Текст книги "Технопарк юрского периода. Загадки эволюции"
Автор книги: Александр Гангус
сообщить о нарушении
Текущая страница: 23 (всего у книги 31 страниц)
На страницах серьезных научных изданий уже в XXI веке можно найти такое название для группы отрядов, как «Cetartiodaktils». Русского перевода этого латинского словообразования еще нет. Наверное, оно звучало бы как «китовопарнокопытные». А как еще назвать группу, в которой киты кровно оказываются гораздо ближе к бегемотам, чем бегемоты к бесспорным собратьям по отряду парнокопытных, па-пример косулям? Такие группы животных, объединенных генетическим родством, называют кладами, а их родословные древа – кладограммами. Некоторым ученым подобные противоречия между систематикой и родством кажется чем-то ужасным. Появляются, например, предложения продлить класс млекопитающих в прошлое, захватив всех возможных предков, и звероящеров, и пеликозавров, и чуть ли не некоторых котилозавров. Тогда, глядишь, попадут в наш класс и «лягушкоящеры», а то и земноводные наши предки. Почему бы не включить туда же и кистеперую рыбу?
Но станет ли сама эволюция понятнее от таких перетасовок названий и границ? Нет! Скорее всего и с этим противоречием эволюции ученым придется смириться. Систематика, ее полочки и разряды, хоть и помогает ориентироваться в море эволюции, это все-таки что-то искусственное, построенное людьми. А потому она всегда будет приходить в столкновение с отношениями родства, с естественным генеалогическим древом наших предков.
Так что старая Багира, называвшая Маугли лягушонком, была все-таки не права.
ГЛАВА 7
ТАИНСТВЕННЫЙ ПЕРМОКАРБОН
Вспышка жизни
Если продвинуться примерно на шестьдесят миллионов лет против течения времени от таинственного пермотриаса – того порога, возле которого пару глав назад мы застали пустыню, охватывающую всю сухопутную планету, то выйти на берег великого потока геологической истории нам будет трудно. Болота карбона, каменноугольного периода, заросшие лесом, преградят нам путь.

Типичный пейзаж пермокарбона

Пятипалый лабиринтодонт дипловертеброн, наш возможный прямой предок из земноводных
Это была вспышка жизни. Воздух над целыми континентами был мокр, как губка, настолько влажен, что даже влаголюбивые растения тех времен задыхались и, как водолазы, снабдили себя «дыхательной смесью» – запасом воздуха, хранящимся в специальной крупнопористой ткани. Деревья-гиганты, чтобы не упасть в хлипкую жижу, обзаводились подпорками – ризофорами. Было жарко, вечное лето, и у деревьев не было годичных колец, следов неравномерного, в зависимости от сезона, роста. Все стремительно росло, стремительно же отмирало, падало, засасывалось трясиной, превращалось в торф – полуфабрикат угля...
Карбон был временем, когда жизнь полностью завладела планетой. В карбоне природа сделала свои величайшие изобретения. Первые сухопутные растения девона – полуводные неказистые зеленые трубочки – превращались в дремучие болотные леса. Болотные леса стали выпускать разведчиков и в. более сухие места – появились голосеменные растения, способные размножаться без воды, семена прорастали просто во влажной почве.
В карбоне было уже много насекомых, и они были разные. Подобно современному генетику, предпочитающему изучать вызванные им мутации на быстро сменяющихся поколениях мух, а не на слонах, природа за короткое сравнительно время заложила основные направления дальнейшего развития насекомых.
Был изобретен полет – насекомые быстро научились летать. В воздухе у них не было врагов, и стрекозы достигли огромных размеров, почти метра в размахе крыльев (правда, в современной атмосфере, по мнению многих ученых, трахейный способ дыхания насекомых не позволил бы поддерживать жизнь в таком большом теле). Атмосфера наверняка была другой. В ней было относительно больше и кислорода и углекислого газа (и, соответственно, меньше азота).
В эволюции многое кажется нам необходимым. Чтобы появился человек, нужно было за треть миллиарда лет до того из крокодилообразного влажнокожего земноводного лабиринтодонта «сделать» котилозавра, позвоночное более высокого порядка, независимое в своем размножении от воды. (Какое-то представление о том, каким был котилозавр, дают черепахи, дожившие до сего дня его ближайшие родственники (надо только мысленно вычесть черепаший панцирь). Но в том, какой именно лабиринтодонт станет котилозавровым (и нашим) предком, уже большую роль играла случайность. Конечно, эволюции нужен был лабиринтодонт-неудачник, гонимый и плохо приспособленный к борьбе за свое место в каменноугольной трясине, иначе чего ради он полез бы на сушу пробавляться насекомыми? Но то, что таким удачливым неудачником оказался один из родов лабиринтодонтов-эмболомеров (антракозавров), в большой мере случайно.
Этот род, род дипловертебронов, обладал одной мелкой, незначительной, случайной, можно сказать, особенностью: передние конечности дипловертебронов были... пятипалые. А лапы всех остальных его родичей – многочисленных и могущественных – были устроены иначе. Передние лапы – четырехпалы, зйдние – пятипалы. Были и такие, что и на задних ногах имели по четыре пальца.
А теперь взгляните на свою руку и подумайте о случайном разделении мира позвоночных на пятипалых и четырехпалых, о том, сколько таких случайностей было на нашем с вами пути от кистеперой рыбы. А впрочем, случайность ли это? Ведь они вымерли, четырехпалые-то...
Ледник на экваторе
Котилозавр шел по жизни, переступая пятипалыми конечностями, но обозревая мир тремя глазами. Зачем ему нужен был теменной глаз, унаследованный от первых еще позвоночных моря и первых земноводных стегоцефалов, не со всем ясно: ведь с воздуха ему ничто не угрожало! Впрочем, возможно, он им ничего конкретно не видел – скорее всего это был свето– и теплочувствительный прибор для отслеживания условий освещенности, что было важно для поддержания нужной температуры тела. Карбоновый период шел к концу, и многое вокруг переменилось...
В общем влажный (при всех местных и временных различиях) климат становился суше и прохладнее. В умеренном климате появились настоящие времена года; красавцы кордаиты, предки хвойных, дремучей щеткой вставшие на территории нынешней Северной Евразии, уже оставляли в своей древесине годовые кольца. Но климат все еще был теплый, углеобразование шло споро.
И вот в этом от полюса до полюса зеленом море вдруг появляется странное пятно. На континенте Гондвана, огромном, объединяющем в себе нынешние Африку, Антарктиду, Австралию, Южную Америку и Индию, начинается и растет грандиозное оледенение. Ледяной щит, подобный нынешнему Антарктическому, но в несколько раз превосходящий его по площади! Особенно поражало ученых то, что «бараньи лбы», шрамы на скалах, ледниковые долины и морены встречались в жарких странах, у экватора – в Индии и Африке.
Представители самых разных научных дисциплин – астрономы, физики, геологи и географы – разрабатывали различные модели, объясняющие климатический парадокс пермокарбона. Сейчас ни одну из этих моделей, конечно, нельзя рассматривать в отрыве от теории дрейфа континентов. Альфред Вегенер, ее основоположник, был метеорологом. И если поразившее его сходство в очертаниях противоположных берегов Атлантики послужило ему толчком к началу создания теории, то сами знаменитые реконструкции Гондваны и Пангеи, принесшие ему славу, были основаны на палеонтологических и палеоклиматических данных.
Пермокарбоновое оледенение было одним из главных козырей Вегенера. Он разрубил гордиев узел просто: Южный полюс поместил в самый центр оледенения (Капская провинция Южной Африки). А вокруг собрал, сгруппировал остальные осколки Гондваны. Геологические и геофизические исследования все больше подтверждают правоту основ мобилистской тектонической теории. Но может ли простое передвижение континентов объяснить все причуды земных климатов?
Пока все еще нет. Ничего не может сказать теория дрейфа о причинах недавнего четвертичного оледенения и его отступления – за это время материки не могли сдвинуться больше чем на километры.
Так и с пермокарбоном. Оледенение пришло на теплую, почти не знающую климатических различий и времен года Землю и покинуло ее так же неожиданно. Все это совершилось, конечно, не в один миллион лет, но уже через сорок пять миллионов лет, в пермотриасе, в речках Антарктиды и других частей Гондваны плескались гигантские земноводные лабиринтодонты – очень теплолюбивые твари. Вряд ли перемещение территории Гондваны за все это время превысило пару сотен километров, а климат изменился неузнаваемо!
Это значит, что одного только расположения континентов мало для объяснения великих оледенений и великих же потеплений, когда леса умеренного пояса, рептилии без собственной теплорегуляции тела прекрасно чувствовали себя у полюсов, приспосабливаясь и к мраку многомесячной полярной ночи.
Полярные сияния греют полюса?
Существование обильной жизни у полюсов в полярную ночь в не ледниковые, правда, эпохи, подтверждено последними исследованиями австралийских ученых. Это факт, требующий какого-то объяснения в любом случае.
Нужен небесный механизм, который мог поддерживать приемлемую температуру у полюсов в долгую полярную ночь.
По одной из гипотез, это могли бы быть... полярные сияния. Они и сейчас немного разогревают атмосферу полярных областей. Заряженные частицы, мечущиеся по магнитным силовым линиям Земли, взаимодействуют в приполярных областях с атомами ионосферы и гибнут, излучая слабый свет и... тепло – преображенную энергию солнечных корпускулярных потоков, достигающих Земли при вспышках солнечной активности.
Повышенный приток этой энергии снижает в Арктике и Антарктике высоту тропопаузы – теплого слоя с плюсовой температурой, отделяющего тропосферу от стратосферы. И намного. Если на экваторе тропопауза – на высоте восемнадцати километров, то у полюса – на высоте семи с половиной километров. Этот уровень колеблется в зависимости от состояния солнечной погоды. И возможно, были за долгую историю взаимоотношений Солнца и Земли эпохи, когда Солнце активизировалось особенно сильно, когда тропопауза могла спускаться к самой поверхности. И когда не могло быть в полярных странах жестоких морозов и вечных льдов.
Профессор Д. Мензел, известный американский астроном, подсчитал, что в иные эпохи, например в пермокарбоне, энергия сияний была достаточной, чтобы действительно нагревать приполярные области.
«Неоднородности... в ионных облаках, приходящих с Солнца на Землю,– писал он,– могут приводить к искривлению, а при некоторых условиях даже к разрыву магнитных силовых линий. Когда выпуклая поверхность (система магнитных силовых линий) становится вогнутой, действие поля становится обратным. Вместо того чтобы служить защитным магнитным “зонтом“,оно действует как своеобразная “воронка”, втягивающая вещество».
Д. Мензел дальше пишет, что энергия частиц при этом как бы собирается с огромной области пространства и обрушивается на крошечный полярный «пятачок» – зону действия полярных сияний. Энергия, приходящая в эту зону, может сравняться при этом с энергией остальной солнечной радиации, а то и даже превысить её!
Солнце над болотами
Конечно, «экзотические» гипотезы появляются не от хорошей жизни. Загадка пермокарбона – одна из самых волнующих в исторической геологии, и ничего нет удивительного, что необычайное пытаются объяснить необычайным же.
Только ли пятно льда на теплой Земле поражает воображение ученых?
Английского палеоботаника Сьюорда «поражает однообразие характера растительности, следы которой мы видим в отложениях Шпицбергена, Северной Америки, Европы и Австралии». Во-первых, это означает, что вся суша была тогда единой или почти единой. Во-вторых, весь период интенсивного накопления углей, почти весь карбон (кроме пермокарбона с его оледенением), по всей Земле держалась примерно одна температура, иначе этого однообразия, никогда больше не повторившегося на планете, не объяснишь. Но территория и температура – этого мало. Растениям нужен еще и свет, иначе прекращается процесс фотосинтеза: длительная тьма, пусть теплая, для леса то же, что и зима. В полярную ночь, даже теплую, они остановились бы в своем росте, и в их древесине остались бы годовые кольца. А колец почти весь карбон нет.
Световая загадка мучает палеоботаников давно. И. Вальтер по этому поводу писал полвека назад: «Можно было бы предположить, что все каменноугольные растения были однолетними, – но против этого говорит различная величина древовидных форм. Нельзя, конечно, допускать, что сигиллярии, лепидодендроны или кордаиты в 3 метра толщиною вырастали в такой же промежуток времени, как и экземпляры в 10 сантиметров толщины».
И. Вальтер делает поразительное заключение: раз рост растений не зависит от климата и широты, значит, они росли не так, как растут теперешние леса. По мнению И. Вальтера, они росли в воде подобно водорослям. Даже в карбоне, уже сформировав огромное число видов, растения все еще не решались окончательно выйти на сушу, оставаясь в зоне приливов и отливов океана. Поспешу предупредить недоумение читателя, знакомого с обстоятельствами выхода растений на сушу. И. Вальтер, талантливый палеонтолог, в этом случае неправ. Десятки палеонтологов кинулись исследовать каменноугольные окаменелости и убедились: нет, все в порядке. Леса были лесами, между корнями деревьев росли кое-где грибы и мхи, а этого в воде точно не бывает. Во многих лесах деревья росли действительно «по колено» в воде – в болотах, в приморских зарослях, похожих на современные мангры, но не «с головой»: фотосинтез был воздушный.
Палеоботаники разбили гипотезу И. Вальтера и успокоились. Больше попыток объяснить световой парадокс не было. Поразительное однообразие карбоновой растительности осталось необъясненным.
Позднее палеоботаники бросились в другую крайность. Некоторые из них объявили, что климат в каменноугольном периоде в самых центрах угленакопления, например в Донбассе, был не влажным, а сухим!
Это интересная история, и на ней тоже стоит остановиться, ибо из нее вытекает один важный вывод: самые, казалось бы, неопровержимые свидетели климатов прошлого – растения могут вводить в заблуждение, рисовать ложную палеогеографию тех или иных эпох.
Ботаники давно уже убедили всех, и себя в том числе, что сухолюбивое пустынное или степное растение можно узнать сразу: у него мелкие кожистые листочки, очень толстая кожа на листьях, устьица – приспособления для испарения листьями влаги – глубоко спрятаны. У некоторых (у кактуса, например) – мясистые, накапливающие влагу стебли. Часты у сухолюбивых растений колючки.
Вооруженные этими знаниями, палеоботаники приступили к изучению ископаемых растений, которые были доставлены из каменноугольных бассейнов. Угленакопление традиционно считалось возможным только в условиях роскошного влажного леса, болота (уголь, прежде чем стать углем, обязательно должен побыть торфом). Но... начались парадоксы. Одно растение за другим палеоботаники определяли как сухолюбивое по уже известным нам основным признакам.
Выходы из этого положения предлагали разные. Один геолог предложил считать, что в карбоне Донбасса очень влажный климат, с болотами и роскошными лесами, чередовался с очень сухим! Для географа, конечно, подобная ситуация немыслима. «Противоречие не столько разрешалось, сколько замазывалось неоправданно сложными построениями»,– пишет о таких попытках выйти из парадокса палеоботаник С. Мейен, который, кстати, сам немало думал над этой проблемой и, кажется, нашел выход. Выход он нашел... на современных болотах. Вот уж где воды в избытке, и именно там на кочках растения часто имеют такой вид, будто они сухолюбивы. Скажем, клюква. Попадись ее темно-зеленые мелкие плотные листочки палеоботанику в отложениях, скажем, третичного периода, да не знай он клюквы (случай, вероятно, невозможный)– определил бы он клюкву как обитателя полупустыни...
Вот ведь каким странным образом смыкаются подчас крайности: одни и те же признаки для растений противоположных по сути сред обитания. Впрочем, так ли уж противоположных? Еще с конца XIX века существует в науке понятие физиологической сухости. Ведь есть вода и вода. Человек погибает от жажды, оказавшись посреди океана без запаса пресной воды. Растения, обитающие в солончаках, по берегам соленых черноморских лиманов, тоже живут «по колено» в воде, но они жаждут, им не хватает настоящей влаги. Может, и вода болот чем-то плоха? Явление физиологической сухости еще плохо изучено, и все же не оно, видимо, определяло и определяет сухолюбивый облик растений в болотах. Однажды заметили, что в том же болоте растения, оказавшиеся в тени, теряют свой обычный засухолюбивый облик. Так был найден главный виновник пустынного облика болотных растений. Свет!
Еще один парадокс: ведь свет – источник жизни для земного растения. Но проверка подтвердила первую догадку. Растение может вынести яркий свет, но при этом у него возрастет потребность в азотистых веществах. Между тем вопреки сенсационным памятным открытиям некоторых «ученых» растения не могут сами усваивать азот воздуха. А вот азотистых веществ в болотных почвах как раз острый дефицит.
Видимо, действительны обе причины вместе – избыток света и недостаток азотистых веществ, то есть некоторая физиологическая сухость болот. Именно обе эти причины в их сочетании и способны дать картину «засухи» в болотах каменноугольного периода. Выводы ясны: во-первых, кордаиты пермокарбона жили-таки «по колено» в воде и, во-вторых, их освещало яркое солнце.
Этот второй вывод тоже очень важен. Ведь до недавних пор некоторые палеоклиматологи считали, что атмосфера планеты лишь в последние сто миллионов лет стала достаточно прозрачной, что и в мезозое, и в палеозое преобладала пасмурная погода, небо было закрыто облаками.
И вот оказывается, что это не так, что солнечный световой режим триста миллионов лет назад мало отличался от современного. Значит, основные условия жизни на Земле в основных чертах сформировались давно, и современный облик мира дает все-таки неплохое представление о давних временах. Философ сказал бы, что в данном случае восторжествовал принцип актуализма, и был бы прав, хотя правы были бы и те ученые, которые добавили бы: а зато в других случаях в другие времена огульное применение этого принципа может и ввести в заблуждение.
Карбон оставил огромные залежи угля. Углерода. Откуда растения его брали? Из атмосферы, разлагая углекислый газ. При этом освобождался кислород. Если бы сейчас сжечь весь уголь, отложенный в карбоне, этого хватило бы на то, чтобы превратить весь кислород атмосферы обратно в углекислоту.
Откуда же столько углекислого газа взялось в карбоне? Может быть, атмосфера Земли была углекислой, как современная венерианская?
О, это бы многое попутно объяснило. Например, необычайно теплый климат карбона: СО2 создает парниковый эффект, задерживает солнечное тепло в атмосфере. Но... и здесь все не просто!
Охлаждает углекислый газ?
Землю по ее климатам можно разделить на три пояса. Два холодных – северный и южный и один, в середине,– экваториальный, жаркий. Здесь, у экватора, океан теряет огромное количество воды, она испаряется. Но испаряется только вода, соли остаются. Это значит, тяжелая, насыщенная солями теплая вода должна непрерывно опускаться на дно, вытесняя менее соленые и более холодные слои. Значит, у экватора океан на всю свою глубину должен быть прогрет равномерно.
Накапливаясь, тяжелая пересоленная экваториальная вода должна катиться по дну к полюсам, прогревая по пути океаны, а значит, города и страны. Опресняясь и становясь поэтому легче у полюсов, вода должна подниматься и течь обратно к экватору, чтобы завершить круг циркуляции. По всей Земле должен установиться довольно теплый ровный климат, как в карбоне. Никаких бурь и ураганных ветров: малые перепады температуры и давления не способствуют мощным воздушным течениям.
Читатель, вероятно, уже понял, что в действительности весь этот механизм не работает. Вода на дне океанов не теплая, холодная. И климат вовсе не такой приятный. Что-то мешает... Что? Это что-то – как раз углекислый газ, про который идет дурная слава парникового газа № 1. Благодаря ему планетарная циркуляция воды носит другой характер.
...Углекислый газ растворяется в воде. Причем очень неплохо. В среднем на нашей планете содержание СО2 в морской воде в пятьдесят раз выше, чем в воздухе. Но это в среднем. А лучше всего углекислый газ, как и все газы, растворяется в холодной воде. Это значит, что у полюсов океаны жадно «сосут» углекислоту из атмосферы. Газированная вода тяжелее негазированной. Охлажденная к тому же полярными морозами, она опускается на дно. Холодная, насыщенная газом вода накапливается и устремляется к экватору, охлаждая океаны. Именно поэтому океан на больших глубинах везде, даже у экватора, «полярно» холоден!
У экватора холодная вода глубин не может сразу вырваться на поверхность: встречный ток теплых соленых вод все же ослабляет ее напор. Поэтому глубины океанов в нашу эпоху очень медленно перемешиваются. И вообще меридиональная циркуляция затруднена. Так и образуется современный климат Земли, резко контрастный: очень холодный у полюсов, очень теплый у экватора. Так было не всегда, и прежде всего не так было в каменноугольном периоде. Вот все и запутывается. Несмотря на парниковый эффект, углекислый газ может не нагревать, а охлаждать огромные области Земли.
Холод в глубинах океана, в свою очередь, порождает другое планетарное явление, накопление во многих морях и океанах, на континентальных склонах подушек метангидратов, метанового льда. А метановый лед, он – как мина замедленного действия. Как правило, его основные залежи – там же, где развит подводный вулканизм, обычный и (или) грязевой. Мы говорили об этом в главах о грязевых вулканах и парниковой катастрофе в эоцене. Бурное таяние донных залежей метанового льда в эоцене (похоже, и в пермотриасе и еще в целом ряде случаев) приводило к метановому вскипанию огромных пространств океана. Метан немедленно окислялся с образованием миллионов тонн углекислого газа. И тут углекислый газ из главного охладителя планеты становился ее нагревателем. Парниковый перегрев от полюса до полюса и вплоть до глубоководных впадин устанавливал иной тип океанической циркуляции.
По мнению Р. Фэйрбриджа, американского палеоклиматолога, два типа циркуляции в океане, о которых выше говорилось, – «углекислый» и «солевой»,– чередуясь и борясь на протяжении геологической истории, определяли климаты эпох. А метангидратовые выбросы (о которых Фэйбридж не знал), возможно, знаменовали переход от «углекислого» к «солевому» типу циркуляции.
Гипотезы, загадки... Пусть не создается у читателя впечатление, что, чем больше бьются геологи и палеонтолог“ над загадками истории Земли, тем меньше они знают. Конечно, это не так. Рост этих отраслей знания необыкновенно велик. Но цель этого накопления знаний не только в однозначном решении прикладных проблем геонаук и вовсе не в окончательном приговоре той или иной гипотезе. Многие гипотезы вымирают, многие загадки всплывают вновь, а фундаментальные проблемы живут долго, меняясь, эволюционируя под действием новых фактов. Происходит углубление мировоззрения, новые мысли рождаются подчас не от решения загадки, а от того, что она осложнилась другой. И это прекрасно. И наш герой пермокарбон всегда будет вызывать жгучий интерес, потому что он был и будет таинственным пермокарбоном.
В поисках родственников
Как только начнешь разбираться в полчищах земноводных стегоцефалов, кишевших на Земле всю первую половину карбона, окажется, что очень трудно выбрать из этих древних влажнокожих – больших и маленьких, уродливых и не очень – такого, который мог бы стать сразу предком и нынешних хвостатых амфибий (саламандр, тритонов), безногих червяг, и их бесхвостых прыгающих собратьев – лягушек и жаб. Еще недавно попытки обнаружить такого воображаемого предка земноводных были. Его называли лиссамфибией. Российский ученый М.А. Шишкин доказал, что лиссамфибии никогда не существовали.
С самого начала ископаемые панцирноголовые по строению позвонков делятся на две большие группы, от одной из них (лепоспондилов – тонкопозвонковых) можно протянуть ниточку хвостатых и безногих, а от другой (апсидоспондилов – дугопозвонковых) – бесхвостых земноводных потомков.
Ну а прочие четвероногие? Рептилии, первые скелеты которых попадаются в слоях возрастом триста тридцать миллионов лет? Они произошли от земноводных, это ясно, но от каких же? Кто ближе современной ящерице – хвостатый, похожий на нее, тритон или бесхвостая лягушка? Говорите прямо и честно, не виляйте!
А вот этого, оказывается, не получится при всем желании.
Вслед за учеными мы должны понять и осознать некоторые удивительные парадоксы родства в мире живого.

Лепоспондилы – земноводные предки тритонов (но не лягушек). Некоторые из них (нектридии) обладали черепом причудливой самолетной формы – явно для того, чтобы быстро «набрать высоту» в глубоком водоеме
Давняя заветная мечта биологов – построить абсолютную естественную систему всех живых организмов. Эта идеальная система одновременно расставила бы живые существа по полочкам – по порядку, по свойствам и в то же время отразила бы и реальные родственные – генеалогические – взаимоотношения организмов. И именно она отвечала бы прямо и просто на прямые и простые вопросы.
Но оказалось, что такая идеальная классификация просто невозможна. Животные «с одной полочки», земноводные, могут быть более дальними между собой родственниками, чем животные из разных классов – лягушки и птицы.
Раз уж речь зашла о птицах... Птицы, крокодилы, ну, и скажем, серый варан, большая ящерица пустыни, ее так и называют «крокодил пустыни»,– кто кому родней из этой троицы?
Даже на вид они похожи – крокодил и варан. А птица, к примеру, воробей, что в его облике общего с крокодилом?
Но они, как мы уже знаем, родственники, причем более близкие, чем крокодил и варан. Между ними – вымершие динозавры, среди которых в юре стали появляться мелкие древолазающие виды, нуждающиеся в теплозащите. Перья, сначала больше похожие на пух, оказалось, можно использовать дополнительно сначала для парашютирования, смягчения ударов при падении, потом для планирования между деревьями, а там...
Если современные рептилии произошли от лабиринтодонтов, древних близких родичей лягушек, а похоже, что это именно так, то, выходит, лягушки нынешним ящерицам, крокодилам и их близким родичам – птицам ближе, чем тритон. Общий кистеперый предок тритона и лягушки жил в девоне, то есть раньше, чем карбоновый лабиринтодонт – общий предок лягушки и... скворца! Но если так, выходит, что птицы, высокоорганизованные существа с горячей кровью, более близкие родственники земноводной лягушке, чем земноводные же тритоны! Чепуха какая-то!
Логика подсказывает: раз начало пресмыкающихся – в середине каменноугольного периода, значит, общий земноводный предок крокодилов, динозавров (вместе они составляют группу архозавров), птиц, черепах и чешуйчатых современных ящериц (общее имя всех этих животных – завропсиды), а также звероящеров и млекопитающих жил на Земле в середине каменноугольного периода. Ведь мы вроде бы тоже произошли от пресмыкающихся?.. Ответ прозвучит на первый взгляд странно: да, мы произошли от пресмыкающихся. Но «логика» нам подсказывала неправильно: предок завропсид нашим предком не был. Современные пресмыкающиеся и птицы нам, может быть, более дальняя родня, чем более древние в целом земноводные! А общий наш предок – с тем же скворцом, может быть, был... опять-таки кистеперой или двоякодышащей рыбой!
Великий перелом
Не нужно забывать, что палеонтологи обычно имеют дело только с костями, да еще часто с далеко не полным их набором. По костям специалист может угадать, додумать многое. Но далеко не все.
Ускользает и важнейшая грань, великий перелом в истории наших предков – переход к полной независимости от воды как колыбели икринок и личинок. Скелет первого пресмыкающегося мог ни в чем не отличаться от скелета его земноводного ближайшего предка. Но самка этого животного уже не метала икру в воду, а откладывала яйца на суше. Яйца были в плотной оболочке: зародыш оказывался как бы в скафандре, окруженный жидкостью. Мешок, заполненный жидкостью, есть и вокруг развивающегося внутри матери звереныша – зародыша млекопитающего. Мешок называется амнионом. И по этому главному признаку все позвоночные животные делятся на две большие, главные группы: амнионные (амниоты) – звери и рептилии и безамнионные (анамнии) – рыбы и амфибии. Этот переход к «амнионности» был в развитии наших предков очень важным, куда важнее даже перехода к млекопитанию, и таким же важным, как появление спинного хребта и кусающей челюсти, о чем еще будет особый разговор.
Итак, панцирноголовые земноводные карбона были очень четко разделены на лепоспондилов – предков нынешних хвостатых и безногих земноводных и апсидоспондилов-лабиринтодонтов – предков лягушек и многих ящеров, включая современных пресмыкающихся и птиц.
Панцирноголовые еще могли дышать кожей, кожа у них была влажная. Стегоцефалы и на суше были как бы в своей водной стихии, создаваемой ими самими. Но при этом они непрерывно теряли воду – вода испарялась. И, побыв недолго на суше, стегоцефал стремился скорее окунуться, иначе ему был конец.
Но постепенно некоторые стегоцефалы стали меняться. У появившихся в конце девона лабиринтодонтов, предков лягушек, ящериц, звероящеров и млекопитающих, динозавров и птиц, полость рыбьего брызгальца (этот орган произошел от того жаберного отверстия, которое осталось «без работы», когда одна из жаберных дуг превращалась в челюсть) заполнилась воздухом и стала сначала резонатором, а потом и полостью среднего уха. На месте исчезающей жаберной крышки появилась барабанная перепонка, а одна из косточек бывшей жаберной дуги стала стремечком – слуховой косточкой, передающей звуковые колебания от барабанной перепонки к внутреннему уху. Это стремечко есть и у человека...
Теперь лабиринтодонты хорошо слышали. Им не нужно было больше прижиматься к Земле, когда хотелось что-то расслышать через почву и кости скелета (так до сих пор иногда слушают тритоны и саламандры – хвостатые потомки древних стегоцефалов, не прошедшие по лабиринтодонтному пути развития).
Лабиринтодонты и некоторые другие стегоцефалы продвигались к новому уровню организации – рептильности.
И опять-таки трудно указать точно «лягушкоящера» – родоначальника и нынешних пресмыкающихся и млекопитающих. Их было несколько групп, этих «мозаичных», как говорят палеонтологи, чтобы не сказать грубее – «химерных» существ, причудливо составленных из признаков амфибий и признаков пресмыкающихся. Сейчас довольно хорошо известны три-четыре такие группы лягушкоящеровых «кентавров» – эмболомеры, сеймуриаморфы, микрозавры... Кто-то из них мог оказаться тупиковой ветвью. Кто-то стал предком нынешних пресмыкающихся и птиц... Кто-то мог дать начало другой ветви пресмыкающихся, которая, пройдя через «звероящеровую стадию», могла достичь уровня млекопитающих... Но кто именно и чьим именно стал предком?







