355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Физика для всех. Движение. Теплота » Текст книги (страница 4)
Физика для всех. Движение. Теплота
  • Текст добавлен: 6 октября 2016, 01:26

Текст книги "Физика для всех. Движение. Теплота"


Автор книги: Александр Китайгородский


Соавторы: Лев Ландау

Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 28 страниц)

Движение по окружности

Если точка движется по окружности, то движение является ускоренным, уже хотя бы потому, что в каждый момент времени скорость меняет свое направление. По величине скорость может оставаться неизменной, и мы остановим внимание именно на подобном случае.

Будем рисовать векторы скорости в последовательные промежутки времени, помещая начала векторов в одну точку. (Мы имеем на это право.) Если вектор скорости повернулся на небольшой угол, то изменение скорости, как мы знаем, изобразится основанием равнобедренного треугольника. Построим изменения скорости за время полного оборота тела (рис. 17). Сумма величин изменений скорости за время полного оборота будет равна сумме сторон изображенного многоугольника. Строя каждый треугольничек, мы молчаливо предполагали, что вектор скорости изменился скачком, на самом же деле направление вектора скорости меняется непрерывно. Совершенно ясно, что ошибка будет тем меньше, чем меньше мы будем брать угол треугольничка. Чем меньше стороны многоугольника, тем он теснее прижимается к окружности радиуса v. Поэтому точным значением суммы абсолютных величин изменений скорости за время оборота точки будет длина окружности 2π v. Величина ускорения найдется делением ее на время полного оборота T.


Итак, величина ускорения в равномерном движении по окружности выражается формулой а = 2π v/ T.

Но время полного оборота при движении по окружности радиуса Rможет быть записано в виде T= 2π R/ v.

Подставив это выражение в предыдущую формулу, получим для ускорения: a= v 2/ R.

При неизменном радиусе вращения ускорение пропорционально квадрату скорости. При данной скорости ускорение обратно пропорционально радиусу.

Это же рассуждение показывает нам, как направлено в каждое данное мгновение ускорение кругового движения. Чем меньше угол при вершине равнобедренных треугольников, которые мы использовали для доказательства, тем ближе к 90° угол между приростом скорости и скоростью.

Значит, ускорение равномерного кругового движения направлено перпендикулярно к скорости; а как же скорость и ускорение направлены по отношению к траектории? Поскольку скорость есть касательная к пути, то ускорение направлено по радиусу и притом к центру окружности. Эти соотношения хорошо видны на рис. 18.


Попробуйте покрутить камень на веревке. Вы отчетливо ощутите необходимость для этого мускульного усилия. Зачем же нужна сила? Ведь тело движется равномерно? Вот в том-то и дело, что нет. Тело движется с неизменной по величине скоростью, но непрерывное изменение направления скорости делает это движение ускоренным. Сила необходима для того, чтобы отклонить тело от инерциального прямого пути. Сила нужна для того, чтобы создать то ускорение v 2/ R, которое мы только что вычислили.

Согласно закону Ньютона, куда направлено ускорение, туда смотрит и сила. Значит, тело, вращающееся по окружности с неизменной скоростью, должно находиться под действием силы, направленной по радиусу к центру вращения. Сила, действующая на камень со стороны веревки, и обеспечивает ускорение v 2/ R. Значит, величина этой силы есть mv 2/ R.

Веревка тянет камень, камень тянет веревку. Мы узнаем в этих двух силах «предмет и его изображение в зеркале» – силы действия и противодействия. Часто силу, с которой камень действует на веревку, называют центробежной. Центробежная сила равна, разумеется, mv 2/ Rи направлена по радиусу от центра вращения. Центробежная сила приложена к тому телу, которое противодействует инерциальному стремлению вращающегося тела двигаться прямолинейно.

Сказанное относится и к случаю, когда роль «веревки» играет сила тяжести. Луна вращается вокруг Земли. Что удерживает нашего спутника? Почему, следуя закону инерции, он не уходит в межпланетное путешествие? Земля держит Луну «невидимой веревкой» – силой притяжения. Эта сила равна mv 2/ R, где v– скорость движения по лунной орбите, а R– расстояние до Луны. Центробежная сила приложена в этом случае к Земле, но благодаря большой массе Земли она лишь незначительно влияет на характер движения нашей планеты.

Положим, что требуется вывести искусственный спутник Земли на круговую орбиту на расстоянии 300 км от земной поверхности. Какова должна быть скорость такого спутника? На расстоянии 300 км ускорение силы тяжести немного меньше, чем на поверхности Земли, и равно 8,9 м/с 2. Ускорение движущегося по окружности спутника равно v 2/ R, где R– расстояние от центра вращения (т.е. от центра Земли) – примерно равно 6600 км = 6,6·10 6м. С другой стороны, это ускорение равно ускорению силы тяжести g. Следовательно, g= v 2/ R, откуда находим скорость движения спутника по орбите:

v= sqrt( gR) = sqrt(8,9·6,6·10 6) = 7700 м/с = 7,7 км/с.

Минимальная скорость, необходимая для того, чтобы горизонтально брошенное тело стало спутником Земли, называется первой космической скоростью. Из приведенного примера видно, что эта скорость близка к 8 км/с.

III. Движение с «неразумной» точки зрения

Принцип эквивалентности

В предыдущей главе мы отыскали «разумную точку зрения» на движение. Правда, «разумных» точек зрения, которые мы назвали инерциальными системами, оказалось бесконечное множество.

Теперь, вооруженные знанием законов движения, мы можем поинтересоваться, как выглядит движение с «неразумных» точек зрения. Интерес к тому, как живется жителям неинерциальных систем, вовсе не праздный, хотя бы уже потому, что мы сами являемся обитателями такой системы.

Представим себе, что мы, захватив измерительные приборы, погрузились на межпланетный корабль и отправились путешествовать в мир звезд.

Быстро бежит время. Солнце уже стало похоже на маленькую звездочку. Двигатель выключен, корабль далеко от притягивающих тел.

Посмотрим теперь, что делается в нашей летающей лаборатории. Почему висит в воздухе и не падает на пол сорвавшийся с гвоздика термометр? В каком странном положении застыл отклонившийся от «вертикали» маятник, висящий на стене. Мы тут же находим разгадку: ведь корабль не на Земле, а в межпланетном пространстве. Предметы потеряли вес.

Полюбовавшись на необычную картину, мы решаем изменить курс. Нажатием кнопки включаем реактивный двигатель, и вдруг… предметы, окружающие нас, словно ожили. Все тела, которые не были наглухо закреплены, пришли в движение. Термометр упал, маятник начал качаться и, постепенно успокаиваясь, пришел в вертикальное положение, подушка послушно прогнулась под лежащим на ней чемоданом. Посмотрим на приборы, которые указывают, в какую сторону наш корабль начал ускоренное движение. Конечно, оно направлено вверх. Приборы показывают, что мы выбрали движение с небольшим для возможностей корабля ускорением 9,8 м/с 2. Наши ощущения вполне обычны, мы чувствуем себя, как на Земле. Но почему так? По-прежнему невообразимо далеко находится корабль от притягивающих масс, нет сил притяжения, а предметы приобрели вес.

Выпустим из рук шарик и измерим, с каким ускорением он падает на пол корабля. Оказывается, ускорение равно 9,8 м/с 2. Эту цифру мы только что прочли на приборах, измеряющих ускорение ракеты. Корабль движется с таким же ускорением вверх, с каким тела в нашей летучей лаборатории падают вниз.

Но что такое «верх» и «низ» в летящем корабле? Как просто дело обстояло, когда мы жили на Земле. Там небо было верхом, Земля была низом. А здесь? У нашего верха есть неоспоримый признак – это направление ускорения ракеты.

Смысл наших наблюдений понять нетрудно: на шарик, выпущенный из рук, никакие силы не действуют. Шарик движется по инерции. Это ракета движется с ускорением по отношению к шарику, и нам, находящимся в ракете, кажется, что шарик «падает» в сторону, обратную направлению ускорения ракеты. Разумеется, ускорение этого «падения» равно по величине истинному ускорению ракеты. Ясно также, что все тела в ракете будут «падать» с одинаковым ускорением.

Из всего сказанного мы можем сделать интересный вывод. В ускоренно движущейся ракете тела начинают «весить». При этом «сила притяжения» направлена в сторону, противоположную направлению ускорения ракеты, а ускорение свободного «падения» равно по величине ускорению движения реактивного корабля. И самое замечательное то, что практически мы не можем отличить ускоренное движение системы от соответствующей силы тяжести *77
  Только практически. В принципе различие есть. На Земле силы тяжести направлены по радиусам к центру Земли. Это значит, что направления ускорения в двух разных точках образуют между собой угол. В ракете, движущейся с ускорением, направления тяжести во всех точках строго параллельны. На Земле ускорение меняется также с высотой; в ускоренно движущейся ракете этого эффекта нет.


[Закрыть]
. Находясь в космическом корабле с закрытыми окнами, мы не могли бы узнать, покоится ли он на Земле или движется с ускорением 9,8 м/с 2. Равноценность ускорения и действия силы тяжести называется в физике принципом эквивалентности.

Этот принцип, как мы сейчас увидим на множестве примеров, позволяет быстро решать многие задачи, добавляя к реальным силам фиктивную силу тяжести, существующую в ускоренно движущихся системах.

Первым примером может служить лифт. Захватим с собой пружинные весы с гирями и отправимся на лифте вверх. Следим за поведением стрелки весов, на которые положена килограммовая гиря (рис. 19). Подъем начался; мы видим, что показания весов возросли, как будто гиря стала весить больше килограмма. Принципом эквивалентности легко объяснить этот факт. Во время движения лифта вверх с ускорением aвозникает дополнительная сила тяжести, направленная вниз. Так как ускорение этой силы равно a, то дополнительный вес равен . Значит, весы покажут вес mg+ . Ускорение кончилось, и лифт движется равномерно – пружина вернулась в исходное положение и показывает 1 кГ веса. Приближаемcя к верхнему этажу, движение лифта замедляется. Что будет теперь с пружиной весов? Ну, конечно, теперь груз весит меньше одного килограмма. При замедлении движения лифта вектор ускорения смотрит вниз. Значит, дополнительная, фиктивная сила тяжести направлена вверх, в сторону, противоположную направлению земного тяготения. Теперь aотрицательно, и весы показывают величину, меньшую mg. После остановки лифта пружина возвращается в исходное положение. Начнем спуск. Движение лифта ускоряется; вектор ускорения направлен вниз, значит, дополнительная сила тяжести направлена вверх. Сейчас груз весит меньше килограмма. Когда движение станет равномерным, дополнительная тяжесть пропадет, и перед окончанием нашего путешествия на лифте – при замедленном движении вниз – груз будет весить больше килограмма.


Неприятные ощущения, испытываемые при быстром ускорении и замедлении движения лифта, связаны с рассмотренным изменением веса.

Если лифт падает с ускорением, то тела, находящиеся в нем, становятся как бы легче. Чем больше это ускорение, тем больше потеря веса. Что же произойдет при свободном падении системы? Ответ ясен: в этом случае тела перестанут давить на подставку – перестанут весить: сила притяжения Земли будет уравновешиваться дополнительной силой тяжести, существующей в такой свободно падающей системе. Находясь в таком «лифте», можно спокойно положить на плечи тонну груза.

В начале этого параграфа мы описывали жизнь «без веса» в межпланетном корабле, вышедшем за пределы сферы тяготения. При равномерном и прямолинейном движении в таком корабле веса нет, но то же самое происходит и при свободном падении системы. Значит, нет нужды выходить за пределы сферы тяготения: веса нет во всяком межпланетном корабле, который движется с выключенным двигателем. Свободное падение приводит к потере веса в подобных системах. Принцип эквивалентности привел нас к выводу о почти (см. примечание на стр. 56) полной равноценности системы отсчета, движущейся прямолинейно и равномерно вдали от действия сил притяжения, и системы отсчета, свободно падающей под действием тяжести. В первой системе веса нет, а во второй «вес книзу» уравновешивается «весом кверху». Никакой разницы между системами мы не найдем.

В искусственном спутнике Земли жизнь «без веса» наступает с того момента, когда корабль выведен на орбиту и начинает свое движение без действия ракеты.

Первым межпланетным путешественником была собака Лайка, а вскоре и человек освоился с жизнью «без веса» в кабине космического корабля. Первым на этом пути был советский летчик-космонавт Ю.А. Гагарин.

Нельзя назвать жизнь в кабине корабля обычной. Много изобретательности и выдумки понадобилось, чтобы сделать послушными вещи, столь легко подчиняющиеся силе тяжести. Можно ли, например, налить воды из бутылки в стакан? Ведь вода льется «вниз» под действием тяжести. Можно ли готовить пищу, если нельзя нагреть на плитке воду? (Теплая вода не будет перемешиваться с холодной.) Как писать карандашом по бумаге, если легкого толчка карандаша о стол достаточно, чтобы откинуть пишущего в сторону? Ни спичка, ни свеча, ни газовая горелка гореть не будут, так как сгоревшие газы не будут подниматься вверх (ведь верха-то нет!) и не дадут доступа кислороду. Пришлось подумать даже о том, как обеспечить нормальное протекание естественных процессов, происходящих в организме человека, – ведь эти процессы «привыкли» к силе земного тяготения.

Теперь займемся физическими наблюдениями в ускоренно движущемся автобусе или трамвае. Особенность этого примера, отличающая его от предыдущего, состоит в следующем. В примере с лифтом дополнительная тяжесть и притяжение Землей были направлены вдоль одной линии. В тормозящем или набирающем скорость трамвае дополнительная сила тяжести направлена под прямым углом к земному притяжению. Это вызывает своеобразные, хотя и привычные, ощущения у пассажира. Если трамвай набирает скорость, то возникает дополнительная сила, направленная в сторону, обратную направлению движения. Сложим эту силу с силой земного притяжения. В сумме на человека, находящегося в вагоне, будет действовать сила, направленная под тупым углом к направлению движения. Находясь в вагоне, как обычно, лицом к движению, мы ощутим, что наш «верх» переместился. Чтобы не упасть, мы захотим стать «вертикально» – так, как показано на рис. 20, a. Наша «вертикаль» косая. Она наклонена под острым углом к направлению движения. Если же человек будет стоять не держась ни за что, он обязательно упадет назад.

Наконец, движение трамвая стало равномерным, и мы можем стоять спокойно. Однако приближается новая остановка. Вагоновожатый тормозит и… наша «вертикаль» отклоняется. Теперь она направлена, как видно из построения на рис. 20, б, под тупым углом к движению. Чтобы не упасть, пассажир отклоняется назад. Однако в таком положении он остается недолго. Вагон останавливается, замедление исчезает, и «вертикаль» принимает прежнее положение. Приходится опять менять положение тела. Проверьте ваши ощущения. Не правда ли, в момент начала торможения кажется, что вас толкнули в спину (вертикаль за спиной). Вы «выпрямились», но теперь вагон остановился – вертикаль впереди и поэтому вы испытываете ощущение толчка в грудь.

Похожие явления происходят и при движении трамвая по закруглению. Мы знаем, что движение по окружности даже с неизменной по величине скоростью является ускоренным. Ускорение v 2/ Rбудет тем больше, чем быстрее движется трамвай и чем меньше радиус закругления R. Ускорение этого движения направлено по радиусу к центру. Но это эквивалентно возникновению дополнительной тяжести, направленной от центра. Значит, на пассажира трамвая во время поворота будет действовать дополнительная сила mv 2/ R, отбрасывающая его во внешнюю сторону закругления. Радиальная сила mv 2/ Rназывается центробежной. С этой же силой, рассмотренной, правда, с несколько иной точки зрения, мы встречались уже раньше, на стр. 52.

Действие центробежной силы в поворачивающем трамвае или автобусе может привести лишь к небольшим неприятностям. Сила mv 2/Rв этом случае невелика. Однако при быстром движении на закруглении центробежные силы могут достигнуть больших величин и стать опасными для жизни. С большими значениями mv 2/ Rсталкиваются летчики, когда самолет совершает так называемую мертвую петлю. Когда самолет описывает окружность, на летчика действует центробежная сила, прижимающая его к сидению. Чем меньше окружность петли, тем больше дополнительная тяжесть, с которой прижимается к сидению летчик. Если эта тяжесть велика, человек может «порваться» – ведь ткани живого организма обладают ограниченной прочностью, они не могут выдержать любую тяжесть.

Насколько же может «потяжелеть» человек без существенной опасности для жизни? Это зависит от длительности нагрузки. Если она продолжается доли секунды, то человек способен выдержать восьми-десятикратный вес, т.е. перегрузку в 7–9 g. В продолжение десяти секунд летчик может выдержать перегрузку в 3–5 g. Космонавтов интересует вопрос о перегрузке, которую человек способен выносить десятки минут, а может быть, и часы. В таких случаях перегрузка, вероятно, должна быть гораздо меньше.

Вычислим радиусы петель, которые самолет может описать без опасности для летчика, на различных скоростях. Возьмем среднюю цифру 4 g. Это – значение ускорения, т.е. v 2/ R= 4 gи R= v 2/4 g. При скорости 360 км/ч = 100 м/с радиус петли будет 250 м; если же скорость будет в 4 раза больше, т.е. 1440 км/ч (а эти скорости уже превзойдены современными реактивными самолетами), радиус петли должен быть увеличен в 16 раз. Минимальный радиус петли становится равным 4 км.


Не оставим без внимания и более скромный вид транспорта – велосипед. Все видели, как наклоняется велосипедист при повороте. Предложим велосипедисту описывать окружность радиуса Rсо скоростью v, т.е. двигаться с ускорением v 2/ R, направленным к центру. Тогда, кроме силы земного притяжения, на велосипедиста будет действовать дополнительная, центробежная сила, направленная по горизонтали от центра окружности. На рис. 21 показаны эти силы и их сумма. Ясно, что велосипедист должен держаться «вертикально», иначе он упадет. Но… его вертикаль не совпадает с земной. Из рисунка видно, что векторы mv 2/ Rи mg– катеты прямоугольного треугольника. Отношение катета, противолежащего углу α, к прилежащему называется в тригонометрии тангенсом угла α.

У нас tg α = v 2/( Rg); масса сократилась в полном согласии с принципом эквивалентности. Значит, угол наклона велосипедиста не зависит от его массы – и толстому седоку и худому надо наклоняться одинаково. Формула и изображенный на рисунке треугольник показывают зависимость наклона от скорости движения (возрастает с увеличением) и от радиуса окружности (возрастает с уменьшением). Мы выяснили, что вертикаль велосипедиста не совпадает с земной вертикалью. Что же он будет чувствовать? Придется рис. 21 повернуть. Дорога теперь выглядит как склон горы (рис. 22, а), и нам становится ясным, что при недостаточной силе трения между шинами и дорожным покрытием (влажный асфальт) велосипед может соскользнуть, и крутой поворот закончится падением в кювет.

Для того чтобы этого не произошло, на крутых поворотах (или, как говорят, виражах) шоссе делают наклонным, т.е. горизонтальным для велосипедиста – так, как на рис. 22, б. Таким способом можно сильно уменьшить, а то и вовсе уничтожить стремление к соскальзыванию. Именно так устроены повороты на велосипедных треках и автострадах.

Вращение

Теперь займемся вращающимися системами. Движение такой системы определяется числом оборотов в секунду, которое совершает эта система, поворачиваясь вокруг оси. Надо, конечно, знать и направление оси вращения.

Чтобы лучше понять особенности жизни во вращающихся системах, рассмотрим «колесо смеха» – известный аттракцион. Устройство его очень несложно. Гладкий диск диаметром в несколько метров быстро вращается. Желающим предлагается сесть на него и попробовать удержаться. Даже люди, не знающие физики, быстро постигают секрет успеха: надо устроиться в центре диска, так как чем дальше от центра, тем труднее удержаться.

Такой диск представляет собой неинерциальную систему с некоторыми особыми свойствами. Каждый предмет, скрепленный с диском, движется по окружности радиуса Rсо скоростью v, т.е. с ускорением v 2/ R. Как мы уже знаем, с точки зрения неинерциального наблюдателя это означает наличие дополнительной тяжести mv 2/ R, направленной по радиусу от центра. В любой точке «чертова колеса» будет действовать эта радиальная сила тяжести, в любой точке она будет создавать радиальное ускорение v 2/ R. Для точек, лежащих на одной окружности, величина этого ускорения будет одинаковой. А на разных окружностях? Не торопитесь сказать, что ускорение, согласно формуле v 2/ R, будет тем больше, чем меньше расстояние от центра. Это неверно; ведь скорость более удаленных от центра точек колеса будет больше. Действительно, если обозначить буквой nчисло оборотов, совершаемых колесом в секунду, то путь, проходимый точкой колеса, находящейся на расстоянии Rот центра, за одну секунду, т.е. скорость этой точки, можно выразить так: 2π Rn.

Скорость точки прямо пропорциональна ее расстоянию от центра. Теперь формулу ускорения можно переписать:

a= 4π 2 n 2 R.

А так как число оборотов, совершаемых в секунду, одинаково для всех точек колеса, то мы приходим к результату: ускорение силы «радиальной тяжести», действующей на вращающемся колесе, возрастает пропорционально расстоянию точки от центра колеса.

В этой интересной неинерциальной системе сила тяжести на разных окружностях разная. Значит, и направления «вертикалей» для тел, находящихся на разных расстояниях от центра, будут разные. Сила притяжения Землей, разумеется, одна и та же во всех точках колеса. А вектор, характеризующий дополнительную радиальную тяжесть, становится длиннее по мере удаления от центра. Значит, диагонали прямоугольников отклоняются все больше и больше от земной вертикали.


Если представить последовательные ощущения человека, соскальзывающего с «колеса смеха», придерживаясь его точки зрения, то можно сказать, что по мере удаления от центра диск «наклоняется» все больше и больше и удержаться на нем становится невозможно.

Однако нельзя ли придумать для этой инерциальной системы устройство, похожее на наклонное шоссе? Конечно, можно, но придется заменить диск такой поверхностью, чтобы в каждой ее точке полная сила тяжести была перпендикулярна к поверхности. Форму такой поверхности можно рассчитать. Она называется параболоидом. Название это не случайно: в каждом своем вертикальном сечении параболоид дает параболу – кривую, по которой падают тела. Параболоид возникает при вращении параболы вокруг ее оси.

Очень легко создать такую поверхность, если привести в быстрое вращение сосуд с водой. Поверхность вращающейся жидкости и есть параболоид. Частицы воды перестанут перемещаться как раз тогда, когда сила, прижимающая каждую частицу к поверхности, будет перпендикулярна к поверхности. Каждой скорости вращения соответствует свой параболоид (рис. 24).


Если изготовить твердый параболоид, то можно наглядно показать его свойство. Маленький шарик, помещенный в любой точке вращающегося с определенной скоростью параболоида, останется в покое. Это значит, что действующая на него сила будет перпендикулярна к поверхности. Иначе говоря, поверхность вращающегося параболоида обладает как бы свойствами горизонтальной поверхности. По такой поверхности можно ходить, как по земле, и чувствовать себя при этом вполне устойчиво. Однако при ходьбе направление вертикали будет изменяться.

Центробежные явления широко используются в технике. На использовании этих явлений основано, например, устройство центрифуги.

Центрифуга представляет собой барабан, быстро вращающийся вокруг своей оси. Что будет, если в такой барабан, наполненный до краев водой, бросать разные предметы?

Опустим в воду металлический шарик – он пойдет ко дну, но не по нашей вертикали, а все время удаляясь от оси вращения и остановится у стенки. Теперь бросим в барабан пробковый шарик – он, наоборот, сразу начнет движение по направлению к оси вращения и там расположится.

Если барабан этой модели центрифуги большого диаметра, то мы заметим, что ускорение резко нарастает по мере отдаления от центра.

Происходящие явления нам вполне понятны. Внутри центрифуги имеется дополнительная радиальная тяжесть. Если центрифуга вращается достаточно быстро, то ее «низ» – это стенки барабана. Металлический шарик «погружается» в воду, а пробковый «всплывает». Чем дальше от оси вращения, тем «тяжелее» становится «падающее» в воду тело.

В достаточно совершенных центрифугах скорость вращения доводится до 60 000 оборотов в минуту, т.е. 10 3оборотов в секунду. На расстоянии 10 см от оси вращения ускорение радиальной силы тяжести будет равно примерно

40·10 6·0,1 = 4·10 6м/с 2,

т.е. в 400 000 раз больше земного ускорения.

Ясно, что земную тяжесть для таких машин можно не учитывать, мы действительно вправе считать, что «низ» в центрифуге – это стенки барабана.

Из сказанного становятся понятными области применения центрифуги. Если мы хотим отделить в смеси тяжелые частицы от легких, всегда целесообразно применение центрифуги. Всем известно выражение: «мутная жидкость отстоялась». Если грязная вода постоит достаточно долго, то муть (обычно более тяжелая, чем вода) осядет на дно. Однако процесс оседания может продолжаться месяцами, а при помощи хорошей центрифуги можно очистить воду мгновенно.

Центрифуги, вращающиеся со скоростью в десятки тысяч оборотов в минуту, способны выделять тончайшую муть не только из воды, но и из вязких жидкостей.

Центрифуги применяются в химической промышленности для отделения кристаллов от раствора, из которого они выросли, для обезвоживания солей, для очистки лаков; в пищевой промышленности – для разделения патоки и сахарного песка.

Центрифуги, применяемые для отделения от большого количества жидкости твердых или жидких включений, называют сепараторами. Главное их применение – обработка молока. Молочные сепараторы вращаются со скоростью 2 – 6 тысяч оборотов в минуту, диаметр их барабана доходит до 5 м.

В металлургии широко применяется центробежное литье. Уже при скоростях 300–500 оборотов в минуту жидкий металл, поступающий во вращающуюся форму, со значительной силой прижимается к внешним стенкам формы. Так отливают металлические трубы, которые при этом получаются более плотные, более однородные, без раковин и трещин.

Вот и другое применение центробежной силы. На рис. 25 изображено простое устройство, служащее для регулировки числа оборотов вращающихся частей машины. Это устройство называется центробежным регулятором. При увеличении скорости вращения возрастает центробежная сила, шарики регулятора отходят дальше от оси. Тяги, скрепленные с шариками, отклоняются и при определенном рассчитанном инженером отклонении могут разомкнуть какие-либо электрические контакты, а в паровой машине, например, могут открыть клапаны, выпускающие излишек пара. При этом скорость вращения уменьшится и тяги займут нормальное положение.


Интересен такой опыт. На ось электрического мотора наденем картонный кружок. Включим ток и поднесем к вращающемуся кружку кусок дерева. Брусок изрядной толщины перепиливается пополам так же легко, как и стальной пилой.

Попытка распилить дерево картонкой, если ею действовать как ручной пилой, может вызвать только улыбку. Почему же вращающийся картон разрезает дерево? На частички картона, расположенные на окружности, действует громадная центробежная сила. Боковые силы, которые могли бы исказить плоскость картонки, ничтожны по сравнению с центробежными. Сохраняя свою плоскость неизменной, картонный круг и получает возможность вгрызаться в дерево.

Центробежная сила, возникающая благодаря вращению Земли, приводит к различиям в весе тела на разных широтах, о чем говорилось выше.

На экваторе тело весит меньше, чем на полюсе, по двум причинам. Тела, лежащие на поверхности Земли, находятся на разных расстояниях от земной оси в зависимости от широты местности. Разумеется, при переходе от полюса к экватору это расстояние возрастает. Кроме того, на полюсе тело находится на оси вращения, и центробежное ускорение a= 4π 2 n 2 Rравно нулю (расстояние от оси вращения R= 0). Напротив, на экваторе это ускорение максимально. Центробежная сила уменьшает силу притяжения. Поэтому на экваторе давление тела на подставку (вес тела) наименьшее.

Если бы Земля имела точно шарообразную форму, то килограммовая гиря, перенесенная с полюса на экватор, теряла бы в весе 3,5 грамма. Вы легко найдете эту цифру по формуле

2 n 2 Rm,

подставив n= 1 оборот в сутки, R= 6300 км и m= 1000 г. Не забудьте только привести единицы измерения к секундам и сантиметрам.

Однако на самом деле килограммовая гиря теряет в весе не 3,5, а 5,3 грамма. Это происходит из-за того, что Земля представляет собой сплюснутый шар, называемый в геометрии эллипсоидом. Расстояние от полюса до центра Земли меньше земного радиуса, выходящего на экваторе, примерно на 1/300 его часть.

Это сжатие земного шара имеет своей причиной ту же центробежную силу. Ведь она действует на все частички Земли. В далекие времена центробежная сила «сформировала» нашу планету – придала ей сплюснутую форму.


    Ваша оценка произведения:

Популярные книги за неделю