355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Физика для всех. Движение. Теплота » Текст книги (страница 23)
Физика для всех. Движение. Теплота
  • Текст добавлен: 6 октября 2016, 01:26

Текст книги "Физика для всех. Движение. Теплота"


Автор книги: Александр Китайгородский


Соавторы: Лев Ландау

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 23 (всего у книги 28 страниц)

Пластичность

Упругость – это способность тела восстанавливать свою форму после того, как сила перестала действовать. Если к метровой стальной проволоке с поперечным сечением в 1 мм 2подвесить килограммовую гирю, то проволока растянется. Растяжение незначительно, всего лишь 0,5 мм, но его нетрудно заметить. Если гирю снять, то проволока сократится на те же 0,5 мм, и метка вернется в прежнее положение. Такая деформация и называется упругой.

Заметим, что проволока сечением в 1 мм 2под действием силы в 1 кГ и проволока сечением в 1 см 2под действием силы в 100 кГ находятся, как говорят, в одинаковых условиях механического напряжения. Поэтому поведение материала всегда надо описывать, указывая не силу (что беспредметно, если сечение тела неизвестно), а напряжение, т.е. силу, приходящуюся на единицу площади. Обычные тела – металлы, стекло, камни – можно упруго растянуть в лучшем случае всего лишь на несколько процентов. Выдающимися упругими свойствами обладает резина. Резину можно упруго растянуть на несколько сот процентов (т.е. сделать ее вдвое и втрое больше первоначальной длины), а отпустив такой резиновый шнур, мы увидим, что он вернется в исходное состояние.

Все без исключения тела под действием небольших сил ведут себя упруго. Однако предел упругому поведению наступает у одних тел раньше, у других значительно позже. Например, у таких мягких металлов, как свинец, предел упругости наступает уже, если подвесить к концу проволоки миллиметрового сечения груз 0,2–0,3 кГ. У таких твердых материалов, как сталь, этот предел примерно в 100 раз выше, т.е. лежит около 25 кГ.

По отношению к большим силам, превосходящим предел упругости, разные тела можно грубо разделить на два класса – такие, как стекло, т.е. хрупкие, и такие, как глина, т.е. пластичные.

Если прижать палец к куску глины, он оставит отпечаток, в точности передающий даже сложные завитушки рисунка кожи. Молоток, если им ударить по куску мягкого железа или свинца, оставит четкий след. Воздействия нет, а деформация осталась – ее называют пластической или остаточной. Таких остаточных следов не удастся получить на стекле: если упорствовать в этом намерении, то стекло разрушится. Столь же хрупки некоторые металлы и сплавы, например чугун. Железное ведро под ударом молота сплющится, а чугунный котелок расколется.

О прочности хрупких тел можно судить по следующим цифрам. Чтобы превратить в порошок кусок чугуна, надо действовать с силой около 50–80 кГ на квадратный миллиметр поверхности. Для кирпича эта цифра падает до 1,5–3 кГ.

Как и всякая классификация, деление тел на хрупкие и пластичные в достаточной степени условно. Прежде всего, хрупкое при малой температуре тело может стать пластичным при более высоких температурах. Стекло можно превосходно обрабатывать, как пластический материал, если нагреть его до температуры в несколько сот градусов.

Мягкие металлы, как свинец, можно ковать холодными, но твердые металлы поддаются ковке лишь в сильно нагретом, раскаленном виде. Повышение температуры резко увеличивает пластические свойства материалов.

Одной из существенных особенностей металлов, которые сделали их незаменимыми конструкционными материалами, является их твердость при комнатных температурах и пластичность при высоких: раскаленным металлам легко можно придать требуемую форму, а при комнатной температуре изменить эту форму можно лишь очень значительными силами.

Существенное влияние на механические свойства оказывает внутреннее строение материала. Понятно, что трещины и пустоты ослабляют видимую прочность тела и делают его более хрупким.

Замечательна способность пластически деформируемых тел упрочняться. Одиночный кристалл металла, только что выросший из расплава, очень мягок. Кристаллы многих металлов настолько мягки, что их легко согнуть пальцами, но… разогнуть такой кристалл не удастся. Произошло упрочнение. Теперь этот образец удастся пластически деформировать лишь существенно большей силой. Оказывается, пластичность есть не только свойство материала, но и свойство обработки.

Почему инструмент готовят не литьем металла, а ковкой? Причина понятна – металл, подвергшийся ковке (или прокату, или протяжке), много прочнее литого.

Сколько бы ни ковать металл, мы не сумеем поднять его прочность выше некоторого предела, который называют пределом текучести. Для стали этот предел лежит в интервале 30–50 кГ/мм 2.

Эта цифра означает следующее. Если на проволоку миллиметрового сечения подвесить пудовую гирю (ниже предела), то проволока начнет растягиваться и одновременно упрочняться. Поэтому растяжение быстро прекратится – гиря будет спокойно висеть на проволоке. Если же на такой проволоке подвесить двух-трехпудовую гирю (выше предела текучести), то картина будет иной. Проволока будет непрерывно тянуться (течь), пока не разорвется. Еще раз подчеркнем, что механическое поведение тела определяется не силой, а напряжением. Проволока сечением в 100 кв. микрон будет течь под действием груза 30–50·10 −4кГ, т.е. 3–5 Г.

Твердость

Прочность и твердость не идут друг с другом об руку. Веревочный канат, лоскут сукна, шелковая нить могут обладать весьма большой прочностью – нужно значительное напряжение, чтобы разорвать их. Разумеется, никто не скажет, что веревка и сукно – твердые материалы. И наоборот, прочность стекла невелика, а стекло – твердый материал.

Понятие твердости, которым пользуются в технике, заимствовано из житейской практики. Твердость – это противодействие внедрению. Тело твердое, если его трудно процарапать, трудно оставить на нем отпечаток. Определения эти могут показаться читателю несколько туманными. Мы привыкли к тому, что физическое понятие выражают числом. Как же это сделать в отношении твердости?

Один весьма кустарный, но в то же время практически полезный способ уже давно используется минералогами. Десять определенных минералов располагают в ряд. Первым стоит алмаз, за ним следует корунд, далее – топаз, кварц, полевой шпат, апатит, плавиковый шпат, известковый шпат, гипс и тальк. Ряд подобран следующим образом: алмаз оставляет царапину на всех минералах, но ни один из этих минералов не может процарапать алмаз. Это и значит, что алмаз самый твердый минерал. Твердость алмаза оценивается числом 10. Следующий в ряду за алмазом корунд тверже всех других нижестоящих минералов – корунд может их процарапать. Корунду присваивают число твердости 9. Числа 8, 7 и 6 присвоены соответственно топазу, кварцу и полевому шпату на тех же основаниях. Каждый из них тверже (т.е. может нанести царапину), чем все нижестоящие минералы, и мягче (сам может быть процарапан) минералов, имеющих большие числа твердости. Самый мягкий минерал – тальк – имеет одну единицу твердости.

«Измерение» (приходится это слово брать в кавычки) твердости при помощи этой шкалы заключается в нахождении места интересующего нас минерала в ряду десяти выбранных стандартов.

Если неизвестный минерал можно процарапать кварцем, но сам он оставляет царапину на полевом шпате, то его твердость равна 6,5.

Металловеды пользуются другим способом определения твердости. Стандартной силой (обычно 3000 кГ) при помощи стального шарика диаметром в 1 см на испытуемом материале делается вмятина. Радиус образовавшейся ямки принимается за число твердости.

Твердость по отношению к царапанию и твердость по отношению к вдавливанию не обязательно сочетаются, и один материал может оказаться тверже другого при испытании на царапание, но мягче при испытании на вдавливание.

Таким образом, нет универсального понятия твердости, не зависящего от способа измерения. Понятие твердости относится поэтому к техническим, но не к физическим понятиям.

XV. Звук

Звуковые колебания

Мы уже сообщили читателю много сведений о колебаниях. Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны – этим вопросам была посвящена пятая глава книги. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее. Понятно также, что дело не может ограничиться влиянием лишь на близлежащий слой воздуха. Тело сожмет ближайший слой, этот слой давит на следующий – и так слой за слоем, частица за частицей приводится в движение весь окружающий воздух. Мы говорим, что воздух пришел в колебательное состояние или что в воздухе происходят звуковые колебания.

Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Физика пользуется понятием звуковых колебаний в более широком смысле. Какие звуковые колебания мы слышим – об этом будет рассказано ниже.

Речь идет о воздухе лишь потому, что звук чаще всего передается через воздух. Но, разумеется, нет никаких особых свойств у воздуха, чтобы за ним оказалось монопольное право совершать звуковые колебания. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. Учение о таких колебаниях обычно называют акустикой.

При звуковых колебаниях каждая частица воздуха в среднем остается на месте – она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия – амплитудой и периодом колебания, т.е. временем, затрачиваемым на совершение полного колебания.

Для описания свойств звуковых колебаний чаще пользуются понятием частоты колебания, нежели периодом. Частота ν = 1/ Tесть величина, обратная периоду.

Единица частоты – обратная секунда (с −1). Если частота колебания равна 100 с −1, то это значит, что за одну секунду частица воздуха совершит 100 полных колебаний. Вместо того, чтобы говорить: «100 обратных секунд», можно сказать «100 герц» (Гц) или «100 циклов». Так как в физике весьма часто приходится иметь дело с частотами, которые во много раз больше герца, то имеют широкое применение единицы килогерц (килоцикл) и мегагерц (мегацикл); 1 кГц = 10 3Гц, 1 МГц = 10 6Гц.

При прохождении равновесного положения скорость колеблющейся частицы максимальна. Напротив, в положениях крайних смещений скорость частицы, естественно, равняется нулю. Мы уже говорили, что если смещение частицы подчиняется закону гармонического колебания, то и изменение скорости колебания следует тому же закону. Если обозначить амплитуду смещения через s 0, а скорости через v 0, то s 0= 2π(s 0/ T) или v 0= 2πν· s 0. Громкий разговор приводит частицы воздуха в колебание с амплитудой смещения всего лишь в несколько миллионных долей сантиметра. Амплитудное значение скорости будет величиной порядка 0,02 см/с.

Другая важная физическая величина, колеблющаяся вместе со смещением и скоростью частицы, – это избыточное давление, называемое также звуковым. Звуковое колебание воздуха состоит в периодическом чередовании сжатия и разрежения в каждой точке среды. Давление воздуха в любом месте то больше, то меньше давления, которое было при отсутствии звука. Этот избыток (или недостаток) давления и называется звуковым. Звуковое давление составляет совсем небольшую долю нормального давления воздуха. Для нашего примера – громкий разговор – амплитуда звукового давления будет равна примерно миллионной доле атмосферы. Звуковое давление прямо пропорционально скорости колебания частицы, причем отношение этих физических величин зависит только от свойств среды. Например, звуковому давлению в воздухе в 1 дин/см 2, соответствует скорость колебания 0,025 см/с.

Струна, колеблющаяся по закону синуса, приводит и частицы воздуха в гармоническое колебание. Шумы и сложные музыкальные звуки приводят к значительно более сложной картине. На рис. 114 показана запись звуковых колебаний, а именно звукового давления в зависимости от времени. Эта кривая мало похожа на синусоиду. Оказывается, однако, что любое сколь угодно сложное колебание может быть представлено как результат наложения одной на другую большого числа синусоид с разными амплитудами и частотами. Эти простые колебания, как говорят, составляют спектр сложного колебания. Для простого примера такое сложение колебаний показано на рис. 115.

Скорость звука

Не надо бояться грома после того, как сверкнула молния. Вы, наверное, слыхали об этом. А почему? Дело в том, что свет распространяется несравненно быстрее, чем звук, – практически мгновенно. Гром и молния происходят в один и тот же момент, но молнию мы видим в момент ее возникновения, а звук грома доходит до нас со скоростью примерно один километр за три секунды (скорость звука в воздухе составляет 330 м/с). Значит, когда слышен гром, опасность удара молнии уже миновала.

Зная скорость распространения звука, обычно можно определить, как далеко проходит гроза. Если от момента вспышки молнии до раската грома прошло 12 секунд, значит, гроза от нас за 4 километра.

Скорость звука в газах примерно равна средней скорости движения молекул газа. Она также не зависит от плотности газа и пропорциональна корню квадратному из абсолютной температуры. Жидкости проводят звук быстрее, чем газы. В воде звук распространяется со скоростью 1450 м/с, т.е. в 4,5 раза быстрее, чем в воздухе. Еще больше скорость звука в твердых телах, например, в железе – около 6000 м/с.

Когда звук переходит из одной среды в другую, меняется скорость его распространения. Но одновременно происходит и другое интересное явление – частичное отражение звука от границы между двумя средами. Какая доля звука отразится – это зависит главным образом от соотношения плотностей. В случае падения звука из воздуха на твердые или жидкие поверхности или, наоборот, из плотных сред в воздух звук отражается почти полностью. Когда звук попадает в воду из воздуха или, наоборот, из воды в воздух, то во вторую среду проходит всего лишь 1/1000 доля звука. Если обе среды плотные, то отношение между проходящим и отраженным звуком может быть и невелико. Например, из воды в сталь или из стали в воду пройдет 13 %, а отразится 87 % звука.

Явление отражения звука широко применяется в навигации. На нем основано устройство прибора для измерения глубины – эхолота (рис. 116). У одного борта корабля под водой помещают источник звука. Отрывистый звук создает звуковые лучи, которые проберутся сквозь водяную толщу ко дну моря или реки, отразятся от дна, и часть звука вернется на корабль, где ее улавливают чувствительные приборы. Точные часы укажут, сколько времени понадобилось звуку на это путешествие. Скорость звука в воде известна, и простым вычислением можно получить точные сведения о глубине.


Направляя звук не вниз, а вперед или в стороны, можно при его помощи определить, нет ли около корабля опасных подводных скал или глубоко погруженных в воду айсбергов.

Звуковая волна

Если бы звук распространялся мгновенно, то все частицы воздуха колебались бы, как одна. Но звук распространяется не мгновенно, и объемы воздуха, лежащие на линии распространения, приходят в движение по очереди, как бы подхватываются волной, идущей от источника. Так же точно щепка лежит спокойно на воде до тех пор, пока круговые водяные волны от брошенного камешка не подхватят ее и не приведут в колебание.

Остановим наше внимание на одной колеблющейся частице и сравним ее поведение с движением других частиц, лежащих на той же линии распространения звука. Соседняя частица придет в колебание немного позже, следующая – еще позже. Запаздывание будет нарастать, пока, наконец, мы не встретимся с частицей, отставшей на целый период и поэтому колеблющейся в такт с исходной. Так отставший на целый круг неудачный бегун может пройти линию финиша одновременно с лидером. На каком же расстоянии встретим мы точку, колеблющуюся в такт с исходной? Нетрудно сообразить, что это расстояние λ равно произведению скорости распространения звука сна период колебания Т. Расстояние λ называется длиной волны,

λ = сТ.

Через промежутки λ мы будем встречать колеблющиеся в такт точки. Точки, находящиеся на расстоянии λ/2, будут совершать движение одна по отношению к другой, как предмет, колеблющийся перпендикулярно, к зеркалу, по отношению к своему изображению.

Если изобразить смещение (или скорость, или звуковое давление) всех точек, лежащих на линии распространения гармонического звука, то получится опять синусоида.

Не следует путать графики волнового движения и колебаний. Рис. 117 и 118 очень похожи, но на первом по горизонтальной оси отложено расстояние, а на втором – время. Один рисунок представляет собой временную развертку колебания, а другой – мгновенную «фотографию» волны. Из сопоставления этих рисунков видно, что длина волны может быть названа также ее пространственным периодом: роль Тво времени играет в пространстве величина λ.

На рисунке звуковой волны смещения частицы отложены по вертикали, а направлением распространения волны, вдоль которого отсчитывается расстояние, является горизонталь. Это может навести на неверную мысль, что частицы смещаются перпендикулярно к направлению распространения волны. В действительности частицы воздуха всегда колеблются вдоль направления распространения звука. Такая волна называется продольной.

Слышимый звук

Какие же звуковые колебания воспринимаются человеком на слух? Оказывается, ухо способно воспринимать лишь колебания, лежащие примерно в интервале от 20 до 20 000 Гц. Звуки с большой частотой мы называем высокими, с малой частотой – низкими.

Какие же длины волн соответствуют предельным слышимым частотам? Так как скорость звука примерно равна 300 м/с, то по формуле λ = сТ= с/ν находим, что длины слышимых звуковых волн лежат в пределах от 15 м для самых низких тонов до 3 см для самых высоких.

Каким же образом мы «слышим» эти колебания?

Работа нашего органа слуха до сих пор не выяснена до конца. Дело в том, что во внутреннем ухе (в улитке – канале длиной несколько сантиметров, заполненном жидкостью) имеется несколько тысяч чувствительных нервов, способных воспринимать звуковые колебания, передающиеся в улитку из воздуха через барабанную перепонку. В зависимости от частоты тока сильнее всего колеблется та или иная часть улитки. Хотя чувствительные нервы расположены вдоль улитки так часто, что возбуждается сразу большое их число, человек (и животные) способен – особенно в детстве – различать изменения частоты на ничтожные ее доли (тысячные доли). Каким образом это происходит, до сих пор точно не известно. Ясно только, что важнейшую роль здесь играет анализ в мозгу раздражений, приходящих от множества отдельных нервов. Придумать механическую модель, которая – при той же конструкции – столь же хорошо различала бы частоту звука, как и ухо человека, пока еще не удалось.

Иные люди обладают абсолютным слухом: вы возьмете на рояле сложный аккорд, а слушатель скажет, какие клавиши вы ударили. Значит, его ухо способно разлагать сложный звук на его гармонические составляющие.

Музыка

Отличие музыкального звука от шума уже иллюстрировалось кривыми звукового давления. Простой музыкальный тон создается периодическим колебанием определенной частоты. Сложные звуки представляют собой сочетания чистых тонов.

Оркестр музыкантов воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц.

Не все комбинации звуков доставляют удовольствие слушающему. Оказывается, приятное ощущение создают такие звуки, частоты колебаний которых находятся в простых отношениях. Если звуковые частоты находятся в отношении 2 : 1, то говорят об октаве, если 5 : 4 – о большой терции, отношение 4 : 3 дает кварту, а 3 : 2 – квинту. Ощущение благозвучности теряется, если частоты звуковых колебаний нельзя представить такими простыми отношениями. Тогда музыканты говорят о диссонансе. Ухо хорошо ощущает сочетания различных тонов. Поэтому люди даже с посредственным слухом чувствительны к диссонансам.

При помощи бесклавишных инструментов – типа скрипки – музыкант может взять любой тон и дать звучание любому сочетанию тонов.

В таком инструменте, как рояль, дело обстоит иначе. Струны рояля настроены на определенные частоты, удар о клавиши не может изменить тональности звука. Клавиатура рояля включает семь полных октав. Нижнее «до» дает тон с частотой 32,64 Гц, а верхнее – с частотой 32,64 × 2 7≈ 4178 Гц. Проблема состоит в том, как разделить октавы, т.е. какие промежуточные тона следует ввести, чтобы удовлетворить двум условиям. Во-первых, частоты должны находиться в наивозможно простых отношениях. Во-вторых, надо разделить октаву на равные интервалы (отношения между частотами), так как только в этом случае можно играть одну и ту же мелодию, начиная с любой ноты октавы (та же мелодия в другом тоне). Строго говоря, эти два требования противоречивы. Приближенно они осуществляются при использовании так называемого темперированного строя.

Посмотрим, что получится, если разделить октаву на 12 равных интервалов. Каждый из этих интервалов будет равен 2 1/12= 1,059. Это значит, что отношение двух соседних тонов будет равно этому числу. Выпишем теперь следующие цифры:


К полному своему удовлетворению музыкант замечает, что арифметика решает его задачу: октава разделена на строго равные интервалы, и в то же время отношения многих гонов весьма близки к отношениям простых чисел. Мы находим здесь и квинту (7), и кварту (5), и большую терцию (4), так как приблизительно 1,498 ≈ 3/2; 1,260 ≈ 5/4, а 1,335 ≈ 4/3. Превосходно обстоит дело и в других случаях, где разница не превосходит 1 %: 1,414 ≈ 7/5; 1,122 ≈ 9,8; 1,587 ≈ 8/5; 1,682 ≈ 5/3; 1,888 ≈ 17/9, и только первый интервал 1,059 ≈ 18/17 дает явный диссонанс.

Небольшие отклонения от чистого строя (т.е. такого, в котором отношения частот в точности равны отношению целых чисел) для слуха мало заметны, и темперированный строй рояля получил распространение.


    Ваша оценка произведения:

Популярные книги за неделю