Текст книги "Технопарк юрского периода. Загадки эволюции"
Автор книги: Александр Гангус
сообщить о нарушении
Текущая страница: 27 (всего у книги 31 страниц)
А кстати, от каких именно протистов – одноклеточных организмов произошли многоклеточные? От юрких жгутиконосцев (на них как две капли воды похожи сперматозоиды, мужские половые клетки многоклеточных) или от величественных амеб, и питающихся и передвигающихся с помощью ложноножек-псевоподий? На амеб похожи ооциты – женские половые клетки, яйцеклетки. Интересно, что эта похожесть – разная у разных многоклеточных и при этом как будто не стоит ни в какой связи со степенью родства или местоположения на генеалогическом древе эволюции. Например, ооцит губки – амеба-амебой, подвижный, с несколькими псевдоподиями, у самки рака и кошки яйиеклетка более «стационарная» с одной действующей псевдоподией. А вот у странной компании из форели, курицы и человека яйцеклетка практически неподвижна, круглая и делает вид, что не помнит, от кого произошла. Впрочем, генетически яйцеклетка всегда предрасположена вести себя подобно амебе, но ее дисциплинируют свойства ее оболочки, разные у разных многоклеточных.
Жгутиконосцы и амебы посоревновались (в трудах биологов) за право быть первыми, «догадавшимися» соединиться в многоклеточный организм. Впрочем, теперь уже ясно, что в создании мира многоклеточных участвовали и те и другие, но не исключено, что кто-то начал первый, а кто, пока неизвестно...
Один из первых этапов этого перехода от «ремесленников» – клеток к «мануфактурам» – многоклеточным организмам и есть колониальные постройки сине-зеленых водорослей – цианобактерий. Донельзя примитивные (в их клетках нет еще даже ядер), сине-зеленые познали «радость коллективного труда». И уже первые их постройки несут на себе отпечаток какого-то своеобразия, они обладают архитектурой. Именно поэтому И. Крылов был вправе поделить их постройки на «виды» и «роды». На примере сине-зеленых природа смоделировала один из первых переходов от простого одноклеточного к более сложному уровню организации живой материи.
Клетки и пред клетки
Первые признаки клеток сине-зеленых водорослей находят в слоях 3,2-миллиарднолетней давности. Признаки работы серных бактерий нашли в барите (сульфат бария), который с помощью изотопного анализа показал возраст 3,44 млрд лет. До дня «ноль», дня, когда родилась наша планета, остается (не забывайте: в этой книге мы движемся против течения времени) «всего91,3 1,5 миллиарда лет. Много это или мало? Оказывается, мало! Современная биология считает, что, создав первую настоящую клетку, природа прошла чуть ли не большую часть пути от «первичного бульона» до человека. Самое трудное, оказывается, было создать именно клетку.
Исследователи-биохимики часто склонны сравнивать клетку не с ремесленником-одиночкой, а с целым химическим заводом: столько всяких нужных самой клетке и организму в целом веществ здесь производится. Если же приглядеться к устройству этого завода, то сравнение покажется еще более многозначительным. Завод работает, его части – органеллы (а они же иногда и исполнители работ) движутся, взаимодействуют в согласии, демонстрируя «понятливость» и поведение, не уступающее в сложности поведению клетки в целом...

Сейчас почти никто не оспаривает казавшуюся еще недавно крамольной мысль о симбиогенезе. Простые безъядерные организмы первого этапа эволюции объединяясь в настоящие клетки, с митохондриями, с ядрами, содержащими генетический материал. Эволюция ускоряется, в ней появился половой процесс, появилось разнообразие видов и родов
Вот обязательная для всех клеток органелла – митохондрия. В клетке несколько митохондрий. Это энергетические подстанции клетки. Их автономность, сложность их строения удивительны. Под электронным микроскопом можно разглядеть, что митохондрии сами напоминают многоклеточный организм: их тельце разделено перегородками на маленькие деления. Обнаружили, что в принципе митохондрии могут делиться, размножаться и без участия «дирекции» клеточного «комбината» – ядра. И это не удивительно, ведь у митохондрии – свой генный аппарат, своя ДНК. Недавно как будто обнаружены две разновидности митохондрий, различающихся между собой некоторыми деталями. Есть гипотеза, что эти две разновидности – два пола, а точнее, реликты тех времен, когда митохондрии (возможно, почти потерявшие самостоятельность потомки еще одной «империи» живого) действительно самостоятельно размножались половым путем и жили вне клеток, времен, когда клеток не было. А были предклетки. Предклетки каким-то образом объединились в целое – нынешнюю настоящую клетку, объединились, создав на первых порах колонию, временный непостоянный союз, потом, быстро «поняв» преимущества такого общежития, полностью перешли к новой жизни.
Это объединение совершалось не вдруг, в разных вариантах во много этапов. Подтверждение этому – нынешнее разделение живых существ на организмы безъядерные, прокариоты (археи, бактерии, в том числе цианобактерии, сине-зеленые водоросли) и прочие, ядерные, эукариоты. Несмотря на всю примитивность безъядерных существ, они дожили до наших дней, оставшись, правда, на примитивном одноклеточном уровне. Попытки сине-зеленых создать многоклеточный организм после первых успехов остановились на мертвой точке.
По сравнению с этим капитальным разделением организмов на ядерные и безъядерные их разделение на существа, способные к фотосинтезу, и на существа, к нему неспособные, выглядит второстепенным. Академик А. Фаминцын когда-то говорил, что хлоропласты, органеллы зеленых растений, занятые фотосинтезом,– это не простые компоненты клетки, а бывшие самостоятельные организмы, водоросли (может быть, те же сине-зеленые), живущие в симбиозе с
приютившей их клеткой. Сейчас это предположение как будто подтверждается. «Раскопки» в недрах хлоропластов привели биологов к замечательному открытию: и в этих зеленых зернах, как и в митохондриях, обнаружено наследие далеких эпох, своя ДНК, дезоксирибонуклеиновая кислота – основа воспроизводства живой материи.
Как живут органеллы клетки, какие совершают поступки? Именно они участники драмы, имя которой митоз, деление, а сцена действия – клетка. В общем, эта драма, финал которой разделение клетки На две, – драма одного «автора», но актеры – великие импровизаторы, каждый раз в зависимости от царства и класса живого мира по-своем> интерпретирующие «авторский замысел».
Вот первое действие. В неизменной пока клетке происходят первые малозначительные движения, расходятся к разным полюсам органеллы диктиосомы (видимо, режиссеры этого первого этапа митоза). В ядре червячками гнутся, делясь пополам, хромосомы...
А вот митохондрии, самые самостоятельные органеллы, ведут себя по-разному. У кузнечика они группируются в несколько пучков (чтобы размежеваться, надо сначала объединиться!). А у скорпиона митохондрии клеток по какому-то своему регламенту, не всегда синхронно с действиями хромосом, соединяются в кольца-хороводы.
Если повредить организм, нанести ему травму, ядра всех ближайших клеток сместятся из центров своих владений к окраине, поближе к месту происшествия. Зачем? Отсюда им легче, ближе управлять «починкой», лечением травмы. Но как это происходит? По какому сигналу, что за движитель такой у ядра, что оно плывет по клетке, как захочет?..
Растение по-разному защищается от избытка света. Оно, например, может расположить листья так, чтобы уменьшить освещение их поверхности. Но хлоропласты, зеленые органеллы в клетках листьев, независимо от этих мер, принимаемых организмом в целом, могут сами, как бы чуя, откуда опасность, довольно быстро «переезжать» к тому концу клетки, который подальше от света, и сдвигаться обратно, только свет ослабеет: процесс фотосинтеза поддерживается на довольно постоянном уровне...
Сколько миллионов лет существовал мир самостоятельных органелл, прежде чем, объединившись, они породили амеб,
одноклеточные растения и животных? Для этого этапа эволюции явно не хватает срока жизни Земли, что заставляет одних ученых сомневаться в правильности определения этих сроков, а других – снова обратиться к гипотезе панспермии – повсеместного распространения зародышей жизни в космосе.
Я не хочу успокаивать читателя утешением, что вот-вот все выяснится. Наоборот, размышления над цитоэтологией, поведением на клеточном уровне, – неизбежно приводят к вопросу об этологии, поведении, в мире больших молекул, процесс передачи наследственности, строительства белков из кирпичиков-аминокислот идет на уровне молекул. Среди ученых не затихает давний спор, считать ли вирусы организмами. Часто вирус – это одна молекула ДНК или РНК, содержащая в себе крайне бедную наследственную информацию, а потому не слишком сложная, заключенная в чехольчик из нескольких молекул белка. Вирус, безусловно, обладает поведением. Он подходит к клетке-жертве, оставляет снаружи чехольчик, вводит свою ДНК в клетку, переключая этот завод на производство чуждой и пагубной продукции – новых ДНК зловредных вирусов и их белковых «чехольчиков».
Говорят, что вирус не в счет, что он может существовать только как паразит, а потому он потерял весь арсенал признаков, необходимых истинно живому существу. Это, вероятно, так. Но вирусы (и тем более открытые недавно совсем уж простые вироиды) подтверждают тем не менее возможность поведения на молекулярном уровне. Да и есть уже гипотеза, что при сборке первой сложной, ядерной, эукариотической клетки пивной органеллой, ядром, хранилищем наследственной информации, стал именно вирус, возможно даже, изначально болезнетворный, паразит, но в каких-то условиях и в подходящий момент вместо разбоя и жестокого завоевания произошло «приглашение варяга на трон». «Придите княжить и володеть нами»...
В иные времена роль цитоплазмы нынешних клеток для протоорганизмов-органелл играл «первичный бульон» – питательные смеси сложных органических веществ. А еще раньше, когда и органеллы еще только зарождались, молекулярные комплексы, напоминающие вирус, могли взаимодействовать, воспроизводить друг друга, а тем самым весь примитивный «биоценоз» древней лужи, сообщество макромолекул в целом.
Биоценоз... Да, это слово в науке об эволюции живого еще должно занять подобающее ему место. Разве не напрашивается искушение объяснить основную капитальную загадку эволюции – усложнение ее систем – развитием целого из содружества, а потом и слияния частей? Разве не видим мы мысленно, как примитивные биоценозы, состоящие из взаимодействующих молекул первичных луж, постепенно эволюционируя через молекулярные комплексы, дали начало новой «луже», новому биоценозу предклеток-органелл? Как биоценоз этих разных предклеток, научившихся каким-то образом окружать себя общей оболочкой – мембраной, создал независимую «лужу» – первую настоящую клетку? Как клетки, научившись двигаться и сосуществовать друг с другом, создали новые биоценозы вроде рифов докембрийского моря – строматолитов? И как подобные биоценозы постепенно превратились в цельные, истинно многоклеточные организмы? Вроде губок? А затем и всех прочих?
Да и многие нынешние биоценозы эволюционируют в том же направлении. Французский биолог Реми Шовен рассматривает муравейник не только как биоценоз, но и как организм: очень уж высока взаимозависимость и специализация участников этого биоценоза. И. Крылов, отстаивая свое право на биологическую классификацию «фитоценозов» сине-зеленых водорослей-строматолитов, сравнивал эти постройки с постройками более высокоорганизованных рифоустроителей – коралловых полипов. Ясно, что полипы – это отдельные организмы, но они уже не могут существовать друг без друга и своей коллективной постройки. А их сооружения-общежития вполне поддаются классификации, почти как настоящие организмы.
А разве не тот же принцип видим мы в величайшем достижении эволюции, рождении нового социального существа – 1 человечества? С его централизованным фондом информации, с накоплением и интегрированием всех культурных достижений величайших индивидуальностей и цивилизаций?..
И снова сливаются биологический и географический подходы к эволюции нашей планеты. Не вульгарное прямое влияние среды на наследственность, а тончайший механизм многосторонних развивающихся связей биоценоза. Течения, волны, соленость диктовали первым объединениям сине-зеленых формы построек. Но сами постройки требовали – через естественный отбор – биологической перестройки коллективных членов содружества. А перестроившись, те сами стали определять типовые проекты коллективных скелетов. Возникло что-то вроде первой сверхиндивидуальности. Биоценоз сине-зеленых, цианобактерий перерос в докембрии в биогеоценоз: водоросли стали выделять массу кислорода, начавшего менять лик Земли...
...Вот какие мысли могут возникнуть на защите докторской диссертации по сине-зеленым водорослям...
Империи живого
Не раз пришлось оговаривать, что сам момент, когда из одного эволюционного ствола вырастают две ветви, обычно наименее ясен. Именно эти разветвления, самое интересное для нас, потомков, по разным причинам ускользают от прямого наблюдения в слоях земных. Это называется неполнотой геологической летописи.
Первая большая дивергенция-разветвление произошла еще в «первичной луже», где вещества преджизни, по-разному реагируя друг с другом, усложнялись, соединялись и образовали в какой-то момент (и уж этот момент не мог оставить никаких следов в напластованиях эпох) самые первые организмы. Эти организмы еще ничего не умели – только пожирать то, из чего они образовались, вещества преджизни. Они уничтожали «промежуточный тип», из которого в принципе могли возникнуть организмы еще раз! Но теперь уж точно не возникнут... Именно поэтому жизнь на Земле могла возникнуть (если она возникла на Земле) только один раз. И зародилась она именно с едоков, Гетеротрофов, неспособных еще к фотосинтезу, самостоятельному извлечению углерода из тогдашней атмосферы.
Так что первая большая дивергенция – это ветвление на живое и неживое – без промежуточного «полуживого» связующего звена между ними (нынешние вирусы и фаги могут служить только приблизительной моделью тех первичных полуорганизмов-полукристаллов, ведь сейчас они способны лишь к паразитическому или вспомогательному симбионтному существованию в организмах настоящих).
Дальше были события в мире первых клеток-прокариот (то есть клеток без ядра). Это были «надцарства», или «империи», бактерий и архебактерий (чтоб не путались с бактериями, их часто называют кратко: археи). В эволюции эти «империи» возникли путем еще одной дивергенции, ветвления (а кто был раньше, пока трудно сказать) около 4 миллиардов лет назад.
He исключено, что были и другие дивергенции, другие «империи», не дожившие в самостоятельном виде до наших дней. Архей и бактерий долго не очень-то различали, между ними много общего, но есть и принципиальное отличие: археи представляют более древний первично-бескислородный, анаэробный способ дыхания. Похоже, именно из представителей этих двух империй при их объединении под общей оболочкой (видимо, археи) получилась сначала несколько усложненная, но еще безъядерная клетка (из аэробной эубактерии выводят энергетическую органеллу митохондрию). А затем и настоящая ядерная клетка-кентавр, эукариота. Происхождение самого ядра, столь необходимого для дальнейшей эволюции хорошо защищенного «сейфа», хранилища бесценной наследственной информации, вызывает споры. Японец Такемура в 2001 году доказывал, что это результат вирусной инфекции, заболевания клетки, зла, в какой-то момент обернувшегося добром
Среди собственно бактерий нашлись такие, что очень рано научились фотосинтезу. Цианобактерии, то есть сине-зеленые водоросли, живут на Земле без особых изменений по сей день, но в те времена и они поучаствовали в великом объединении, встроившись в качестве органелл-хлоропластов в клетки эукариот-водорослей (от которых произошли в дальнейшем все зеленые растения).
Три надцарства (эукариоты, прокариоты-археи и прокариоты-эубактерии) сегодня считаются главными в живом мире, фундаментом всей систематики и одновременно эволюции.
В родной нашей «империи» эукариот царства животных, растений и (отдельно) грибов располагаются рангом пониже.
А теперь – конкретно: когда появились – ну, скажем, вот эти самые царства? Низшим из грибов (а это хоть и плохонькие, но уже эукариоты)– 2,4 миллиарда лет. Стероиды, верный признак эукариотных клеток, нашли в слоях подревнее – 2,7 миллиарда лет! С появлением ядра, этого мозга клетки, появилось половое размножение, началась подлинная эволюция видов. Строматолитовым рифам, которым посвятил свою жизнь чудесный человек и замечательный палеонтолог И. Крылов, – 2,4 миллиарда лет. Сами цианобактерии, не сразу научившиеся строить коллективные скелеты, еще старше. Самым древним найденным остаткам одноклеточных, прокариот, простых безъядерных организмов – 3,4 миллиарда лет. Археи могут быть и еще старше...
ГЛАВА 11
«СХВАТЫВАЯ В СТАНОВЛЕНИИ» (ХРОНИКА ПРЕВРАЩЕНИЙ ДРЕВНЕГО СПОРА)
Пролог в зоне перехода от континента к Тихому океану
– Вначале был материк... Так?
– Ну конечно. Ведь материки старше, чем дно океана! Чуть ли не четыре миллиарда лет назад всплыли среди сплошной океанической коры первые гранитные ядра будущих континентов.
– Простите... Среди океанической. Но тогда выходит: океан был раньше!
– Видите ли... Ну да! Океан, разумеется, был и раньше, только другой. Вода стала поступать на поверхность Земли скоро после рождения планеты – из первых вулканов.
– Вулканов... Значит, они раньше. Это что же получается: все-таки сначала суша?
– Ясно, суша. Об этом и речь.
Последовательность была такая. Сначала я вскочил, словно ужаленный. Ибо нельзя безнаказанно закрывать своим телом горячие струи, текущие из-под черного песка Горячего пляжа. Потом в лицо ударил, опрокинув меня, крутой тихоокеанский накат, холодный, сентябрьский. А потом этот разговор с геологом, товарищем по специальной геологической экскурсии па Курилы.
Я нашел-таки себе подходящую, выложенную булыжником ванну с нормально теплой водой. Удивительное ощущение...
...Необычайный, первозданный покой проникает во все клетки тела из этой странной, пахучей, кислой жидкости, в составе которой (так это осознавалось и почти что чувствовалось) несколько процентов первичной, ювенильной воды, воды, обогащенной тяжелым изотопом кислорода, впервые попавшей на дневной свет, воды, первые капли которой, выжатые из уплотняющихся, расслаивающихся недр молодой Земли, дали около четырех миллиардов лет назад начало голубому зеркалу планеты. Впрочем, прошло несколько лет, и вода из вулканов Тихоокеанского огненного кольца отчасти потеряла право называться ювенильной. Она вовлечена – через субдукцию, пододвигание океанского дна под материковые окраины – в круговорот длиной в несколько миллионов лет. Это в основном морская вода, которая, погостив в мантии, через вулканы и термальные источники возвращается на дневную поверхность. Даже в вулканах Гаваев и Исландии, где плюмы поднимают материал из нижней мантии, вода вулканов не совсем ювенильная, просто там круговорот помасштабней – в сотни миллионов лет... Первичное разделение земных недр, когда все было в первый раз, давно позади...
Но тогда, на Всесоюзном геологическом совещании 1972 года о таких круговоротах еще никто не думал. Экскурсия была завершением совещания, где и споров-то еще было маловато. На грани двух царств, Нептуна и Вулкана, думалось, скорее о другом, более старом споре, об извечном союзе и противоборстве этих двух великих, основных географических и геологических стихий! О древнем споре ученых – приверженцев этих царств, которых так и звали: нептунисты и вулканисты. Споре, отголоски которого и сейчас еще живы...
Пролог в Веймаре
Средний этап генезиса мира, мы видим довольно ясно и в какой-то мере воспринимаем его, однако начало и конец, одно, заключенное в гранит, другое – в базальт, вечно останутся для нас проблематичными. И. Гёте
Крылатою мыслью он мир облетел, В одном беспредельном нашел ей предел... Е. Баратынский
К эпиграфам можно относиться по-разному. Одно достоинство в них неоспоримо. Они быстро вводят в курс дела.
Да. Гёте, великий поэт, виднейший биолог, неудачливый физик, один из первых метеорологов, был и геологом. «Геогностом»... И геологом проницательным. Иначе он не мог бы столь четко сформулировать на века вперед главную заботу геологов. Проблема гранита, соотношение этой породы с другой самой распространенной породой земной коры – базальтом в связи с происхождением континентов и океана – сколь запутан этот узел и какое множество нитей ко всем областям наук о Земле ведет начало из этого клубка.
Что искал в геологии и что дал геологии великий человек, олимпиец, счастливец (ибо что же еще можно назвать счастьем, как не безграничность способностей и возможность их применить, если уж они даны судьбой)?
Впрочем, к людям, подобным Гёте, такой вопрос обращать, возможно, неуместно. Любая наука, названная по имени, – геология, биология, физика – это уже известное насилие над природой, единой и делимой на сферы влияния специалистов лишь условно. Не то чтобы Гёте не видел, не признавал этих условных границ, но его душа поэта, широко открытая природе с некоторой даже наивностью, и принимала ее всю целиком, поэтически, даже в научном поиске. Наверное, так же видели мир и другие великие художники-ученые – Лукреций Кар, Леонардо да Винчи, Ломоносов...
Вглядываясь в мир растений, Гёте заметил, что природе претят излишества в способах построения самых сложных органов, что все самое сложное и самое причудливое можно вывести генетически из более простого. Например, самые красивые и фантастические лепестки цветов – это всего лишь несколько видоизмененные листья тех же растений (теория метаморфоза у растений).
В мире животных его внимание привлекло давно уже подмеченное сходство «общего плана» построения скелета всех позвоночных животных. Многое говорит о том, что он ощущал в этом сходстве нечто большее, чем «величие и простоту первоначального замысла». Не какую-то абстрактную целесообразность увидел Гёте в природе, а следствие и истоки. «В будущем не будут утверждать, – писал он, – что быку даны рога, чтобы бодался, а будут исследовать, как мог он получить рог для бодания».
«Генетический принцип рассмотрения» взял Гёте себе вооружение и не расставался с ним никогда.
Именно идея постепенного развития определила пристрастия олимпийца Гёте в начавшейся перепалке между двумя новыми направлениями геологии на рубеже XVIII и XIX столетий – нептунизмом и вулканизмом. Гёте стал нептунистом.
Спор первый
...Вначале была вода. Это воззрение восходит еще к древнегреческой философии. Фалес выводил всю живую и неживую материю из моря. Горы и долы – результат длительного, постепенного действия воды. Полутора столетиями позже жил в земле эллинов другой философ – Анаксагор. В его воззрениях царили огонь, взрывы и катастрофы. В огне у него рождался мир звезд и планет, дыханием огня произведены на свет Земля, ее горы, даже самая вода.
Может быть, и не стоило бы обращаться к столь седой древности, если бы сам Гёте не столкнул этих живших в разное время людей во второй части своего «Фауста». Спор Фалеса и Анаксагора довольно точно передает современные Гёте распри сторонников нептуниста А. Вернера и зулканистов Дж. Геттона и А. Гумбольдта.
Анаксагор:
След извержений – гор зигзаги.
Фалес:
Вся жизнь проистекла из влаги...
Анаксагор:
Фалес, ты б за ночь мог из тины
Такие взгромоздить вершины?
Фалес: .
Природы превращенья шире,
Чем смена дня и ночи в мире,
Во всем большом есть постепенность,
А не внезапность, не мгновенность.
Анаксагор:
Но здесь внезапный был толчок.
Плутон внутри огонь зажег,
Равнину газами Эол
Взорвал, и холм произошел.
Да, Гёте были неприятны шум и треск, исходившие от «катастрофических» воззрений тогдашних вулканистов Запада. Гёте не видел причины торопиться: за огромное геологическое время капля камень точит и способна на многое. Правильное напластование земных слоев, остатки морских ракушек и рыб в горных породах, виденный Гёте воочию процесс отложения минералов из целебных источников теплых глубинных вод в Карлсбаде – все наводило на мысль об огромной роли воды в геологическом прошлом. А постепенность, мягкость воздействия воды как нельзя лучше соответствовала эволюционистским предчувствиям Гёте.
У нептунизма были крайности. Вернер считал все породы, даже гранит и даже базальт, выпавшими из раствора. Вулканизм он считал явлением частным, результатом случайных пожаров подземных залежей углей. Но вот что интересно: именно этих крайних воззрений своего сверстника и геологического соратника Гёте не разделял.
И в споре Фалеса с Анаксагором он не держит ничьей стороны. Сам спор их идет так, что видно: Гёте смеется над обоими. Ему вообще не нравятся схоластические споры.
«Говорят, что посредине между двумя противоположными мнениями лежит истина, – говорил он. – Никоим образом. Между ними лежит проблема...»
Какие же проблемы лежали между крайними точками зрения тогдашних геологов? Одна сформулирована в том же «Фаусте» устами Мефистофеля:
Фауст:
И чтоб росли, цвели природы чада,
Переворотов глупых ей не надо.
Мефистофель:
Ну да, еще бы. Это ясно вам.
Но я, который был при этом сам,
Скажу другое: в глубине, пылая,
Сверкал огонь и страшный грохот был;
Молоха молот, скалы разбивая,
Утесы на утесы громоздил.
Поныне тьма каменьев стопудовых
Валяется: кем брошены они?
Молчит философ, что ни сочини -
Нет объяснений этому толковых.
Речь идет о гранитных валунах, рассыпанных на равнинах Европы и издавна поражавших воображение наблюдательных людей. Вулканисты видели в них ясное подтверждение «катастрофических» своих воззрений. Они считали, что горы, подобные Альпам, выросли в одну ночь, выворочены из недр земных страшным рывком, разбросавшим по далеким окрестностям обломки скал.
Гёте – нептунист и «постепеновец» – высмеивал эти фантастические построения. Но величайшая геологическая, географическая проблема есть, она поставлена устами Мефистофеля. Как же решил ее Гёте? Помог ли ему его генетический метод?
Да, и самым поразительным образом! Он считал, что валуны принесены частью альпийскими ледниками, а частью плавающими льдами моря, покрывавшего Европу прежде. Но «для большого льда требуется большой холод. Я предполагаю, что по крайней мере над Европой существовала эпоха большого холода». Эпоха большого холода – ледниковый период. Для своего времени – блестящее достижение. В решении этой проблемы «постепеновец» Гёте оказался на голову выше ка-тастрофистов-вулканистов.
А в целом гтервый спор вулканистов и нептунистов кончился вничью. И те и другие оказались в чем-то правы, в чем-то нет. Минералы Земли, ее руды образовались и путем вымывания из водных растворов, и вулканическим, и другими, неизвестными тогда способами. В одном только нептунизм отступил: уже в середине XIX века никто не думал о том, что универсальный растворитель – это первичный океан. Роль такого растворителя перешла к горячим глубинным водам, родственным как раз вулканизму. В этом смысле точки зрения вчерашних противников сблизились. .
Но из первого спора вырос второй, закончившийся или заканчивающийся лишь в наши дни. Спор вулканистов и нептунистов породил проблему гранита.
Спор второй. Граниты и граниты
Этот вид камня встречается на вершинах и в глубине гор, знакомство с ним показывает, что на нашей земле он – основная опора, на которой образованы все другие горы. И. Гёте
Могучий ум смутился перед загадкой гранита. Нептунист откровенно признал: «Нельзя установить его происхождение как от огня, так и из воды». И это во времена, когда считалось установленным: гранит – это первое, что кристаллизовалось из раствора первичного океана. Двойственная природа гранита путает карты любителям быстрых решений вот уже двести лет, и эта двойственность была подмечена Гёте.
Гранит снова и снова приковывал к себе его внимание. Гёте догадывался: гранитный фундамент земной коры – это нечто вроде ее скелета, и, значит, в нем истоки и отгадка происхождения гор, материков и морей. А. Гумбольдт и Дж. Геттон провозгласили пирогенез – огненное происхождение гранитов. Довольно скоро сформировалась школа противников этого учения, наследников исчезнувшего нептунизма – ме-таморфистов. Так начался второй великий спор геологии.
Центр учения о метаморфизме, этого «неонептунизма», сместился во Францию. Говорят, причина «прозрения» именно французских геологов коренилась в давнем обычае парижан мостить тротуары гранитными брусками из нормандских каменоломен и в дождливой погоде осеннего Парижа. То ли в шутку, то ли всерьез один французский геолог писал, что «лучший способ изучения гранитов заключается в обследовании тротуаров в очень дождливый день... Свежий излом нигде не виден столь ясно и столь отчетливо, как на тротуарных плитах, отполированных ступающими по ним ногами, особенно если эти плиты мокрые».
Что же увидели французские ученые, прогуливаясь по тротуарам Парижа? Гранит плиток был необычным. Он включал в себя, например, окатанные гальки кварца, очень часто переходил в полосатую, слоистую, но гранитного состава породу – гнейс. При обследовании каменоломен оказалось: гранит рабски копирует, повторяет текстуру (внешний облик) не гранитных вмещающих толщ осадочного происхождения – каких-нибудь глинистых сланцев, откладывавшихся сотни миллионов лет назад на дне давно исчезнувшего озера. Выходило, гранит мог образовываться почти по-нептунистски: путем медленного, постепенного (как порадовался бы Гёте!) замещения атомов осадочных пород ионами «гранитных соков», или «эманации», или «флюидов» земных недр. Но магматисты (так называли себя теперь наследники вулканистов) не сдавались: они указывали на гигантские «вторжения» этой породы в земную кору, гранит часто явно «тек», протискиваясь в трещины или грубо обламывая и заключая в себе куски стенок тех же вмещающих пород.
В середине XIX века этот накалившийся было конфликт внезапно утих, когда немецкий геолог Ф. Шерер указал разгорячившимся противникам, что само противопоставление магмы и горячих соков земных недр – термальных растворов – нелепо. В природе нет резкой границы между этими двумя жидкостями. В магме есть вода, и немало. Этим-то она в сущности и отличается от лавы – простого расплава. «Весь гранит в определенное время существовал в виде водяной пасты или влажной магмы», – говорил Шерер.
Лабораторные позднейшие эксперименты показали: гранитная каша, паста, может течь в присутствии воды под давлением в четыре тысячи бар при температуре шестьсот пятьдесят градусов. Такая магма даже не светится! Она и раствор и расплав одновременно, что раз навсегда примиряет гидротермистов и магматистов. В природе, говорил американский ученый Рид, есть «граниты и граниты». Горячая паста-магма – мастер на все руки. Она может внедриться в растянутые, ослабленные участки земной коры и образовать мощный сплошной массив – батолит, плутон, как называют его геологи, а может более подвижными своими составными частями медленно просачиваться в осадочные слои, пропитывать и постепенно «гранитизировать» их. Конечно, нужно уметь отделять «граниты от гранитов» и из вполне практических соображений. В зависимости от способа проникновения гранита в кору его сопровождают разные руды, разные полезные ископаемые. Например, в Забайкалье золото идет из глубоких недр Земли вместе с вулканическими и магматическими продуктами, но собираться в месторождения, во всяком случае в некоторые виды месторождений, любит в «не-догранитизированных» осадочных породах.







