть, способны делиться на протяжении вдвое большего числа поколений по сравнению с теми, которые получены от девяностолетних стариков. Тогда, наверное, у пожилых людей множество клеток приближаются к завершению своей репликационной карьеры и в силу этого не могут больше компенсировать получаемые ущербы и дефекты, как они это делали раньше. Поэтому, когда в 1998 году были обнаружены молекулярные причины ограничения клеточных делений и барьеры эти впоследствии были преодолены, все пришли в волнение. Если можно вылечить клеточное старение, значит, вероятно, и саму старость. Всякий раз, когда клетка делится, должны удваиваться и ее хромосомы. Но ферменты, участвующие в репликации ДНК хромосом, не способны удваивать концы хромосом.
Поэтому эти концы, защищенные последовательностями длиной в тысячи пар оснований и называемые теломерами, постепенно укорачиваются в процессе многих клеточных делений со скоростью около ста пар оснований на одно деление. Если теломеры исчезают, клетки больше не могут делиться и умирают. Именно скорость исчезновения теломеров лежит в основе фундаментального механизма старения. По крайней мере, так это выглядит сегодня.
В таком случае необходимо найти способ по предотвращению изнашивания теломеров. Далеко не все клетки расстаются со своими теломерами. Зародышевые клетки, производящие яйцеклетки и спермии, обладают сложным ферментом, так называемой теломеразой, которая сохраняет теломеры, обеспечивая тем самым столь необходимое для этих клеток бессмертие. Утрата теломеров всеми остальными клетками тела происходит как раз оттого, что они не содержат этого фермента. Если путем инжиниринга внедрить теломеразу в клетки, которые обычно ее не имеют, то в процессе множества делений теломеры будут сохранены, и клетки обретут бессмертие. [288]288
В двух обзорах (Rose, 1991; Shay and Wright, 2000) рассказывается о роли старения клеток (или лимита Хейфлика) в процессе старения. Боднар с соавторами (Bodnar et al., 1997) показали, что при сверхэкспрессии теломеразы линии человеческих клеток обретают клеточное бессмертие. – прим. авт.
[Закрыть]
Если дорога к клеточному бессмертию столь проста, почему бы нам ею не воспользоваться? Причина довольно банальна: бесконечность – это свойство рака. Почти все опухолевые клетки на какой-то стадии своего существования перенесли мутацию, вызвавшую у них появление теломеразы, которая у здоровых клеток не присутствует. Отсутствие теломеразы в наших клетках – это, вероятно, один из основных защитных механизмов, которым мы располагаем против размножения чужеродных клеток. Кроме того, пока еще совсем неясно, что укорочение теломеров действительно вызывает старение. Только в одном из экспериментов эта проблема решалась напрямую: когда мыши с дефектом теломеразы были вначале выведены с помощью генной инженерии, а затем размножались в течение шести поколений. [289]289
Есть некоторые данные, что нервные клетки мыши не подвергаются in vitro процессу клеточного старения (Tang et al., 2001; Mathon et al., 2001). Существуют также серьезные основания полагать, что пролиферация мышиных клеток in vitro не ограничена наличием теломеров (Shay and Wright, 2000). – прим. авт.
[Закрыть]
Мыши, судя по всему, вполне могут обходиться без теломеразы, по крайней мере – в течение некоторого времени. Первое поколение дефектных по теломеразе мышей, когда оно было получено, не проявляло никаких признаков преждевременного старения. Некоторым образом, в этом не было ничего удивительного. У этих мышей теломеры были столь же длинными, как и у всех остальных, поскольку мыши, подобно людям, наследуют свои теломеры от родителей, а их родители были в этом отношении нормальными. Однако потребность в теломеразе со стороны зародышевых клеток приводила к тому, что каждое последующее поколение мутантных мышей вступало в жизнь со все более короткими теломерами. Эффект проявился у четвертого поколения мышей, когда у самцов значительно сократилось количество живых спермиев. К шестому поколению они вообще исчезли. Самки не сделались стерильными, но стали продуцировать меньше яйцеклеток, чем обычно; к тому же из этих производимых ими яйцеклеток часто развивались дефектные эмбрионы. К шестому поколению и самцы и самки начали преждевременно стареть. Как и люди, мыши с возрастом лысеют и седеют. Так случилось с мышами шестого поколения, пока они были еще совсем юными.
Эти результаты в лучшем случае могут служить подтверждением, хотя и неоднозначным, того положения, что потребность в теломерах является причиной старения. Достаточно короткие теломеры определенно могут вызывать преждевременное старение, но поскольку это происходит только у животных шестого поколения после их изнашивания, они не могут считаться причиной нормального старения у мышей. Весьма соблазнительно отказаться от укорочения теломеров как причины, объясняющей старение также и у людей, но, вероятно, делать это пока рано. У лабораторных мышей исключительно длинные теломеры – куда длиннее, чем у нас. Если наши теломеры в самом начале человеческой жизни уже достаточно коротки и должны, за счет наших крупных размеров и долгой жизни, расходоваться гораздо интенсивнее, чем у мышей, тогда сохраняется вероятность, что они все же кое-что значат и для нас. [290]290
О мышах с дефицитом теломеразы написано много работ (Blasco et al., 1997; Lee et al., 1998; Rudolph et al., 1999). Одно из затруднений в интерпретации этих результатов состоит в том, что лабораторные мыши, видимо, имеют более длинные теломеры по сравнению с дикими (Weinstein and Cizek, 2003). – прим. авт.
[Закрыть]
Одним из способов доказать это утверждение может стать клонирование человека. Клоны должны вступать в жизнь с аномально короткими теломерами, поскольку они появляются на свет без помощи зародышевых клеток и, следовательно, их теломеры никогда не возобновляются. Последовательные поколения клонов должны обладать постоянно укорачивающимися теломерами, а скорость их старения должна стремительно возрастать, тем более в том случае, если донорский организм не был молодым. Глобальный запрет на клонирование человека не позволяет рассчитывать на скорое проведение такого эксперимента – разве что на это решатся одержимые уфологи или итальянские отступники-акушеры. Но, разумеется, есть данные, полученные на животных. Овечка 6LL3, известная по кличке Долли, получила свои хромосомы из клеток молочных желез шестилетней овцы финско-дорсетской породы. По этой причине она начала свою жизнь с довольно-таки короткими теломерами. Многие считали, что она будет рано стареть. Однако, если не считать кое-какого артрита, она оставалась вполне здоровой. В вирусном заболевании, которое ускорило ее эвтаназию в шестилетнем возрасте, не было ничего необычного. [291]291
Первоначальное сообщение о клонировании Долли принадлежало Уилмоту с соавторами (Wilmut et al., 1997). Она умерла 14 февраля 2003 года. Шилс с соавторами (Shiels et al., 1999) приводят описание коротких теломеров у Долли. – прим. авт.
[Закрыть]Клоны других животных, будь то крупный рогатый скот или мыши, часто страдают от разных нарушений здоровья, например таких, как ожирение, но ни у одного из них не было описано случаев прогерии. Но все это, так сказать, дела давно минувших дней. [292]292
Клонированные представители крупного рогатого скота как будто бы отличаются вполне нормальными и даже довольно длинными теломерами (Lanza et al., 2000; Betts et al., 2001). Существуют противоречивые данные относительно состояния здоровья клонированных животных (Cibelli et al., 2002; Wilmut, 2002). Шесть поколений клонированных мышей не обнаруживали признаков преждевременного старения, но при этом у них были, судя по всему, очень длинные теломеры. – прим. авт.
[Закрыть]
Много информации может быть получено также от людей, мутантных по теломеразе. Помимо синдрома Вернера есть еще один тип прогерии, более редкий и еще более тяжелый, при котором организм начинает катастрофически стареть еще в детстве. [293]293
Синдром Хатчинсона-Гилфорда (прогерия) ( 177670) вызывается мутацией гена, кодирующего ламин А / ламин С. – прим. авт.
[Закрыть]Жертвы этого заболевания обычно умирают лет в двенадцать или около того, опять-таки от инфаркта, причем к этому моменту они по внешнему виду в точности напоминают маленьких старичков. Подобные симптомы заставляют вспомнить о дефектах теломеров. Даже если эту страшную болезнь удастся объяснить с позиций слишком быстрого клеточного старения, мы лишь на малую толику проникнем в тайны старости. Ибо прогерия, ускоряя некоторые проявления физической деградации, оставляет в неприкосновенности разум своих жертв.
Жить до ста
За последние десять лет в изучении стaрения произошла настоящая революция, которая по большей части связана с исследованиями червя нематоды Caenorhabditis elegans. Этот червь достигает в длину всего 1 миллиметра, так что в чашке Петри его можно выращивать тысячами. Черви эти абсолютно прозрачны, и посредством мощного микроскопа можно разглядеть каждую из 959 клеточек, которые содержатся в их живых телах. По какой-то причине в процессе экспериментов оказалось особенно легко идентифицировать мутантных червей, отличавшихся необыкновенным долгожительством. Некоторые из этих червей жили вдвое дольше обычных – сорок два дня, что на человеческий масштаб составляет сто пятьдесят лет.
На сегодняшний день у червей идентифицирована по меньшей мере сотня генов, мутации которых заставляют животных жить дольше. Многие из этих мутаций выводят из строя механизмы стимуляции инсулиноподобного фактора роста (IGF), вследствие чего меняется вся физиология червя. Мутантные черви с дефектами стимулов IGF хуже размножаются, делают запасы большого количества жира и cахаров, активизируют целую батарею генов, кодирующих устойчивые к стрессу белки, в том числе и супероксиддисмутазу. В результате в чашках Петри появляются черви, излучающие здоровье, в то время как их обычные сородичи там же чахнут на глазах.
Мы уже сталкивались ранее с инсулиноподобным фактором роста. Именно недостаток этого гормона делает пигмеев маленькими, а его избыток отвечает за гигантские размеры немецких догов. Он – один из тех гормонов, который при инактивации его у мышей делает их долго живущими карликами. У червей IGF, похоже, не контролирует размеры тела (что достойно удивления, поскольку у многих других созданий, включая фруктовых мушек, он выполняет именно эту функцию). Но даже при таком условии, на основании полученных на червях результатах, а также с учетом исследований IGF, проведенных на мышах, мухах и многих других существах, можно в общих чертах обрисовать механизм, вероятно, универсальный для всех животных, который позволяет им жить дольше, если в этом возникает необходимость.
Черви не отличаются особым интеллектом. Нервная система любой особи, включая и ту структуру, которая у них называется мозгом, состоит всего лишь из 302 нейронов. Человеческий мозг содержит в миллионы раз больше нервных клеток. При всем при том у червя хватает ума, чтобы понять, сколько еды ему дали. Когда он чувствует, что предстоит поголодать, нейрональные сигналы от органов чувств, расположенных в его голове, передаются остальному телу, и сигнальный механизм IGF блокируется. Изменение условий жизни имитирует то, что происходит в организме многих мутантов. Результат же остается прежним: червь живет дольше. [294]294
Основополагающая работа по изучению старения с помощью червя С. elegans: Kenyon at al., 2001; в последние годы написан ряд обзоров на эту тему (Leroi, 2001; Finch and Ruvkun, 2001; Partridge and Gems, 2002). – прим. авт.
[Закрыть]
Все это нам уже знакомо. Именно так обстоит дело при ограничении калорий в диете мышей и крыс. И здесь можно найти объяснение того, как и почему размеренная жизнь оказывает столь благоприятный эффект. Реакция организма на калорийное ограничение – вовсе не только странный лабораторный феномен, представляющий интерес лишь для геронтологов и специалистов по питанию, мечтающих о человеческом бессмертии. Это, вероятно, тот самый механизм, который развивался в процессе эволюции, чтобы помочь животным справиться с превратностями судьбы. Понимая, что впереди его ждут тяжелые времена, молодой организм изменял свой образ жизни. Вместо инвестирования ресурсов в ускоренный соматический рост и быстрое размножение, он переключался на программу выживания, оставаясь мелким и прекратив репродукцию, но, в сущности, делая ставку на то, что лучшие времена – раньше или позже – настанут. Если такая точка зрения на калорийное ограничение верна, тогда ее сторонники стремятся достичь не менее, чем возрождения эволюционных механизмов, позволявших нам справляться с лишениями и тяготами, которые наверняка были уделом людей на протяжении миллионов лет их предыстории (и, конечно, немалой части истории). Они не подозревают, что, высчитывая энергетическую ценность своего рациона до последней калории, окружая себя бутылочками с витаминами и ежемесячно, как положено, проверяя плотность костей, они играют роль самых ревностных противников цивилизации.
Можно ли обнаружить гены долгожительства у людей? Многие ученые полагают, что да. Во Франции, Англии, Голландии, Японии, Финляндии и Соединенных Штатах геронтологи деловито составляют списки столетних жителей этих стран и анализируют их ДНК, чтобы выяснить, почему они так долго живут. Они поступают так, не рассчитывая найти одну-единственную мутацию или полиморфизм, которым обладали бы все долгожители. Более того, они полностью признают, что многие из старцев смогли дожить до такого возраста, потому что дополняли везенье достойным образом жизни. Научный подход скорее состоит в том, чтобы исследовать множество генов, которые, по той или иной причине, считаются ответственными за болезни пожилого возраста, и найти их варианты, наиболее распространенные у лиц, доживших до глубокой старости по отношению к остальной популяции.
Один из первых таким образом идентифицированных генов долгожительства стал аполипопротеин E (APOE). Белок, кодируемый этим геном, существует в нескольких полиморфных вариантах, называемых ε2, ε3 и ε4. Около 11 процентов французских мужчин и женщин не старше семидесяти лет несут как минимум одну копию аллеля ε4, но у столетних французов этот показатель опускается до 5 процентов; разница восполняется за счет варианта ε2, который становится более распространенным. Это означает, что, помимо желания отпраздновать столетний день рождения, каждому из нас хорошо бы иметь по крайней мере одну копию ε2 и вовсе не иметь ε4.
Так происходит из-за того, что ген APOE, который кодирует белок, включенный в перенос холестерина, играет роль в развитии болезни Альцгеймера. [295]295
Болезнь Альцгеймера ( 104300): позднее ее начало (БА2) ассоциируется с конкретным аллелем гена аполипопротеина Е ( 107741). – прим. авт.
[Закрыть]Примерно у одного человека из десяти в возрасте шестидесяти пяти лет есть шансы стать жертвой Альцгеймера, но они неизмеримо возрастают, если человек является носителем варианта ε4. Одна копия ε4 по сравнению с ее отсутствием увеличивает риск развития болезни Альцгеймера втрое; две копии – в восемь раз. Если и этого недостаточно, тогда отметим, что ε4 также предрасполагает к сердечно-сосудистым заболеваниям. При такой удвоенной молекулярной ответственности за развитие тяжелых заболеваний нетрудно понять, почему редко кто из носителей ε4 доживает до преклонного возраста. [296]296
Об относительном риске, связанном с аллелем ε4, см.: Corder et al., 1993; о редкости этого гена у французов-долгожителей – Schachter et al., 1994; Charlesworth, 1996. – прим. авт.
[Закрыть]
Все эти рассуждения, однако, мало что значат, если у вас темная кожа. Исследования по распространению генов АРОЕ показали, что вариант ε4 широко распространен на территории Африки к югу от Сахары. Почти у половины африканских пигмеев встречается как минимум одна его копия. Означает ли это в действительности, что у пигмеев эфе свирепствует болезнь Альцгеймера? Краткий ответ состоит в том, что мы этого не знаем. Эпидемиологические исследования относительно распространенности болезни Альцгеймера среди пигмеев никогда не проводились, и выполнить их довольно затруднительно, поскольку из-за высокой смертности от инфекционных заболеваний и несчастных случаев мало кто из пигмеев доживает до такого возраста, когда появляются признаки болезни Альцгеймера. Это само по себе может объяснить причины широкого распространения ε4 в их популяции, однако более вероятное объяснение состоит в том, что вышеупомянутый аллель менее опасен для африканцев, чем для европейцев. Почему – остается загадкой. [297]297
О распределении аллелей АРОЕ по земному шару и их значении в риске развития болезни Альцгеймера у представителей разных этнических групп сообщается: Fullerton et al., 2000. Существует два мнения относительно того, почему африканцы могут не ощущать вредоносных последствий аллеля ε4. Первое состоит в том, что, как показывает анализ гаплотипов, аллель ε4 у африканцев несколько отличается от такового европейских популяций. Возможно, он попросту лишен патогенного воздействия. Согласно второй точке зрения, эффект может быть тем же самым, но у африканцев с более высокой частотой встречается генный вариант в другом локусе, который защищает их от ε4. Пока нет оснований считать одно из этих мнений более обоснованным. О частотах аллеля АРОЕ у африканцев см.: Lekraou et al., 1997. – прим. авт.
[Закрыть]
Генетика болезни Альцгеймера, по крайней мере у европейцев, является прекрасной иллюстрацией к эволюционной теории старения, пожалуй, даже еще более убедительной, чем пример с хореей Гентингтона. Даже среди явно подверженных заболеванию (белых) французов ε4 представлен в таком летальном варианте, что его распространение можно объяснить только одним: он оказывает низкий совокупный эффект на репродуктивный успех носителей. Что сильно контрастирует с другими генами, вызывающими болезнь Альцгеймера. Мутации по меньшей мере трех других генов приводят к этому заболеванию. Однако их действие проявляется уже к тридцатилетнему возрасту носителей, которые погибают в самом расцвете сил. Таким образом, гены полностью подвержены действию естественного отбора и потому редки. [298]298
Гены раннего начала болезни Альцгеймера (BA1) – это AD1, εAPP ( 104760); AD3, Presenelin 1 ( 104311) и AD4, Presenelin 2 ( 600759) (Charlesworth, 1996). – прим. авт.
[Закрыть]
Подобные результаты – только начало. Через несколько лет будут обнаружены десятки, если не сотни полиморфных генов, которые способны либо продлевать нам жизнь, либо укорачивать ее. Большая часть этих генов будет либо ускорять, либо задерживать развитие признаков старения, с которыми мы уже знакомы: старческое слабоумие, артериосклероз, почечную недостаточность, болезни простаты, менопаузу, рак и тому подобное. Ни один из геномов конкретного человека не будет обладать всеми генными вариантами, которые благоприятствуют долгожительству. Это ясно уже из того разнообразия путей, которыми определяется наш уход из жизни. Но, владея такими данными, можно будет описать относительный риск обладания данной совокупностью генов в статистических терминах. На основе нижеприведенных примеров можно представить, как это будет происходить. Если при прочих равных условиях геном какого-нибудь сорокалетнего человека будет характеризоваться следующими вариантами:
SRY(−/−); APOE(ε2/ε2); ACE(D/D); MTHFR(Ala222/Ala222),
то его обладатель меньше подвержен риску развития сердечно-сосудистых заболеваний, а следовательно, и ежегодному риску смертности, чем другой индивид со следующим сочетанием генов:
SRY(+/−); APOE(ε4/ε4); ACE(I/I); MTHFR(Val222/Val222).
Различия между двумя вышеприведенными записями не несут в себе никакой тайны. Имеются четыре гена SRY, APOE, АСЕ и MTHFR, каждый из которых обладает двумя вариантами, связанными, как хорошо известно, с различиями в показателях смертности у людей среднего и пожилого возраста. В таком случае эти две записи представляют собой некую прогностическую оценку старения, которую, однако, нельзя считать более обоснованной, чем утверждение, будто тот, кто не курит, не пьет, не водит машину и не занимается сексом, в целом проживет дольше того, кто это делает. Только в приведенном выше примере все факторы риска заключены в геноме.
Обладание вторым вариантом генома вовсе не обязательно предрекает раннюю смерть. И хотя нельзя путем диеты избежать болезни Альцгеймера, для предотвращения инфаркта можно сделать многое. То, что гены наделяют нас различными шансами окончить свою жизнь в любом известном возрасте, кажется почти доказанным, но перевести генетические различия в разницу непрожитых лет пока невозможно. Для этого необходимы крупномасштабные популяционные исследования, которые еще не выполнены, но наверняка стоят на очереди. [299]299
Подробный обзор современного состояния поисков генов долгожительства см.: Heijmans et al., 2000. – прим. авт.
[Закрыть]Правда, из этого правила есть исключения. В США люди с сочетанием SRY(−/−) живут в среднем на пять лет дольше обладателей SRY(+/−), и с этим ничего нельзя поделать – разве что пожать плечами с неким галльским безразличием и пробурчать: "Vive la différence!" – "Да здравствуют различия!"