Текст книги "Физика для всех. Движение. Теплота"
Автор книги: Александр Китайгородский
Соавторы: Лев Ландау
сообщить о нарушении
Текущая страница: 9 (всего у книги 28 страниц)
Другие простейшие машины
Проигрыш в пути как оплата выигрыша в силе есть общий закон не только рычажных инструментов, но и любых других приспособлений и механизмов, используемых человеком.
Для поднятия грузов широко применяются тали. Так называется система нескольких подвижных блоков, соединенных с одним или несколькими неподвижными блоками. На рис. 53 груз висит на шести веревках. Понятно, что вес распределяется, и натяжение веревки будет в шесть раз меньше веса. Подъем груза весом в тонну потребует приложения силы в 1000/6 = 167 кГ. Однако нетрудно сообразить, что для подъема груза на 1 м придется выбрать 6 м веревки. Для подъема груза на 1 м нужно 1000 кГм работы. Эту работу мы должны доставить в «любом виде» – сила в (1000/6) кГ должна действовать на пути 6 м, сила в 10 кГ – на пути в 100 м, сила в 1 кГ – на пути в 1 км.

Наклонная плоскость, о которой мы упоминали на стр. 26, также представляет собой приспособление, позволяющее выиграть в силе, проигрывая в пути.
Своеобразным способом умножения силы является удар. Удар молотком, топором, таран, да и просто удар кулаком может создать огромную силу. Секрет сильного удара несложен. Забивая молотком гвоздь в неподатливую стену, нужно как следует размахнуться. Большой размах, т.е. большой путь, на котором действует сила, порождает значительную кинетическую энергию молотка. Отдается эта энергия на малом пути. Если размах (1/2) м, а гвоздь вошел в стену на (1/2) см, то сила умножилась в 100 раз. Но если стена тверже и гвоздь при том же размахе руки вошел в стенку на (1/2) мм, то удар будет в 10 раз сильнее, чем в первом случае. В твердую стенку гвоздь войдет не так глубоко, и та же работа потеряется на меньшем пути. Выходит, что молоток работает, как автомат: бьет сильнее там, где труднее.
Если молоток «разгонять» силой в килограмм, то он ударит по гвоздю с силой в 100 кГ. А раскалывая дрова тяжелым колуном, мы ломаем дерево с силой в несколько тонн. Тяжелые кузнечные молоты падают с небольшой высоты – порядка одного метра. Расплющивая поковку на 1–2 мм, молот в одну тонну весом обрушивается на нее с огромной силой – в тысячи тонн.
Как складывать параллельные силы, действующие на твердое тело
Когда на предыдущих страницах мы решали задачи механики, в которых тело мысленно заменялось точкой, вопрос о сложении сил решался просто. Правило параллелограмма давало ответ на этот вопрос, а если силы были параллельны, то мы складывали их величины как числа. Теперь дело обстоит сложнее. Ведь воздействие силы на предмет характеризуется не только ее величиной и направлением, но и точкой ее приложения, или – мы пояснили выше, что это одно и то же – линией действия силы.
Сложить силы – значит заменить их одной. Это возможно далеко не всегда.
Замена параллельных сил одной равнодействующей – задача, осуществимая всегда (за исключением одного особого случая, о котором будет сказано в конце этого параграфа). Рассмотрим сложение параллельных сил. Конечно, сумма сил в 3 кГ и 5 кГ равна 8 кГ, если силы смотрят в одну сторону. Задача состоит в том, чтобы найти точку приложения (линию действия) равнодействующей.
На рис. 54 изображены две действующие на тело силы. Суммарная сила Fзаменяет силы F 1и F 2, но это значит не только то, что F= F 1+ F 2, действие силы Fбудет равноценно действию F 1и F 2в том случае, если и момент силы Fбудет равен сумме моментов F 1и F 2.

Мы ищем линию действия суммарной силы F. Конечно, она параллельна силам F 1и F 2, но на каких расстояниях проходит эта линия от сил F 1и F 2?
В качестве точки приложения силы Fна рисунке изображена точка, которая лежит на отрезке, соединяющем точки приложения сил F 1и F 2. По отношению к выбранной точке момент F, разумеется, равен нулю. Но тогда сумма моментов F 1и F 2по отношению к этой точке тоже должна равняться нулю, т.е. моменты сил F 1и F 2, противоположные по знаку, будут равны по величине.
Обозначив буквами d 1и d 2плечи сил F 1и F 2, можем записать это условие так:

Из подобия заштрихованных треугольников следует, что d 2/ d 1= l 2/ l 1, т.е. точка приложения суммарной силы на соединительном отрезке делит расстояние между складываемыми силами на части l 1и l 2, обратно пропорциональные силам.
Обозначим буквой lрасстояние между точками приложения сил F 1и F 2. Очевидно, l= l 1+ l 2.
Решаем систему двух уравнений с двумя неизвестными:
F1l1− F 2 l 2= 0,
l1+ l2= l.
Получим:

По этим формулам мы можем найти точку приложения равнодействующей силы не только в том случае, когда силы смотрят в одну сторону, но и в случае с силами, направленными в противоположные стороны (как говорят, антипараллельными). Если силы направлены в разные стороны, то они имеют противоположные знаки, и равнодействующая равна разности сил F 1− F 2, а не их сумме. Считая отрицательной меньшую из двух сил F 2, видим по нашим формулам, что l 1становится отрицательным. Это значит, что точка приложения силы F 1лежит не левее (как ранее), а правее точки приложения равнодействующей (рис. 55), при этом по-прежнему


Интересный результат получается при равных антипараллельных силах. Тогда F 1+ F 2= 0. Формулы показывают, что l 1и l 2становятся при этом бесконечно большими. Какой же физический смысл имеет это утверждение? Так как относить результирующую в бесконечность бессмысленно, то, значит, равные антипараллельные силы нельзя заменить одной. Такую комбинацию сил называют парой сил.
Действие пары сил нельзя свести к действию одной силы. Любые две параллельные или антипараллельные силы можно уравновесить одной, а пару сил – нельзя.
Разумеется, было бы неверным сказать, что силы, составляющие пару, уничтожают одна другую. Пара сил оказывает весьма существенное действие – вращает тело; особенность действия пары сил состоит в том, что она не дает поступательного движения.
В некоторых случаях может возникнуть вопрос не о сложении параллельных сил, а о разложении данной силы на две параллельные.

На рис. 56 изображены два человека, которые вместе несут на палке тяжелый чемодан. Вес чемодана раскладывается на обоих. Если груз давит на середину палки, то они оба испытывают одинаковую тяжесть. Если расстояние от точки приложения груза до рук, которые его несут, d 1и d 2, то сила Fразложится на силы F 1и F 2по правилу

Кто сильнее, тот должен взяться за палку поближе к грузу.
Центр тяжести
Все частички тела обладают весом. Поэтому твердое тело находится под действием бесчисленного количества сил тяжести. При этом все эти силы параллельны. Если так, то их можно сложить по правилам, которые мы только что рассматривали, и заменить одной силой. Точка приложения суммарной силы называется центром тяжести. В этой точке как бы сосредоточен вес тела.
Подвесим тело за одну из его точек. Как оно при этом расположится? Поскольку мы можем мысленно заменить тело одним сосредоточенным в центре тяжести грузом, ясно, что в равновесии этот груз будет лежать на вертикали, проходящей через точку опоры. Другими словами, в равновесии центр тяжести лежит на вертикали, проходящей через точку опоры, и находится в самом низком положении.
Можно расположить центр тяжести на вертикали, проходящей через ось, и над точкой опоры. Это удастся сделать с большим трудом и только благодаря наличию трения. Такое равновесие неустойчиво.
Мы уже говорили об условии устойчивого равновесия – потенциальная энергия должна быть минимальна. Так оно и есть в том случае, когда центр тяжести лежит ниже точки опоры. Любое отклонение повышает центр тяжести и, значит, увеличивает потенциальную энергию. Напротив, когда центр тяжести лежит над точкой опоры, то любое дуновение, выводящее тело из этого положения, ведет к уменьшению потенциальной энергии. Такое положение неустойчиво.
Вырежем из картона фигуру. Для того чтобы найти центр ее тяжести, подвесим ее два раза, приклеивая нитку-подвес сначала в одной, а потом в другой точке тела. Закрепим фигуру на оси, проходящей через центр тяжести. Повернем фигуру в одно положение, второе, третье… Мы обнаружим полное безразличие тела к нашим операциям. В любом положении осуществляется специальный случай равновесия. Его так и называют – безразличным.
Причина этого ясна – при любом положении фигуры заменяющая ее материальная точка находится в одном и том же месте.
В ряде случаев центр тяжести можно найти и без опыта и вычислений. Ясно, например, что центры тяжести шара, круга, квадрата, прямоугольника находятся в центрах этих фигур, так как они симметричны. Если мысленно разбить симметричное тело на частички, то каждой из них будет соответствовать другая, расположенная симметрично по другую сторону от центра. А для каждой пары таких частиц центр фигуры явится центром тяжести.
У треугольника центр тяжести лежит на пересечении медиан. Действительно, разобьем треугольник на узенькие полоски, параллельные одной из сторон. Медиана делит пополам каждую из полосок. Но центр тяжести полоски лежит, конечно, посередине полоски, т.е. на медиане. Центры тяжести всех полосок попадают на медиану, и когда мы будем складывать их силы веса, мы придем к выводу, что центр тяжести треугольника лежит где-то на медиане. Но это рассуждение верно в отношении любой из медиан. Поэтому центр тяжести должен лежать на их пересечении.
Но, может быть, вы не уверены, что три медианы пересекаются в одной точке. Это доказывается в геометрии; но наше рассуждение тоже доказывает эту интересную теорему. Ведь у тела не может быть несколько центров тяжести; а раз он один и лежит он на медиане, из какого бы угла мы ее ни провели, то значит, все три медианы пересекаются в одной точке. Постановка физического вопроса помогла нам доказать геометрическую теорему. Труднее найти центр тяжести однородного конуса. Из соображений симметрии ясно только, что центр тяжести лежит на осевой линии. Расчет показывает, что он находится на расстоянии 1/4 высоты от основания. Центр тяжести не обязательно находится внутри тела. Например, центр тяжести кольца находится в его центре, т.е. вне кольца.
Можно ли устойчиво поставить на стеклянной подставке булавку в вертикальном положении?
На рис. 57 показано, как это сделать. Небольшое сооружение из проволоки в виде двойного коромысла с четырьмя маленькими грузиками надо жестко прикрепить к булавке. Так как грузики подвешены ниже опоры, а вес булавки мал, то центр тяжести лежит ниже точки опоры. Положение устойчиво.

До сих пор речь шла о телах, имевших точку опоры. А что будет, если тело опирается на целую площадку?
Ясно, что в этом случае расположение центра тяжести над опорой вовсе не говорит о неустойчивости равновесия. Как иначе могли бы стоять стаканы на столе? Для устойчивости нужно, чтобы линия действия силы тяжести, проведенная из центра тяжести, проходила через площадь опоры. Наоборот, если линия действия силы проходит вне площади опоры, то тело падает.
Степень устойчивости может быть очень различной в зависимости от того, как высоко расположен центр тяжести над опорой. Стакан с чаем опрокинет только очень неловкий человек, а вот цветочную вазу с маленьким основанием можно опрокинуть неосторожным прикосновением. В чем здесь дело?
Взгляните на рис. 58. Одна и та же опрокидывающая сила, складываясь с силой тяжести, дает суммарную силу, которая прижимает тело к опоре, если центр тяжести расположен низко, а при высоко расположенном центре тяжести суммарная сила не проходит через площадь опоры, а направлена в сторону.

Мы сказали, что для устойчивости тела приложенная к нему сила должна пройти через площадь опоры. Но площадь опоры, нужная для равновесия, не всегда соответствует фактической площади опоры. На рис. 59 изображено тело, площадь опоры которого имеет форму полумесяца. Легко сообразить, что устойчивость тела не изменится, если полумесяц дополнить до сплошного полукруга. Таким образом, площадь опоры, определяющая условие равновесия, может быть больше фактической.

Чтобы найти опорную площадь для изображенного на рис. 60 треножника, надо его концы соединить отрезками прямых.

Почему так трудно ходить по канату? Потому, что площадь опоры резко уменьшается. Ходить по канату нелегко, и не даром награждают аплодисментами искусного канатоходца. Однако иногда зрители впадают в ошибку и признают за вершину искусства хитрые трюки, облегчающие задачу. Артист берет сильно изогнутое коромысло с двумя ведрами воды; ведра оказываются на уровне каната. С серьезным лицом, при замолкшем оркестре, артист совершает переход по канату. Как усложнен трюк, думает неопытный зритель. На самом же деле артист облегчил свою задачу, понизив центр тяжести.
Центр инерции
Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.
Смысл понятия остается тем же. Центр тяжести есть точка приложения суммы сил тяжести всех тел рассматриваемой группы.
Для двух тел результат подсчета нам известен. Если два тела весом F 1и F 2находятся на расстоянии x, то центр тяжести находится на расстоянии x 1от первого и x 2от второго тела, причем

Так как вес может быть представлен как произведение mg, то центр тяжести пары тел удовлетворяет условию
m1x1= m2x2,
т.е. лежит в точке, которая делит расстояние между массами на отрезки, обратно пропорциональные массам.
Вспомним теперь стрельбу из установленного на платформе орудия. Импульсы орудия и снаряда равны и направлены в разные стороны. Имеют место равенства:

причем отношение скоростей сохраняет это значение в течение всего времени взаимодействия. Во время движения, возникшего благодаря отдаче, орудие и снаряд смещаются по отношению к начальному положению на расстояния x 1и x 2в разные стороны. Расстояния x 1и x 2– пути, проходимые обоими телами, – растут, но при неизменном отношении скоростей величины x 1и x 2будут также все время находиться в том же отношении:

Здесь x 1и x 2есть расстояния орудия и снаряда от первоначальной точки их нахождения. Сравнивая эту формулу с формулой, определяющей положение центра тяжести, мы видим их полную тождественность. Отсюда непосредственно следует, что центр тяжести снаряда и орудия все время после выстрела остается в первоначальной точке их нахождения.
Другими словами, мы пришли к очень интересному результату – центр тяжести орудия и снаряда после выстрела продолжает покоиться.
Такой вывод верен всегда: если центр тяжести двух тел первоначально покоился, то их взаимодействие – какой бы характер оно ни носило – не может изменить положения центра тяжести. Именно поэтому нельзя поднять самого себя за волосы или подтянуться к Луне методом французского писателя Сирано де Бержерака, предложившего (конечно, шутя) для этой цели взять в руки кусок железа и подбрасывать вверх магнит, который притягивал бы это железо.
Покоящийся центр тяжести с точки зрения другой инерциальной системы равномерно движется. Значит, центр тяжести либо покоится, либо движется равномерно и прямолинейно.
Сказанное о центре тяжести двух тел верно и для группы многих тел. Конечно, для изолированной группы тел, – мы это оговариваем всегда, когда применяется закон сохранения импульса.
Значит, у всякой группы взаимодействующих тел есть такая точка, которая покоится или движется равномерно, и эта точка есть их центр тяжести.
Желая подчеркнуть новое свойство этой точки, ей дают еще одно название: центр инерции. Ведь, скажем, о тяжести солнечной системы (а значит, и о центре тяжести) может идти речь лишь в условном смысле.
Как бы ни двигались тела, образующие замкнутую группу, центр инерции (тяжести) будет покоиться или в иной системе отсчета двигаться по инерции.
Вращательный момент
Сейчас мы познакомимся еще с одним механическим понятием, которое позволяет сформулировать новый для нас важный закон движения.
Это понятие называется вращательным моментом, или моментом импульса, или моментом количества движения. Уже названия подсказывают, что речь идет о величине, чем-то похожей на момент силы.
Момент импульса, так же как и момент силы, требует указания точки, по отношению к которой определяется момент. Чтобы определить момент импульса относительно какой-либо точки, надо построить вектор импульса и опустить из точки перпендикуляр на его направление (рис. 61). Произведение импульса mvна плечо dи есть момент импульса, который мы будем обозначать буквой N:
N= mvd.
Если тело движется свободно, то его скорость не меняется; остается неизменным и плечо по отношению к любой точке, так как движение происходит по прямой линии. Значит, и момент импульса остается при таком движении неизменным.
Так же как и для момента силы, для вращательного момента можно написать и другую формулу. Соединим радиусом местоположение тела с точкой, момент по отношению к которой нас интересует (рис. 61). Построим также проекцию скорости на направление, перпендикулярное к радиусу. Из подобных треугольников, которые построены на рисунке, следует:
. Значит,
, и формула для вращательного момента может быть записана и в таком виде:
.

При свободном движении, как мы только что сказали, вращательный момент остается неизменным. Ну, а если на тело действует сила? Расчет показывает, что изменение вращательного момента за одну секунду равно моменту силы.
Полученный закон без труда распространяется и на систему тел. Если сложить изменения вращательных моментов всех тел, входящих в систему, то сумма их окажется равной сумме моментов сил, действующих на тела. Значит, для группы тел справедливо положение: изменение суммарного момента импульса за единицу времени равно сумме моментов всех сил.
Закон сохранения вращательного момента
Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.
Забудем про поле тяготения – пусть бросок произведен в межзвездном пространстве.
Силы, действующие на камни, равны друг другу и направлены навстречу вдоль веревки (это ведь силы действия и противодействия). Но тогда и плечи обоих сил по отношению к любой точке будут одинаковы. Равные плечи и равные, но противоположные по направлению силы дают равные и противоположные по знаку моменты сил.
Суммарный момент сил будет равен нулю. Но отсюда следует, что будет равно нулю и изменение вращательного момента, т.е. что вращательный момент такой системы остается постоянным.
Веревка, связывающая камни, понадобилась нам для наглядности. Закон сохранения вращательного момента справедлив для любой пары взаимодействующих тел, какую бы природу ни имело это взаимодействие.
Да и не только для пары. Если изучается замкнутая система тел, то силы, действующие между телами, всегда можно разбить на равное количество сил действия и противодействия, моменты которых будут попарно уничтожаться.
Закон сохранения суммарного вращательного момента универсален, верен для любой замкнутой системы тел.
Если тело вращается вокруг оси, то его вращательный момент равен
N= mvr,
где m– масса, v– скорость и r– расстояние от оси. Выражая скорость через число оборотов в секунду п, имеем:
v= 2п nrи N= 2π mnr 2,
т.е. вращательный момент пропорционален квадрату расстояния от оси.
Сядьте на табуретку с вращающимся сидением. Возьмите в руки тяжелые гири, широко расставьте руки и попросите кого-нибудь привести вас в медленное вращение. Теперь быстрым движением прижмите руки к груди – вы неожиданно начнете вращаться быстрее. Руки в стороны – движение замедлится, руки к груди – движение ускорится. Пока из-за трения табуретка не перестанет вращаться, вы успеете несколько раз изменить свою скорость вращения.
Отчего это происходит?
Вращательный момент при неизменном количестве оборотов в случае приближения гирь к оси упал бы. Для того чтобы «скомпенсировать» это уменьшение, и увеличивается скорость вращения.
Успешно используют закон сохранения вращательного момента акробаты. Как акробат выполняет «сальто» – переворачивание в воздухе? Прежде всего – толчок от пружинящего настила или от руки партнера. При толчке тело наклонено вперед, и вес вместе с силой толчка создают мгновенный момент силы. Сила толчка создает движение вперед, а момент силы обусловливает вращение. Однако это вращение медленное, оно не произведет впечатления на зрителя. Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».
На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный вращательный момент придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение – балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение вращательного момента приводит к резкому увеличению скорости.







