Текст книги "Физика для всех. Движение. Теплота"
Автор книги: Александр Китайгородский
Соавторы: Лев Ландау
сообщить о нарушении
Текущая страница: 6 (всего у книги 28 страниц)
Движение под действием силы тяжести
Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки обеих досок – места старта тележки – будут на одинаковой высоте. Как вы полагаете, какая из тележек приобретет большую скорость, скатившись с наклонной доски? Многие решат, что та, которая съехала по более крутой плоскости.
Опыт покажет, что они ошиблись, – тележки приобретут одинаковую скорость. Пока тело движется по наклонной плоскости, оно находится под действием постоянной силы, а именно (рис. 33) под действием составляющей силы тяжести, направленной вдоль движения. Скорость v, которую приобретает тело, движущееся с ускорением aна пути S, равна, как мы знаем, v= sqrt(2 aS).

Откуда же видно, что эта величина не зависит от угла наклона плоскости? На рис. 33 мы видим два треугольника. Один из них изображает наклонную плоскость. Малый катет этого треугольника, обозначенный буквой h, – высота, с которой начинается движение; гипотенуза Sесть путь, проходимый телом в ускоренном движении. Маленький треугольник сил с катетом maи гипотенузой mgподобен большому, так как они прямоугольные и углы их равны как углы со взаимно перпендикулярными сторонами. Значит, отношение катетов должно равняться отношению гипотенуз, т.е.

Мы доказали, что произведение aS, а значит, и конечная скорость тела, скатившегося с наклонной плоскости, не зависит от угла наклона, а зависит лишь от высоты, с которой началось движение вниз. Скорость v= sqrt(2 gh) для всех наклонных плоскостей при единственном условии, что движение началось с одной и той же высоты h. Эта скорость оказалась равной скорости свободного падения с высоты h.
Измерим скорость тела в двух местах наклонной плоскости – на высотах h 1и h 2. Скорость тела в момент прохождения через первую точку обозначим v 1, а скорость в момент прохождения через вторую точку – v 2.
Если начальная высота, с которой началось движение, есть h, то квадрат скорости тела в первой точке будет v 1 2= 2 g( h– h 1), а во второй точке v 2 2= 2 g( h− h 2). Вычитая первое из второго, мы найдем, как связаны скорости тела в начале и в конце какого угодно кусочка наклонной плоскости с высотами этих точек:
v22− v 1 2= 2 g( h 1− h 2).
Разность квадратов скоростей зависит лишь от разности высот. Заметим, что полученное уравнение одинаково пригодно для движений вверх и для движений вниз. Если первая высота меньше второй (подъем), то вторая скорость меньше первой.
Эту формулу можно переписать следующим образом:

Мы хотим подчеркнуть такой записью, что сумма половины квадрата скорости и высоты, умноженной на g, одинакова для любой точки наклонной плоскости. Можно сказать, что величина v 2/2 + ghсохраняется во время движения.
Самое замечательное в найденном нами законе то, что он справедлив для движения без трения по любой горке и вообще по любому пути, состоящему из чередующихся подъемов и спусков различной крутизны. Это следует из того, что любой путь можно разбить на прямолинейные участки. Чем меньше брать отрезки, тем ближе будет приближаться ломаная линия к кривой. Каждый прямой отрезок, на которые разбит криволинейный путь, можно считать частью наклонной плоскости и применить к нему найденное правило.
Значит, в любой точке траектории сумма v 2/2 + ghодинакова. Поэтому изменение квадрата скорости не зависит от формы и длины пути, по которому двигалось тело, а определяется лишь разностью высот точек начала и конца движения.
Читателю может показаться, что наше заключение не совпадает с повседневным опытом: на длинном отлогом пути тело вовсе не набирает скорость и в конце концов остановится. Так оно и есть, но ведь мы в наших рассуждениях не учитывали силу трения. Написанная выше формула верна для движения в поле тяжести Земли под действием одной лишь силы тяжести. Если силы трения малы, то выведенный закон будет выполняться совсем неплохо. На гладких ледяных горах санки с металлическими полозьями скользят с очень небольшим трением. Можно устроить длинные ледяные дорожки, начинающиеся с крутого спуска, на котором набирается большая скорость, а затем причудливо извивающиеся вверх и вниз. Конец путешествия по таким горкам (когда санки остановятся сами собой) при полном отсутствии трения произошел бы на высоте, равной начальной. А так как трения избежать нельзя, то точка, с которой началось движение санок, будет выше того места, где они остановятся.
Закон, по которому конечная скорость не зависит от формы пути при движении под действием силы тяжести, может быть применен для решения различных интересных задач.
В цирке много раз показывали как захватывающий аттракцион вертикальную «мертвую петлю». Велосипедист или тележка с акробатом устанавливаются на высоком помосте. Ускоряющийся спуск, затем подъем. Вот акробат уже в положении вниз головой, опять спуск – и мертвая петля описана. Рассмотрим задачу, которую приходится решать инженеру цирка. На какой высоте надо сделать помост, с которого начинается спуск, чтобы акробат не свалился в наивысшей точке мертвой петли? Условие нам известно: центробежная сила, прижимающая акробата к помосту, должна уравновесить силу тяжести, направленную в противоположную сторону. Значит, mg≤ mv 2/ rгде r– радиус мертвой петли, а v– скорость движения в верхней точке петли. Для того чтобы эта скорость была достигнута, надо начать движение с места, расположенного выше верхней точки петли на некоторую величину h. Начальная скорость акробата равна нулю, поэтому в верхней точке петли v 2= 2 gh. Но, с другой стороны, v 2≥ gr. Значит, между высотой hи радиусом петли имеется соотношение h≥ r/2. Помост должен возвышаться над верхней точкой петли на величину, не меньшую половины радиуса петли. Учитывая неизбежную силу трения, приходится, конечно, брать некоторый запас высоты.

А вот еще одна задача. Возьмем круглый купол, очень гладкий, чтобы трение было минимальным. На вершину положим небольшой предмет и едва заметным толчком дадим ему возможность скользить по куполу. Рано или поздно скользящее тело отделится от купола и начнет падать. Мы можем легко решить вопрос, когда именно тело оторвется от поверхности купола: в момент отрыва центробежная сила должна равняться составляющей веса на направление радиуса (в этот момент тело перестанет давить на купол, а это и есть момент отрыва). На рис. 34 видны два подобных треугольника; изображен момент отрыва. Составим отношение катета к гипотенузе для треугольника сил и приравняем к соответствующему отношению сторон другого треугольника:

Здесь r– радиус сферического купола, а h– разность высот от начала до конца скольжения. Теперь используем закон о независимости конечной скорости от формы пути. Так как начальная скорость тела предполагается равной нулю, то v 2= 2 gh. Подставив это значение в написанную выше пропорцию и произведя арифметические преобразования, найдем: h= r/3. Значит, тело оторвется от купола на высоте, находящейся на 1/3 радиуса ниже вершины купола.
Закон сохранения механической энергии
Мы убедились на только что рассмотренных примерах, как полезно знать величину, не изменяющую свое численное значение (сохраняющуюся) при движении.
Пока мы знаем такую величину лишь для одного тела. А если в поле тяжести движется несколько связанных тел? Считать, что для каждого из них остается верным выражение v 2/2 + gh, явно нельзя, так как каждое из тел находится под действием не только силы тяжести, но и соседних тел. Может быть сохраняется сумма таких выражений, взятая для группы рассматриваемых тел?
Сейчас мы покажем, что это предположение неправильно. Сохраняющаяся при движении многих тел величина существует, но она не равна сумме

а равна сумме подобных выражений, умноженных на массы соответствующих тел; иначе говоря, сохраняется сумма

Для доказательства этого важнейшего закона механики обратимся к следующему примеру.
Через блок перекинуты два груза, – большой массы Mи маленький массы m. Большой груз тянет маленький, и эта группа из двух тел движется с возрастающей скоростью.
Движущей силой является разность в весе этих тел, Mg− mg. Так как в ускоренном движении участвует масса обоих тел, то закон Ньютона для этого случая будет записан так:
( M− m) g= ( M+ m) a.
Рассмотрим два момента движения и покажем, что сумма выражений v 2/2 + gh, помноженных на соответствующие массы, действительно остается неизменной. Итак, требуется доказать равенство

Заглавными буквами обозначены физические величины, характеризующие большой груз. Индексы 1 и 2 относят здесь величины к двум рассматриваемым моментам движения.
Так как грузы связаны веревкой, то v 1= V 1, v 2= V 2. Используя эти упрощения и перенося все члены, содержащие высоты, вправо, а члены со скоростями – влево, получим:

Разности высот грузов, разумеется, равны (но с обратным знаком, так как один груз поднимается, а другой опускается). Таким образом,

где S– пройденный путь.
На стр. 46мы узнали, что разность квадратов скоростей v 1 2− v 2 2в начале и конце отрезка Sпути, проходимого с ускорением a, равна
v12− v 2 2= 2 aS.
Подставляя это выражение в последнюю формулу, найдем:
( m+ M) a= ( M− m) g.
Но это есть закон Ньютона, записанный выше для нашего примера. Этим доказано требуемое: для двух тел сумма выражений v 2/2 + gh, умноженных на соответствующие массы *88
Разумеется, выражение v 2/2 + ghможно умножить с равным успехом на 2 mили на m/2 и вообще дополнительно на любой коэффициент. Условились поступать простейшим образом, т.е. умножать просто на m.
[Закрыть], во время движения остается неизменной, или, как говорят, сохраняется, т.е.

Для случая с одним телом эта формула перейдет в ранее доказанную:

Половина произведения массы на квадрат скорости называется кинетической энергией K:

Произведение веса тела на высоту называют потенциальной энергией тяготения тела к Земле U:
U= mgh.
Мы доказали, что во время движения системы из двух тел (и можно доказать то же самое для системы, состоящей из многих тел) сумма кинетической и потенциальной энергий тел остается неизменной.
Другими словами, увеличение кинетической энергии группы тел может произойти лишь за счет убыли потенциальной энергии этой системы (и, разумеется, наоборот).
Доказанный закон называется законом сохранения механической энергии.
Закон сохранения механической энергии является очень важным законом природы. Значение его мы еще не показали в полной мере. Позже, когда мы познакомимся с движением молекул, будет видна его универсальность, применимость ко всем явлениям природы.
Работа
Если толкать или тянуть тело, не встречая при этом никакой помехи, то результатом будет ускорение тела. Происшедшее при этом приращение кинетической энергии называют работой силы A:

По закону Ньютона ускорение тела, а следовательно, и прирост кинетической энергии определяется векторной суммой всех сил, приложенных к телу. Значит, в случае многих сил формула A= mv 2 2/2 − mv 1 2/2 есть работа результирующей силы. Выразим работу Aчерез величину силы.
Для простоты мы ограничимся случаем, когда движение возможно лишь в одном направлении – будем толкать (или тянуть) вагонетку массы m, стоящую на рельсах (рис. 35).

Согласно общей формуле равномерно-ускоренного движения v 2 2− v 1 2= 2 aS. Поэтому работа всех сил на пути S

Произведение maравно составляющей суммарной силы на направление движения. Таким образом, A= ƒ прод· S.
Работа силы измеряется произведением пути на составляющую силы вдоль направления пути.
Формула работы справедлива для сил любого происхождения и для движений по любой траектории.
Заметим, что работа может быть равна нулю и тогда, когда на движущееся тело действуют силы.
Например, работа силы Кориолиса равняется нулю. Ведь эта сила перпендикулярна к направлению движения.
Продольной составляющей у нее нет, поэтому равна нулю и работа.
Любое искривление траектории, не сопровождающееся изменением скорости, не требует работы – ведь кинетическая энергия при этом не меняется.
Может ли быть работа отрицательной? Конечно, если сила направлена под тупым углом к движению, то она не помогает, а мешает движению. Продольная составляющая силы на направление будет отрицательной. В этом случае мы и скажем, что сила производит отрицательную работу. Сила трения всегда замедляет движение, т.е. производит отрицательную работу.
По приращению кинетической энергии можно судить о работе лишь результирующей силы.
Что же касается работ отдельных сил, то мы должны их вычислять как произведения ƒ прод· S. Автомобиль равномерно движется по шоссе. Прироста кинетической энергии нет, значит, работа результирующей силы равна нулю. Но, разумеется, не равна нулю работа мотора – она равна произведению силы тяги на пройденный путь и полностью компенсируется отрицательной работой сил сопротивления и трения.
Пользуясь понятием «работа», мы можем более коротко и ясно описать те интересные особенности силы тяжести, с которыми мы только что знакомились. Если под действием силы тяжести тело перейдет из одного места в другое, то кинетическая энергия его изменится. Это изменение кинетической энергии равно работе A. Но из закона сохранения энергии нам известно, что прирост кинетической энергии происходит за счет убыли потенциальной.
Таким образом, работа силы тяжести равна убыли потенциальной энергии:
A= U1− U 2.
Очевидно, что убыль (или прирост) потенциальной энергии, а значит и прирост (или уменьшение) кинетической энергии будут одни и те же, независимо от того, по какому пути тело двигалось. Это означает, что работа силы тяжести не зависит от формы пути. Если тело перешло из первой точки во вторую с увеличением кинетической энергии, то из второй точки в первую оно перейдет с уменьшением кинетической энергии на точно такую же величину. При этом безразлично, совпадает ли форма пути «туда» с формой пути «обратно». Значит, и работы «туда» и «обратно» будут одинаковы. А если тело проделывает длинное путешествие, но конец пути совпадает с началом, то работа будет равна нулю.
Представьте себе какой угодно причудливой формы канал, по которому без трения скользит тело. Отправим его в путешествие с самой высокой точки. Тело помчится вниз, набирая скорость. За счет полученной кинетической энергии тело будет преодолевать подъем и наконец вернется к станции отправления. С какой скоростью? Разумеется, с той же, с которой оно покинуло станцию. Потенциальная энергия вернется к прежнему значению. А если так, то кинетическая энергия не могла ни уменьшиться, ни увеличиться. Значит, работа равна нулю.
Работа по кольцевому (физики говорят – по замкнутому) пути равна нулю не для всех сил. Нет надобности доказывать, что работа сил трения, например, будет тем больше, чем длиннее путь.
В каких единицах измеряют работу и энергию
Так как работа равна изменению энергии, то работа и энергия – разумеется, как потенциальная, так и кинетическая – измеряются в одних и тех же единицах. Работа равна произведению силы на путь. Работу силы в одну дину на пути в один сантиметр называют эргом:
1 эрг = 1 дина·1 см.
Это очень небольшая работа. Такую работу против силы тяжести совершит комар, чтобы перелететь с большого пальца руки на указательный. Более крупная единица работы и энергии, употребляющаяся в физике, – джоуль. Он в 10 миллионов раз больше эрга:
1 джоуль = 10 млн. эргов.
Довольно часто используется единица работы 1 килограммометр (1 кГм) – это работа, которая совершается силой в 1 кГ на пути в 1 м. Примерно такая работа совершается килограммовой гирей, упавшей на пол со стола.
Как нам известно, сила в 1 кГ равна 981 000 дин, 1 м равен 100 см. Значит, 1 кГм работы равен 98 100 000 эргов или 9,81 джоулей. Наоборот, 1 джоуль равен 0,102 кГм.
Новая система единиц (СИ), о которой мы уже упоминали и еще будем упоминать, предлагает в качестве единицы работы и энергии использовать джоуль и определяет его как работу силы в 1 ньютон ( см. стр. 44)на пути в 1 метр. Зная, как просто определяется в данном случае сила, нетрудно понять, в чем заключаются преимущества новой системы единиц.
Уменьшение энергии
Читатель, вероятно, обратил внимание на то, что при иллюстрациях закона сохранения механической энергии мы настойчиво повторяем: «при отсутствии трения, если бы не было трения…». Но ведь трение неизбежно сопровождает любое движение. Какое же значение имеет закон, не учитывающий столь важного практического обстоятельства? Ответ на этот вопрос мы отложим, а сейчас посмотрим, к чему приводит трение.
Силы трения направлены против движения, а значит, производят отрицательную работу. Это вызывает неминуемую потерю механической энергии.
Приведет ли эта неизбежная потеря механической энергии к прекращению движения? Нетрудно убедиться, что трение может остановить не всякое движение.
Представим себе замкнутую систему, состоящую из нескольких взаимодействующих тел. В отношении такой замкнутой системы справедлив, как мы знаем, закон сохранения импульса. Замкнутая система не может изменить своего импульса, поэтому движется прямолинейно и равномерно. Трение внутри такой системы может уничтожить относительные движения частей системы, но не повлияет на скорость и направление движения всей системы в целом.
Существует и еще один закон природы, называемый законом сохранения вращательного момента (с ним мы познакомимся позже), который не дает трению уничтожить равномерное вращение всей замкнутой системы.
Таким образом, наличие трения приводит к прекращению всех движений в замкнутой системе тел, не препятствуя лишь равномерному прямолинейному и равномерному вращательному движению этой системы в целом.
Если земной шар и меняет незначительно скорость своего вращения, то причина этого – не трение земных тел друг о друга, а то, что Земля не является изолированной системой.
Что же касается движений тел на Земле, то все они подвержены трению и теряют свою механическую энергию. Поэтому движение всегда прекращается, если не поддерживается извне.
Таков закон природы. А если бы удалось обмануть природу? Тогда… тогда можно было бы осуществить перпетуум мобиле, что означает по-латыни «вечное движение».
Перпетуум мобиле
Об осуществлении перпетуум мобиле мечтает Бертольд – герой «Сцен из рыцарских времен» Пушкина. «Что такое перпетуум мобиле?» – спрашивает его собеседник. «Это вечное движение, – отвечает Бертольд. – Если найду вечное движение, то я не вижу границ творчеству человека. Делать золото – задача заманчивая, открытие может быть любопытное, выгодное, но найти разрешение перпетуум мобиле…».
Перпетуум мобиле, или вечный двигатель, – это машина, работающая не только вопреки закону уменьшения механической энергии, но и нарушающая закон сохранения механической энергии, который, как мы теперь знаем, выполняется лишь в идеальных, недостижимых условиях – при отсутствии трения. Вечный двигатель, как только он будет сконструирован, должен начать работать «сам по себе» – например, вращать колесо или подымать грузы снизу вверх. Работа эта должна происходить вечно и непрерывно, а двигатель не должен требовать ни топлива, ни рук человеческих, ни энергии падающей воды – словом ничего, взятого извне.
Первый до сих пор известный достоверный документ об «осуществлении» идеи вечного двигателя относится к XIII веку. Любопытно, что спустя шесть веков, в 1910 году, в одно из московских научных учреждений был представлен на «рассмотрение» буквально такой же «проект».
Проект этого вечного двигателя изображен на рис. 36. При вращении колеса грузы перекидываются и поддерживают, по мысли изобретателя, движение, так как откинувшиеся грузы давят гораздо сильнее, действуя на более далеком от оси расстоянии. Построив эту отнюдь не сложную «машину», изобретатель убеждается, что, повернувшись по инерции на один или два оборота, колесо останавливается. Но это не приводит его в уныние. Допущена ошибка: рычаги надо сделать длиннее, форму выступов изменить. И бесплодная работа, которой многие доморощенные изобретатели посвящали свою жизнь, продолжается, но, разумеется, с тем же успехом.

Вариантов предлагавшихся вечных двигателей было в общем немного: разнообразные самодвижущиеся колеса, в принципе не отличающиеся от описанного, гидравлические двигатели – например, показанный на рис. 37 двигатель, изобретенный в 1634 г.; двигатели, использующие сифоны или капиллярные трубки (рис. 38), потерю веса в воде (рис. 39), притяжение железных тел магнитами. Далеко не всегда можно догадаться, за счет чего же должно было, по идее изобретателя, происходить вечное движение.

Еще до установления закона сохранения энергии утверждение о невозможности перпетуум мобиле мы находим в официальном заявлении французской Академии, сделанном в 1775 году, когда она решила не принимать больше для рассмотрения и испытания никакие проекты вечных двигателей.
Многие механики XVII–XVIII веков уже клали в основу своих доказательств аксиому о невозможности перпетуум мобиле, несмотря на то, что понятие энергии и закон сохранения энергии вошли в науку много позже.
В настоящее время ясно, что изобретатели, которые пытаются создать вечный двигатель, не только входят в противоречие с экспериментом, но и совершают ошибку против элементарной логики. Ведь невозможность перпетуум мобиле есть прямое следствие из законов механики, из которых они же исходят, обосновывая свое «изобретение».
Несмотря на полную бесплодность, поиски вечного двигателя, вероятно, сыграли все же какую-то полезную роль, так как в конечном счете привели к открытию закона сохранения энергии.







