Текст книги "Физика для всех. Движение. Теплота"
Автор книги: Александр Китайгородский
Соавторы: Лев Ландау
сообщить о нарушении
Текущая страница: 22 (всего у книги 28 страниц)
XIV. Трение
Силы трения
Мы не в первый раз говорим о трении. И правда, как можно было, рассказывая о движении, обойтись без упоминания о трении? Почти любое движение окружающих нас тел сопровождается трением. Останавливается автомобиль, у которого водитель выключил мотор, останавливается после многих колебаний маятник, медленно погружается в банку с подсолнечным маслом брошенный туда маленький металлический шарик. Что заставляет тела, движущиеся по поверхности, останавливаться, в чем причина медленного падения шарика в масле? Мы отвечаем: это силы трения, возникающие при движении одних тел вдоль поверхности других.
Но силы трения возникают не только при движении.
Вам, наверное, приходилось передвигать мебель в комнате. Вы знаете, как трудно сдвинуть с места тяжелый шкаф. Сила, противодействующая этому усилию, называется силой трения покоя.
Силы трения возникают и когда мы двигаем предмет, и когда мы катим его. Это два несколько отличных физических явления. Поэтому различают трение скольжения и трение качения. Трение качения в десятки раз меньше трения скольжения.
Конечно, в некоторых случаях и скольжение происходит с большой легкостью. Санки легко скользят по снегу, а коньки по льду – и еще легче.
От каких же причин зависят силы трения?
Сила трения между твердыми телами мало зависит от скорости движения и пропорциональна весу тела. Если вес тела возрастет вдвое, то сдвинуть его с места и тащить будет вдвое труднее. Мы выразились не вполне точно, важен не столько вес, сколько сила, прижимающая тело к поверхности. Если тело легкое, но мы крепко надавили на него рукой, то, конечно, это скажется на силе трения. Если обозначить силу, прижимающую тело к поверхности (большей частью это вес), через Р, то для силы трения F трбудет справедлива такая простая формула:
Fтр= kP.
А как же учитываются свойства поверхностей? Ведь хорошо известно, что одни и те же сани, на тех же полозьях скользят совсем по-разному, смотря по тому, обиты полозья железом или нет. Эти свойства учитываются коэффициентом пропорциональности k. Он называется коэффициентом трения.
Коэффициент трения металла по дереву равен 1/2. Сдвинуть лежащую на деревянном гладком столе металлическую плиту весом в 2 кГ удастся лишь силой в 1 кГ. А вот коэффициент трения стали по льду равен всего лишь 0,027. Ту же плиту удастся сдвинуть силой, равной всего лишь 54 Г.
Площадь поверхности не входит в приведенную формулу: сила трения не зависит от площади поверхности соприкосновения трущихся тел. Нужна одинаковая сила, чтобы сдвинуть с места или тащить с неизменной скоростью широкий лист стали весом в килограмм и килограммовую гирю, опирающуюся на поверхность лишь малой площадью.
И еще одно замечание о силах трения при скольжении. Сдвинуть тело с места несколько труднее, чем тащить: сила трения, преодолеваемая в первое мгновение движения (трение покоя), больше последующих значений силы трения на 20–30 %.
Что можно сказать о силе трения при качении, например для колеса? Как и трение скольжения, она тем больше, чем больше сила, прижимающая колесо к поверхности. Кроме того, сила трения качения обратно пропорциональна радиусу колеса. Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности, по которой оно катится.
Если сравнивать силы, которые приходится преодолевать, заставляя тело скользить и катиться, то разница получается очень внушительная. Например, чтобы тянуть по асфальту стальную болванку весом в 1 Т, нужно приложить силу в 200 кГ – на это способны лишь атлеты. А катить на тележке эту же болванку сможет и ребенок, для этого нужна сила не более 10 кГ.
Немудрено, что трение качения «победило» трение скольжения. Недаром человечество уже очень давно перешло на колесный транспорт.
Замена полозьев колесами еще не есть полная победа над трением скольжения. Ведь колесо надо насадить на ось. На первый взгляд невозможно избежать трения осей о подшипники. Так думали на протяжении веков и старались уменьшить трение скольжения в подшипниках лишь различными смазками. Услуги, оказываемые смазкой, немалые – трение скольжения уменьшается в 8–10 раз. Но даже и при смазке трение скольжения в очень многих случаях столь значительно, что обходится чрезмерно дорого. В конце прошлого века это обстоятельство сильно тормозило техническое развитие. Тогда и возникла замечательная идея заменить в подшипниках трение скольжения трением качения. Эту замену осуществляет шариковый подшипник. Между осью и втулкой поместили шарики. При вращении колеса шарики покатились по втулке, а ось – по шарикам. На рис. 109 показано устройство этого механизма. Таким способом трение скольжения было заменено трением качения. Силы трения уменьшились при этом в десятки раз.
Роль подшипников качения в современной технике трудно переоценить. Их делают с шариками, с цилиндрическими роликами, с коническими роликами. Такими подшипниками снабжены все машины, большие и малые. Существуют шариковые подшипники размером в миллиметр; некоторые подшипники для больших машин весят более тонны. Шарики для подшипников (вы их видели, конечно, в витринах специальных магазинов) производят самых различных диаметров – от долей миллиметра до нескольких сантиметров.
Вязкое трение в жидкостях и газах
До сих пор мы говорили о «сухом» трении, т.е. о трении, возникающем при соприкосновении твердых предметов. Но и плавающие, и летающие тела также подвержены действию сил трения. Меняется источник трения – сухое трение заменяется «мокрым».
Сопротивление, которое испытывает движущееся в воде или воздухе тело, подчиняется иным закономерностям, существенно отличным от законов сухого трения, о которых мы говорили выше.
Правила поведения жидкости и газа в отношении трения не различаются. Поэтому все сказанное ниже относится в равной степени и к жидкостям, и к газам. Если мы для краткости будем говорить ниже о «жидкости», сказанное будет относиться в равной степени и к газам.
Одно из отличий «мокрого» трения от сухого заключается в отсутствии трения покоя – сдвинуть с места висящий в воде или воздухе предмет можно, вообще говоря, сколь угодно малой силой. Что же касается силы трения, испытываемой движущимся телом, то она зависит от скорости движения, от формы и размеров тела и от свойств жидкости (газа). Изучение движения тел в жидкостях и газах показало, что нет единого закона для «мокрого» трения, а имеются два разных закона: один – верный при малых, а другой – при больших скоростях движения. Наличие двух законов означает, что при больших и малых скоростях движения твердых тел в жидкостях и газах обтекание средой движущегося в ней тела происходит по-разному.
При малых скоростях движения сила сопротивления прямо пропорциональна скорости движения и размеру тела:
Как надо понимать пропорциональность размеру, если не сказано, о какой форме тела идет речь? Это значит, что для двух тел, вполне подобных по форме (т.е. таких, все размеры которых находятся в одинаковом отношении), силы сопротивления относятся так же, как линейные размеры тел.
Величина сопротивления в огромной степени зависит от свойств жидкости. Сравнивая силы трения, которые испытывают одинаковые предметы, движущиеся с одинаковыми скоростями в разных средах, увидим, что тела испытывают тем большую силу сопротивления, чем более густой, или, как говорят, чем более вязкой будет среда. Поэтому трение, о котором идет речь, уместно назвать вязким трением. Вполне понятно, что воздух создает незначительное вязкое трение, примерно раз в 60 меньше, чем вода. Жидкости могут быть «негустые», как вода, и очень вязкие, как сметана или мед.
О степени вязкости жидкости можно судить либо по быстроте падения в ней твердых тел, либо по быстроте выливания жидкости из отверстий.
Вода выльется из поллитровой воронки за несколько секунд. Очень вязкая жидкость будет вытекать из нее часами, а то и днями. Можно привести пример и еще более вязких жидкостей. Геологи обратили внимание, что в кратере некоторых вулканов на внутренних склонах в скоплениях лавы встречаются шаровидные куски. На первый взгляд совершенно непонятно, как внутри кратера мог образоваться такой шар из лавы. Это непонятно, если говорить о лаве как о твердом теле. Если же лава ведет себя как жидкость, то она будет вытекать из воронки кратера каплями, как и любая другая жидкость. Но только одна капля образуется не за долю секунды, а за десятилетия. Когда капля станет очень тяжелой, она оторвется и «капнет» на дно кратера вулкана.
Из этого примера ясно, что не следует ставить на одну доску настоящие твердые тела и аморфные тела, которые, как мы знаем, много более похожи на жидкость, чем на кристаллы. Лава как раз такое аморфное тело. Оно кажется твердым, но на самом деле это очень вязкая жидкость.
Как вы думаете, сургуч – твердое тело? Возьмите две пробки, положите их на дно двух чашек. В одну налейте какую-нибудь расплавленную соль (например, селитру – ее легко достать), а в другую чашку с пробкой налейте сургуч. Обе жидкости застынут и погребут пробки. Поставьте эти чашки в шкаф и надолго забудьте о них. Через несколько месяцев вы увидите разницу между сургучом и солью. Пробка, залитая солью, по-прежнему будет покоиться на дне сосуда. А пробка, залитая сургучом, окажется наверху. Как же это произошло? Очень просто: пробка всплыла совсем так, как она всплывает в воде. Разница лишь во времени: когда силы вязкого трения малы, пробка всплывает вверх мгновенно, а в очень вязких жидкостях всплывание продолжается месяцами.
Силы сопротивления при больших скоростях
Но вернемся к законам «мокрого» трения. Как мы выяснили, при малых скоростях сопротивление зависит от вязкости жидкости, скорости движения и линейных размеров тела. Рассмотрим теперь законы трения при больших скоростях. Но прежде надо сказать, какие скорости считать малыми, а какие большими. Нас интересует не абсолютная величина скорости, а то, является ли скорость достаточно малой, чтобы выполнялся рассмотренный выше закон вязкого трения.
Оказывается, нельзя назвать такое число метров в секунду, чтобы во всех случаях при меньших скоростях были применимы законы вязкого трения. Граница применения изученного нами закона зависит от размеров тела и от степени вязкости и плотности жидкости.
Для воздуха «малыми» являются скорости меньше
для воды – меньше
а для вязких жидкостей, вроде густого меда, – меньше
Таким образом, к воздуху и особенно к воде законы вязкого трения мало применимы: даже при малых скоростях, порядка 1 см/с, они будут годиться лишь для крошечных тел миллиметрового размера. Сопротивление, испытываемое ныряющим в воду человеком, ни в какой степени не подчиняется закону вязкого трения.
Чем же объяснить, что при изменении скорости меняется закон сопротивления среды? Причины надо искать в изменении характера обтекания жидкостью движущегося в нем тела. На рис. 110 изображены два круговых цилиндра, движущихся в жидкости (ось цилиндра перпендикулярна к чертежу). При медленном движении жидкость плавно обтекает движущийся предмет – сила сопротивления, которую ему приходится преодолевать, есть сила вязкого трения (рис. 110, а). При большой скорости позади движущегося тела возникает сложное запутанное движение жидкости (рис. 110, б). В жидкости то появляются, то пропадают различные струйки, они образуют причудливые фигуры, кольца, вихри. Картина струек все время меняется. Появление этого движения, называемого турбулентным, в корне меняет закон сопротивления.
Турбулентное сопротивление зависит от скорости и размеров предмета совсем иначе, чем вязкое: оно пропорционально квадрату скорости и квадрату линейных размеров. Вязкость жидкости при этом движении перестает играть существенную роль; определяющим свойством становится ее плотность, причем сила сопротивления пропорциональна первой степени плотности жидкости (газа). Таким образом, для силы Fтурбулентного сопротивления справедлива формула
где v– скорость движения, L– линейные размеры предмета и ρ – плотность среды. Числовой коэффициент пропорциональности, которого мы не написали, имеет различные значения в зависимости от формы тела.
Обтекаемая форма
Движение в воздухе, как мы говорили выше, почти всегда «быстрое», т.е. основную роль играет турбулентное, а не вязкое сопротивление. Турбулентное сопротивление испытывают самолеты, птицы, парашютисты. Если человек падает в воздухе без парашюта, то через некоторое время он начинает падать равномерно (сила сопротивления уравновешивает вес), но с весьма значительной скоростью, порядка 50 м/с. Раскрывание парашюта приводит к резкому замедлению падения – тот же вес уравновешивается теперь сопротивлением купола парашюта. Так как сила сопротивления пропорциональна скорости движения и размеру падающего предмета в одинаковой степени, то скорость упадет во столько раз, во сколько изменятся линейные размеры падающего тела. Диаметр парашюта около 7 м, «диаметр» человека около одного метра. Скорость падения уменьшится до 7 м/с, c такой скоростью можно безопасно приземлиться.
Надо сказать, что задача увеличения сопротивления решается значительно легче, чем обратная задача. Уменьшить сопротивление автомобилю и самолету со стороны воздуха или подводной лодке со стороны воды – важнейшие и нелегкие технические задачи.
Оказывается, что, изменяя форму тела, можно уменьшить турбулентное сопротивление во много раз. Для этого надо свести к минимуму турбулентное движение, являющееся источником сопротивления. Это достигается приданием предмету специальной, как говорят, обтекаемой формы.
Какая же форма является в этом смысле наилучшей? На первый взгляд кажется, что телу надо придать такую форму, чтобы вперед двигалось острие. Такое острие, как кажется, должно с наибольшим успехом «рассекать» воздух. Но, оказывается, важно не рассекать воздух, а как можно меньше потревожить его, чтобы он очень плавно обтекал предмет. Наилучшим профилем движущегося в жидкости или газе тела является форма, тупая спереди и острая сзади *1414
Острые носы у лодок и морских судов нужны для «разрезания» волн, т.е. лишь тогда, когда движение происходит по поверхности.
[Закрыть]. При этом жидкость плавно стекает с острия, и турбулентное движение сводится к минимуму. Ни в коем случае нельзя направлять острые углы вперед, так как острия вызывают образование турбулентного движения.
Обтекаемая форма крыла самолета создает не только наименьшее сопротивление движению, но и наибольшую подъемную силу, когда обтекаемая поверхность стоит наклонно вверх к направлению движения. Обтекая крыло, воздух давит на него в основном в направлении, перпендикулярном к его плоскости (рис. 111). Понятно, что для наклоненного крыла эта сила направлена вверх.
С возрастанием угла подъемная сила растет. Но рассуждение, основанное на одних лишь геометрических соображениях, привело бы нас к неверному выводу, что чем больше угол к направлению движения, тем лучше. На самом же деле по мере увеличения угла плавное обтекание плоскости все затрудняется, а при некотором значении угла, как это иллюстрирует рис. 112, возникает сильная турбулентность; сопротивление резко возрастает, и подъемная сила падает.
Исчезновение вязкости
Очень часто, объясняя какое-нибудь явление или описывая поведение тех или иных тел, мы ссылаемся на знакомые примеры. Вполне понятно, говорим мы, что этот предмет движется таким-то образом, ведь и другие тела движутся по тем же правилам. Большей частью всегда удовлетворяет объяснение, которое сводит новое к тому, что нам уже встречалось в жизни. Поэтому мы не испытывали особых трудностей, объясняя читателю законы, но которым движутся жидкости, – ведь каждый видел, как течет вода, и законы этого движения кажутся вполне естественными.
Однако есть одна совершенно удивительная жидкость, которая не похожа ни на какие другие жидкости и движется она по особым, только ей свойственным законам. Это жидкий гелий.
Мы уже говорили, что жидкий гелий сохраняется как жидкость при температуре вплоть до абсолютного нуля. Однако гелий выше 2 K (точнее, 2,19 K) и гелий ниже этой температуры – это совсем разные жидкости. Выше двух градусов свойства гелия ничем не выделяют его среди других жидкостей. Ниже этой температуры гелий становится чудесной жидкостью. Чудесный гелий называют гелием II.
Самое поразительное свойство гелия II – это открытая П.Л. Капицей в 1938 г. сверхтекучесть, т.е. полное отсутствие вязкости.
Для наблюдения сверхтекучести изготовляется сосуд, в дне которого имеется очень узкая щель – шириной всего лишь в полмикрона. Обычная жидкость почти не просачивается сквозь такую щель; так ведет себя и гелий при температуре выше 2,19 K. Но едва только температура становится ниже 2,19 K, скорость вытекания гелия скачком возрастает по крайней мере в тысячи раз. Через тончайший зазор гелий II вытекает почти мгновенно, т.е. полностью теряет вязкость. Сверхтекучесть гелия приводит к еще более странному явлению. Гелий II способен сам «вылезать» из стакана или пробирки, куда он налит.
На рис. 113 показана схема проведения этого опыта. Пробирку с гелием II помещают в дьюаре над гелиевой ванной. «Ни с того ни с сего» гелий поднимается по стенке пробирки в виде тончайшей совершенно незаметной пленки и перетекает через край; с донышка пробирки капают капли.
Надо вспомнить, что благодаря капиллярным силам, о которых говорилось на стр. 193, молекулы всякой жидкости, смачивающей стенку сосуда, взбираются вверх по этой стенке и образуют на ней тончайшую пленку, ширина которой по порядку величины равна одной миллионной доле сантиметра. Эта пленочка незаметна для глаза, да и вообще ничем себя не проявляет для обычной вязкой жидкости.
Картина совершенно меняется, если мы имеем дело с лишенным вязкости гелием. Ведь узкая щель не мешает движению сверхтекучего гелия, а тонкая поверхностная пленка – все равно что узкая щель. Лишенная вязкости жидкость течет тончайшим слоем. Через борт стакана или пробирки поверхностная пленка образует сифон, по которому гелий переливается через край сосуда.
Понятно, что у обычной жидкости мы не наблюдаем ничего похожего. При нормальной вязкости «пробраться» через сифон ничтожной толщины жидкость практически не может. Такое движение настолько медленно, что перетекание длилось бы миллионы лет.
Итак, гелий II лишен всякой вязкости. Казалось бы, отсюда с железной логикой следует вывод, что твердое тело должно в такой жидкости двигаться без трения. Поместим в жидкий гелий диск на нити и закрутим нить.
Предоставив свободу этому несложному приспособлению, мы создадим нечто вроде маятника – нить с диском будет колебаться и периодически закручиваться то в одну, то в другую сторону. Если трения нет, то мы должны ожидать, что диск будет колебаться вечно. Однако ничего подобного. Через сравнительно короткое время, примерно такое же, как и для обычного нормального гелия I (т.е. гелия при температуре выше 2,19 K), диск останавливается. Что за странность? Вытекая через щель, гелий ведет себя как жидкость без вязкости, а по отношению к движущимся в нем телам ведет себя как обычная вязкая жидкость. Вот это уж действительно совершенно необычно и непонятно.
Нам остается теперь вспомнить сказанное по поводу самого факта, что гелий не затвердевает вплоть до абсолютного нуля. Ведь дело идет о непригодности привычных нам представлений о движении. Если гелий «незаконно» остался жидким, то надо ли удивляться беззаконному поведению этой жидкости.
Понять поведение жидкого гелия можно только с точки зрения новых представлений о движении, которые получили название квантовой механики. Попытаемся дать самое общее представление о том, как квантовая механика объясняет поведение жидкого гелия.
Квантовая механика – очень хитрая и трудная для понимания теория, и пусть читатель не удивляется, что объяснение выглядит еще более странным, чем сами явления. Оказывается, каждая частица жидкого гелия участвует одновременно в двух движениях: одно движение сверхтекучее, не связанное с вязкостью, а другое – обычное.
Гелий II ведет себя таким образом, как будто бы он состоит из смеси двух жидкостей, движущихся совершенно независимо «одна через другую». Одна жидкость нормальна по поведению, т.е. обладает обычной вязкостью, другая составная часть является сверхтекучей.
Когда гелий течет через щель или перетекает через край стакана, мы наблюдаем эффект сверхтекучести. А при колебании диска, погруженного в гелий, останавливающее диск трение создается благодаря тому, что в нормальной части гелия трение диска неизбежно.
Способность участвовать в двух разных движениях порождает и совершенно необычные теплопроводящие свойства гелия. Как уже говорилось, жидкости вообще довольно плохо проводят тепло. Подобно обычным жидкостям ведет себя и гелий I. Когда же происходит превращение в гелий II, теплопроводность его возрастает примерно в миллиард раз. Таким образом, гелий II проводит тепло лучше, чем самые лучшие обычные проводники тепла – такие, как медь и серебро.
Дело в том, что сверхтекучее движение гелия в передаче тепла не участвует. Поэтому, когда в гелии II есть перепад температур, то возникают два течения, идущие в противоположных направлениях, и одно из них – нормальное – несет с собой тепло. Это совершенно непохоже на обычную теплопроводность. В обычной жидкости тепло передается ударами молекул. В гелии II тепло течет вместе с обычной частью гелия, течет, как жидкость. Вот уж здесь термин «поток тепла» оправдан полностью. Такой способ передачи тепла и приводит к огромной теплопроводности.
Это объяснение теплопроводности гелия может показаться настолько странным, что вы откажетесь в него поверить. Но в справедливости сказанного можно убедиться непосредственно на следующем простом по своей идее опыте.
В ванне с жидким гелием находится дьюар, также полностью заполненный гелием. Сосуд сообщается с ванной капиллярным отростком. Гелий внутри сосуда нагревается электрической спиралью, тепло не переходит к окружающему гелию, так как стенки сосуда не передают тепло.
Напротив капиллярной трубки находится крылышко, подвешенное на тонкой нити. Если тепло течет как жидкость, то оно должно повернуть крылышко. Именно это и происходит. При этом количество гелия в сосуде не изменяется. Как же объяснить это чудесное явление? Лишь единственным способом: при нагревании возникает поток нормальной части жидкости от нагретого места к холодному и поток сверхтекучей части в обратную сторону. Количество гелия в каждой точке не меняется, но так как вместе с переносом тепла движется нормальная часть жидкости, то крылышко поворачивается благодаря вязкому трению этой части и остается отклоненным столько времени, сколько продолжается нагрев.
Из того, что сверхтекучее движение не переносит тепла, следует и другой вывод. Выше говорилось о «переползании» гелия через край стакана. Но «вылезает» из стакана сверхтекучая часть, а остается нормальная. Тепло связано только с нормальной частью гелия, оно не сопровождает «вылезающую» сверхтекучую часть. Значит, по мере «вылезания» гелия из сосуда одно и то же тепло будет приходиться на все меньшее количество гелия – остающийся в сосуде гелий должен нагреваться. Это действительно наблюдается при опыте.
Массы гелия, связанные с сверхтекучим и нормальным движением, не одинаковы. Отношение их зависит от температуры. Чем ниже температура, тем больше сверхтекучая часть массы гелия. При абсолютном нуле весь гелий становится сверхтекучим. По мере повышения температуры все большая часть гелия начинает вести себя нормально и при температуре 2,19 K весь гелий становится нормальным, приобретает свойства обычной жидкости.
Но у читателя уже вертятся на языке вопросы: что же это за сверхтекучий гелий, как может частица жидкости участвовать одновременно в двух движениях, как объяснить самый факт двух движений одной частицы?.. К сожалению, мы вынуждены оставить здесь все эти вопросы без ответа. Теория гелия II слишком сложна, и чтобы ее понять, надо знать очень много.