355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Альберт Вейник » Термодинамика реальных процессов » Текст книги (страница 7)
Термодинамика реальных процессов
  • Текст добавлен: 24 сентября 2016, 08:03

Текст книги "Термодинамика реальных процессов"


Автор книги: Альберт Вейник



сообщить о нарушении

Текущая страница: 7 (всего у книги 40 страниц)

Помимо универсального в природе на уровне простых явлений существует еще и целый класс других взаимодействий; непосредственный опыт говорит о том, что каждому сорту вещества присуще свое особое специфическое взаимодействие. Например, порции электрического вещества способны притягиваться или отталкиваться в зависимости от их знака. Причем специфическое взаимодействие каждого данного рода протекает независимо от всех остальных взаимодействий. Например, не влияют друг на друга специфические кинетическое, тепловое и электрическое взаимодействия. Число таких взаимодействий равно числу простых явлений. В обычных условиях специфические взаимодействия отличаются много большей интенсивностью, чем универсальное, может быть, поэтому последнее так долго дожидалось своего часа.

Согласно парадигме ОТ, взаимодействие есть объективная реальность, за него ответственны свои особые вещество и поведение, то есть явление взаимодействия. Следовательно, на уровне простых явлений тоже должны существовать некие особые явления, вызывающие универсальное и специфические взаимодействия. Очевидно, что связующими явлениями – объектами обмена – между квантами ансамбля не могут служить сами эти кванты. По-видимому, должны иметься какие-то более тонкие структуры, в результате обмена которыми осуществляются обсуждаемые взаимодействия.

Опыт показывает, что для квантов роль более тонких структур выполняют объекты наномира. Например, специфическое взаимодействие между порциями (квантами) электрического вещества обеспечивается так называемым электростатическим полем (электрическим нанополем). Применительно к квантам пространства (мера – масса) аналогичную роль выполняет гравитационное нанополе. Что касается универсального взаимодействия, то его механизм нам пока не известен.

Таким образом, на уровне простых явлений взаимодействие между квантами вещества ансамбля сводится к обмену объектами нанополей. Здесь нам нет надобности вникать в структуру этих объектов. Для нас вполне достаточно знать только то, что нанополя реально существуют и обладают силовыми свойствами. Именно силовые свойства нанополей обеспечивают стремление квантов вещества сближаться и объединяться в ансамбли.

Отсюда можно сделать вывод, что при образовании ансамбля простых явлений универсальное и специфические взаимодействия проявляются одинаково, в форме некоего явления силового взаимодействия, общего для всех перечисленных взаимодействий. В этом смысле силовое взаимодействие тоже можно рассматривать как универсальное.

Следовательно, универсальное силовое взаимодействие определяет стремление порций вещества друг к другу благодаря наличию силы и взаимное сближение этих порций посредством перемещения. Очевидно, что все особенности силового поведения квантов вещества полностью исчерпываются этими двумя признаками – притяжением (или отталкиванием) и сближением (или отдалением), мерами которых служат сила и перемещение. Ничего другого в силовом взаимодействии обнаружить невозможно.

Благодаря взаимодействию отталкивания отдельные порции простого вещества стремятся рассредоточиться и равномерно распределиться в пространстве. Они как бы ищут себе партнеров по притяжению. Противоположное взаимодействие – притяжения – заставляет соседних партнеров сближаться и собираться в особые букеты – ансамбли. Именно поэтому в природе обычно нельзя наблюдать отдельных «холостых» партнеров: все они уже давно слиплись в соответствующие букеты, присоединились к близлежащим ансамблям. Я думаю, что это является одной из причин, которая в течение длительного времени затрудняла правильное угадывание физической картины мира.

У образовавшихся подобным образом ансамблей в общем случае может оказаться нескомпенсированной определенная способность притяжения или отталкивания. В результате происходит образование новых более сложных ансамблей и распад последних на менее сложные. Этот круговорот самопроизвольных превращений вечен, и причина ему одна – наличие силового взаимодействия притяжения и отталкивания. Оно обеспечивает всеобщую связь простых явлений и служит движущей причиной их эволюции. В устройстве окружающего мира природа (и ОТ) уделяет силовому взаимодействию исключительно важную роль. Фундаментальность этой роли подчеркивалась мною неоднократно, с этой целью был даже сформулирован некий всеобщий принцип притяжения и отталкивания [20, с.296; 21, с.31].

Взаимодействие притяжения и отталкивания сопровождается образованием из парена ансамбля простых явлений, или так называемой элементарной частицы материи: совершается первый шаг эволюционного развития вещества и его поведения. Согласно принципу минимальности, этот первый шаг должен заключаться в появлении у вещества самой простой наблюдаемой формы поведения из всех возможных. Очевидно, что поведение притяжения и отталкивания – это единственная наипростейшая наблюдаемая форма поведения, доступная для вещества на второй ступени эволюции. Более простую форму поведения после абсолютного покоя, то есть нулевого поведения, придумать невозможно. Поэтому надо полагать, что таким способом принцип минимальности соблюдается, причем не только для основного явления, но и для явления взаимодействия.

Одновременно для силового взаимодействия соблюдаются также правила своеобразия и вхождения. Будучи наипростейшей среди всех наблюдаемых, изначальной, специфичной для простого уровня эволюции, примитивная форма силового взаимодействия, согласно правилу вхождения, должна быть присуща также всем без исключения более сложным формам. Другими словами, от силового взаимодействия не свободны явления на любом эволюционном уровне развития, кроме парена, который проще ансамбля. Например, силовое взаимодействие проявляется не только между отдельными квантами вещества, но также и между самими элементарными частицами, атомами, молекулами, макро-, мега-, гига– и другими телами, между живыми организмами, обществами, цивилизациями и т.п.

Таким образом, на примере перехода от парена к ансамблю простых явлений нетрудно убедиться, что параллельно с развитием основного явления эволюционирует и его явление взаимодействия. Парен представляет собой совокупность разрозненных пассивных квантов вещества без структуры и поведения. Для него характерно специфическое нулевое взаимодействие. Ансамбли простых явлений – это грозди активных квантов вещества. Спецификой ансамблей служит внезапное появление силового взаимодействия.

В ходе последующей эволюции у каждой новой формы основного явления, согласно правилу своеобразия, скачкообразно возникают свои особые признаки, включая специфические взаимодействия. Но согласно правилу вхождения, каждая данная форма основного явления содержит в себе также все более простые явления совместно с их взаимодействиями, включая нулевое и силовое. Поэтому, например, живые организмы и человеческое общество способны взаимодействовать с себе подобными не только посредством силы. Причем с повышением уровня эволюционного развития основного явления растут число и роль более сложных форм явлений взаимодействия, а роль примитивных нулевого и силового соответственно снижается [ТРП, стр.81-87].

 4. Универсальная мера экстенсивности силового взаимодействия,

    или перемещение.

Согласно предыдущему, универсальное силовое взаимодействие отличается двумя характерными признаками – притяжением или отталкиванием и сближением или отдалением и поэтому определяется одновременно двумя количественными мерами. Одной из мер – притяжения или отталкивания – служит сила. Мерой сближения или отдаления является перемещение, или пройденный путь dx.

Из этих двух мер, с количественной стороны однозначно определяющих силовое взаимодействие, роль фактора экстенсивности играет величина dx, измеряемая в метрах. Она представляет собой экстенсор, ибо подчиняется, например, правилу аддитивности, суммирования (см. гл. XIV) [ТРП, стр.87].

 5. Универсальная мера интенсивности силового взаимодействия, или сила.

Вторая количественная мера – сила – характеризует интенсивность универсального силового взаимодействия; сила измеряется в ньютонах; мы ее будем обозначать Рх . Такого рода величины в термодинамике принято именовать факторами интенсивности, или обобщенными потенциалами, или обобщенными силами. Латинское intensio – напряжение; напряженный, усиленный; в противоположность экстенсивному определяет не количественную, а качественную сторону явления. В работах [20, с.235; 21, с.296] для факторов интенсивности принято сокращенное название «интенсиал». Это слово служит ключевым, его окончание используется для образования терминов применительно к самым различным явлениям, например кинетиал, механиал, электриал и т.д.

Интересно, что вопрос о физическом содержании хорошо всем известного понятия силы с давних времен занимает умы ученых. Отголоски былых горячих споров, иногда доходивших до рукоприкладства, можно встретить в тех дискуссиях, которые не утихают до наших дней при попытках определить смысл силы инерции или центробежной силы. При этом силу-меру иногда отождествляют с той сущностью, мерой которой служит сила, то есть считают, что сила это и есть сама сущность. Другой пример неправильного понимания силы являют собой выражения типа: «сила действует», «под действием силы» и т.п. Я тоже иногда употребляю подобные слова. Однако в таких случаях надо отдавать себе ясный отчет в том, что сила-мера как таковая не способна действовать, ибо мера не вещественна. Действует только силовое вещество, и интенсивность этого действия измеряется в единицах меры-силы.

Теперь должно быть ясно, что сила есть универсальная количественная мера – и только мера! – интенсивности (качества) простого силового поведения вещества, она выполняет роль меры N5  в соотношениях (26) для ансамбля простых явлений. Это поведение заключается в притяжении и отталкивании различных форм явлений. При этом требуется четко различать силу как меру и ту материальную сущность – вещество силового взаимодействия, или нанополе, – которая стоит «за спиной» силы [ТРП, стр.87-88].

 6. Универсальная мера силового взаимодействия, или работа.

Зная меры экстенсивности dx и интенсивности Рх  простого силового (механического) взаимодействия, нетрудно найти комплексную характеристику, которая с количественной стороны определяла бы это взаимодействие в целом. Очевидно, что ни одна из мер в отдельности не в состоянии отразить сути, а значит, не может служить мерой этого взаимодействия. Здесь нам опять придет на помощь метод эстафеты – передачи в ОТ известных понятий.

Соответствующая комплексная характеристика была известна уже Архимеду, который сформулировал свое знаменитое золотое правило механики. Эта характеристика именуется работой, обозначается через dQx и измеряется в джоулях. Она равна произведению силы Рх (Н) на перемещение dx (м), то есть

dQx = Рх dx Дж      (28)

Отсюда видно, что работа есть универсальная мера, так как обе составляющие ее меры – сила и перемещение – тоже универсальны.

Работа представляет собой количественную меру простого силового взаимодействия между ансамблем и квантами, то есть определяет количество воздействия квантов на ансамбль и наоборот. Она может быть как положительной, так и отрицательной: все зависит от направления силы – к ансамблю или от него. При этом образование ансамбля и его распад сопровождаются совершением работ прямо противоположных знаков.

Очень важно подчеркнуть, что работа совершается именно в процессе образования или распада ансамбля, то есть в процессе переноса квантов. При отсутствии перемещения квантов (dx = 0) работы нет (dQx = 0). Следовательно, в готовом и неподвижном ансамбле работа равна нулю, ибо там нет перемещения. В связи с этим уместно вспомнить следующие слова великого Ньютона: «Сила проявляется единственно только в действии и по прекращении действия в теле не остается».

Таким образом, в теле (ансамбле) нет работы, перемещения и силы. Но зато есть явление силового взаимодействия, обеспеченное соответствующим веществом, оно цементирует кванты в единое целое и одновременно берет на себя заботу о том, чтобы при распаде ансамбля вновь совершалась работа. Иными словами, благодаря этому явлению ансамбль вначале как бы аккумулирует внешние воздействия со стороны присоединяющихся квантов вещества. При распаде ансамбля, наоборот, аккумулированные воздействия вновь возвращаются квантам в виде работы противоположного знака. Необходимо с количественной стороны определить это свойство ансамбля, то есть найти соответствующую меру [ТРП, стр.88-89].

7. Мера количества поведения вещества.

Мы убедились, что ансамбль простых явлений формируется в процессе силового поведения квантов, однозначно определяемого работой взаимодействия dQх . Очевидно, что количество поведения, аккумулированного ансамблем, должно быть как-то связано с работой dQx , но как именно, мы пока сказать не можем, это выяснится лишь в ходе последующих рассуждений. Обозначим меру количества поведения вещества ансамбля через U. Эта величина соответствует характеристике N4  в основном уравнении ОТ (14) применительно к ансамблю простых явлений (26), то есть

N4 = U        (29)

Таким образом, у нас есть две главные меры, входящие в уравнение (14). Согласно этому уравнению, мера N4 из равенства (29) является функцией экстенсора NI из соотношения (27). Поэтому все интересующие нас сведения о свойствах величины U мы легко можем получить путем анализа основного уравнения, записанного через новые меры (27) и (29). Заранее можно лишь сказать, что мера U, подобно работе, перемещению и силе, должна быть в определенном смысле универсальной.

Подведем некоторые итоги. Определение физического содержания главных количественных мер, входящих в уравнение (26), мы начали с экстенсора N1 , который характеризует количество вещества ансамбля. На второй ступени эволюции таких экстенсоров оказалось несколько, именно l  (см. уравнение (27)). Сложнее было с определением меры количества поведения вещества. С целью выяснения смысла меры N4  пришлось рассмотреть механизм силового взаимодействия между квантами вещества в ансамбле и привлечь для этого такое понятие, как универсальная мера количества воздействия, или работа dQx , распадающаяся на экстенсивную dх  и интенсивную Рх  составляющие. Параллельно были уточнены некоторые формулировки – в этом следует видеть главную пользу от проведенных рассуждений.

Одновременно хорошо высветилось физическое содержание ансамбля простых явлений, или так называемой элементарной частицы материи. Оказалось, что элементарная частица далеко не элементарна: она состоит из большого множества порций (квантов) веществ различного сорта, которые связаны между собой силовым взаимодействием. Этим и объясняются все известные экзотические свойства частиц, не находившие ранее объяснения. Например, данная частица в зависимости от условий может по-разному распадаться на другие частицы, которые, в свою очередь, не являются более элементарными, нежели исходная; при этом исходная частица явно не состоит из частиц, на которые распадается, и т.д. [18, с.56, 434; 19; 21, с.35, 231].

Всю эту экзотику легко понять, если элементарными считать не частицы, а порции веществ, из которых они составлены. Тогда становится ясно, что данную частицу – гроздь квантов – можно разорвать разными способами, при этом ни один из осколков не будет более элементарным, чем другие или даже частица в целом, ибо частица не состоит из осколков, которые внутри ансамбля имели бы вид самостоятельных образований, но все они – и частица и осколки – на равных основаниях построены из многих элементарных порций различных веществ [ТРП, стр.89-90].










Глава VII. Первое начало ОТ.

1. Вывод основного уравнения ОТ для ансамбля простых явлений.

Мы теперь располагаем экстенсорами  ? (см. соотношение (27)), играющими роль аргумента  N1  в уравнении (14). Этого вполне достаточно, чтобы написать основное уравнение ОТ применительно к ансамблю простых явлений и определить все остальные величины, входящие в уравнения (14) и (15), в частности найти неизвестную меру  N4 , обозначенную нами через  U (см. выражение (29)). Благодаря этому мы, наконец, сформулируем наиболее общие, универсальные и достоверные количественные принципы, или начала, которые обнаруживаются на первом – начальном – этапе эволюции вещества и его поведения. Таким образом, будет замкнута цепочка дедуктивных рассуждений (2) и завершено построение обещанного выше общего метода дедукции, который берет свое начало от весьма общих философских концепций и затем в ходе рассуждений опускается до уровня числового выражения свойств конкретных явлений.

Мы убедимся, что основное уравнение (14), написанное для ансамбля простых явлений, представляет собой не что иное, как первое начало ОТ. Дальнейшая расшифровка характеристик и связей, содержащихся в первом начале, приведет к формулировке остальных шести начал. На этом завершится построение общего метода дедукции. Разработанный таким способом аппарат ОТ будет использован для изучения отдельных явлений эволюционного ряда (24).

Основное уравнение ОТ применительно к ансамблю простых явлений получается из соотношений (14), (27) и (29). Имеем

U = F(E1 ; E2 ; ... ; Ei)     (30)

Мера количества поведения вещества ансамбля  U  есть однозначная функция всех мер  ?  количества вещества; число веществ различного сорта, из которых построен ансамбль, равно l . Как уже отмечалось, нам пока известно семь таких разнородных веществ. Вида функции  F  мы не знаем.

Абсолютные значения многих характеристик явления обычно найти труднее, чем изменения этих характеристик. Поэтому уравнение (30) надо преобразовать таким образом, чтобы в него входили только изменения (разности) соответствующих величин. Для этого достаточно продифференцировать выражение (30).

В соответствии с хорошо известными правилами дифференцирования функции нескольких переменных полное изменение меры  U  (полный дифференциал  dU ) определяется в виде суммы произведений скорости приращения функции с аргументом на приращение этого аргумента, то есть

    dU =  Дж,      (31)

или

    dU =  Дж,      (32)

 где   Pk = (?U/?Ek)Ein      (33)

    dQk = PkdEk  Дж      (34)

Индекс Еin стоящий внизу скобки, говорит о том, что при дифференцировании все остальные экстенсоры, кроме данного,  k-того, остаются постоянными (инвариантными).

Равенство (31) в аналитической форме выражает общее дифференциальное уравнение первого начала ОТ. Определенные совокупности найденных величин обозначены буквами  ?  и  Q ; смысл этих символов, как и самого уравнения, включая его размерность, выясняется ниже.

Для большей наглядности свои рассуждения мы нередко будем иллюстрировать самыми простыми примерами, в которых ансамбль состоит всего из двух разнородных веществ, определяемых двумя экстенсорами (l = 2). При этом основные идеи ОТ сохраняют свою силу, но дифференциальные уравнения оказываются наименее громоздкими.

Итак, в частном случае, когда 1 = 2, уравнения (31)-(34) приобретают вид

    dU = P1dE1 + P2dE2   Дж,     (35)

или

    dU = dQ1 + dQ2   Дж,     (36)

 где   P1 = (?U/?E1)E2 ; P2 = (?U/?E2)E1    (37)

    dQ1 = P1dE1 ; dQ2 = P2dE2     (38)

Индекс  Е2  внизу первой скобки означает, что при дифференцировании меры U  по Е1 постоянной считается величина  Е2 ; индекс  Е1  у второй скобки говорит о постоянстве величины  Е1 .

В еще более простом гипотетическом частном случае, если ансамбль содержит только одно вещество (l = 1), то основное дифференциальное уравнение ОТ записывается следующим образом:

   dU = PdE   Дж      (39)

или   dU = dQ     Дж      (40)

 где   P = dU/dE       (41)

    dQ = PdE       (42)

Мы добились того, что в найденном дифференциальном уравнении первого порядка (31) отсутствует неизвестная функция  F . Кроме того, главные количественные меры входят в это уравнение в виде интересующих нас изменений (разностей). Теперь нам предстоит внимательно рассмотреть физический смысл самого уравнения и всех содержащихся в нем характеристик [ТРП, стр.91-93].

2. Виды работы.

В уравнении (31) хорошо нам известными характеристиками являются только экстенсоры Е . Но для одного частного случая – силового взаимодействия – мы знаем также фактор интенсивности, или интенсиал, каковым служит сила  Рх . В этом частном случае произведение интенсиала на изменение экстенсора  dEx (перемещение dx) равно работе dQx , которая измеряется в джоулях (см. формулу (28)). Следовательно, все остальные слагаемые правой части уравнения (31) также должны представлять собой работы, измеряемые в джоулях. Этот факт отражен в уравнении, записанном в форме (32).

Интересная особенность вопроса заключается в том, что каждая из работ сопряжена со своим специфическим экстенсором, имеющим особую размерность. В любом таком конкретном случае экстенсор «окрашивает» работу в свой специфический «цвет». Например, приходится различать работы кинетическую, механическую, электрическую и т.д. В этом смысле обсуждаемые работы можно рассматривать как специфические.

Вместе с тем любая данная работа в целом есть универсальная мера силового взаимодействия данного вещества с ансамблем, ибо измеряется в одних и тех же единицах – джоулях – и состоит из универсальной меры интенсивности силового взаимодействия, или силы, измеряемой в ньютонах, и универсальной меры экстенсивности силового взаимодействия, или перемещения, измеряемого в метрах. Это дает основание считать работу некоей универсальной мерой количества воздействия на ансамбль. В термодинамике величину  dQ часто именуют обобщенной работой.

Здесь мы сталкиваемся с удивительно органичным сочетанием универсального (обобщенного) и специфического (конкретного), одновременно присутствующих в одном из основных понятий теории. Это хорошо перекликается с высказанной ранее идеей о целесообразности и плодотворности синтеза обобщенного и конкретного подходов.

Работа совершается в процессе подвода или отвода от ансамбля определенного количества вещества, мерой которого служит экстенсор  dE . Этот подвод или отвод можно рассматривать как некое специфическое воздействие на ансамбль веществом определенного сорта. Следовательно, специфической мерой количества воздействия на ансамбль является изменение экстенсора  dE .

Таким образом, изменение количества вещества ансамбля, определяемое экстенсором dE , одновременно сопровождается двумя видами воздействий – специфическим и универсальным. Мерой количества специфического воздействия служит экстенсор  dE , а мерой количества универсального – работа  dQ .

Нетрудно сообразить, что специфическая мера количества воздействия на ансамбль, или величина  dE , одновременно является специфической мерой экстенсивности силового взаимодействия между ансамблем и квантами подводимого или отводимого вещества определенного сорта. Здесь также сталкиваются между собой две противоположные сущности – конкретная и обобщенная, ибо специфическая особенность вещества накладывается на универсальное свойство перемещения: ведь обе величины –  dE  и  dx , – будучи аргументами в основном уравнении ОТ, с равным успехом определяют одну и ту же обобщенную работу dQ (см. формулы (28) и (34)).

Хотя работы, определяемые выражениями (28) и (34), друг другу равны, у них имеется и существенное различие. Разумеется, оно касается только правых частей уравнений, ибо левые тождественны между собой. Имеющееся различие заключается в том, что работа (28) выражена через предельно универсальные характеристики процесса – силу и перемещение, а работа (34) – через специфические характеристики того же процесса. О специфичности экстенсора говорилось уже достаточно, теперь предстоит заняться мерой  Р  [ТРП, стр.93-95].

3. Специфическая мера интенсивности силового

    взаимодействия, или интенсиал.

Очередной важной характеристикой уравнения (31), смысл которой подлежит расшифровке, является величина  Р. Как уже упоминалось, в частном случае эта величина представляет собой универсальную меру интенсивности силового взаимодействия, или силу Рх , то есть служит фактором интенсивности, или интенсиалом. Поэтому и во всех остальных случаях величина  ?  тоже должна выполнять роль интенсиала. Однако применительно к каждому конкретному экстенсору интенсиал приобретает свою специфическую «окраску», включая специфическую размерность, отличную от размерности  Рх , и т.д. В этих условиях интенсиал является специфической мерой интенсивности силового взаимодействия между ансамблем и квантами вещества.

Специфичность, в частности, проявляется в том, что данный интенсиал избирательно воздействует только на сопряженное с ним вещество и не влияет на все остальные. Например, электрический потенциал способен воздействовать только на электрический заряд и безразличен к массе. В свою очередь, квадрат скорости воздействует на массу и оставляет в покое электрический заряд.

Следовательно, каждый конкретный интенсиал служит специфическим аналогом силы. Аналогом, но не самой силой, ибо единицей измерения силы является ньютон, а каждый интенсиал, сопряженный с соответствующим веществом, имеет свою собственную специфическую размерность, отличную от размерности силы.

Для каждого конкретного вещества мера  ?  легко определяется из общего выражения (34), где известны экстенсоры и размерность работы. Например, для упомянутых выше экстенсоров – массы  m (кг), объема  V (м3) и электрического заряда, или электриора, ? (Кл) интенсиалы имеют следующие размерности:

   [Pm] = Дж/кг = (Н?м)/(Н?с2/м) = м2/с2 ;

   [Pv] = Дж/м3 = (Н?м)/м3 = Н/м2 ;

   [P?] = Дж/Кл = (В?А?с)/Кл = (В?Кл)/Кл = В .

Как видим, интенсиал применительно к массе имеет смысл квадрата скорости (Рm = ?2), применительно к объему – давления (Рv = р) и применительно к электрическому заряду – электрического потенциала (?? = ?). Произведение каждого из этих интенсиалов на изменение сопряженного с ним экстенсора дает соответствующую работу. Со всеми этими частными характеристиками различных явлений мы хорошо знакомы.

Кроме того, ранее мы убедились, что интенсиал  Рх  определяет силовое поведение вещества в процессе образования или распада ансамбля, то есть является мерой качества поведения вещества  ?5  применительно к ансамблю простых явлений. Следовательно, и все остальные частные интенсиалы также являются каждый мерой качества поведения соответствующего вещества. Например,  ?2 – это мера качества поведения кинетического вещества,  ? – электрического и т.д. [ТРП, стр.95-96].

 4. Универсальная мера количества силового поведения ансамбля, или энергия.

Следующей, самой важной характеристикой уравнения (31) служит мера  U, играющая роль величины  ?4  в уравнениях (14) и (26).

Известно, что у любого правильно составленного уравнения все слагаемые имеют одинаковую размерность. Поэтому мера  U  тоже должна иметь размерность работы (Дж). Кроме того, мы знаем, что при образовании и распаде ансамбля совершаемая работа каким-то образом аккумулируется ансамблем и затем может вновь проявиться в виде работы. Иными словами, величина  U  определяет количество силового поведения, заключенного в ансамбле. Перечисленными свойствами обладает хорошо известная мера, именуемая энергией.

Хотя работа и энергия имеют одну и ту же размерность, они по сути дела представляют собой совершенно различные характеристики. Работу можно назвать мерой количества поведения, обусловленного перемещением порций веществ в процессе образования или распада ансамбля; когда процесс прекращается, тогда перемещения нет и работа равна нулю. Энергия – это мера количества поведения, которое накапливается в ансамбле в ходе его образования и совершения работы. Количественная связь между обоими этими видами поведения определяется уравнением (31).

Весьма примечательно – об этом свидетельствует непосредственный опыт, – что аккумулированная энергия обычно сохраняет в ансамбле свою специфическую «окраску», сопряженную с «окраской» совершаемой работы, которая, в свою очередь определяется сортом подводимых или отводимых квантов вещества. Поэтому, как и в случае работы, требуется различать кинетическую, электрическую и другие составляющие энергии; об исключениях из этого правила говорится ниже. Вместе с тем сама по себе мера  U  обладает предельной универсальностью.

По своей универсальности энергия стоит на одном уровне и органически связана с такими характеристиками, как сила и перемещение. Поэтому сила есть универсальная мера качества поведения вещества, причем поведение проявляется в виде притяжения и отталкивания, а энергия – это универсальная мера количества силового поведения ансамбля, которое проявляется в удержании квантов друг подле друга. Следовательно, меру U можно назвать также энергией связи между квантами, заключенной в ансамбле.

Универсальность понятия энергии обусловлена еще и тем, что оно применимо не только ко всем разнородным простым веществам, но и ко всем без исключения более сложным формам явлений. Это прямо вытекает из правила вхождения, согласно которому всякое сложное явление включает в себя более простые. Поэтому с помощью энергии можно оценивать количество примитивного силового поведения, заключенного в любом сложном явлении, включая общество и т.д. Разумеется, на сложном уровне наряду с силовой явления располагают также возможностями использовать и другие, более совершенные формы поведения, для оценки количества которых впоследствии будет найдена своя особая мера. Что же касается простого уровня, то на нем силовой примитив – это единственно возможный, единственно доступный для явления способ поведения, а энергия – единственная мера, определяющая количество этого поведения.

Весьма важно, что за спиной энергии, как и силы, всегда стоят свои особые вещества, которые цементируют ансамбль в единое целое. Однако энергия-мера и упомянутые вещества суть принципиально различные вещи. Поэтому энергию недопустимо отождествлять ни с веществом, ни с какими бы то ни было иными объектами или понятиями. Согласно ОТ, никакого другого смысла, кроме указанного – быть универсальной мерой количества поведения на уровне ансамбля простых явлений, – энергия не имеет и иметь не может.

В связи с приведенной здесь формулировкой понятия энергии необходимо обратить внимание на то разнообразие во взглядах и определениях, которое господствует в современной науке. Впервые понятие энергии возникло в механике. Намеки на это понятие содержатся уже в комментариях Филопона (VI в.) на труды Аристотеля – речь идет об «импето» [53, с.25]. В XVII в. Гюйгенсом, Лейбницем и другими кинетическая энергия, или «живая сила», была определена как произведение массы на квадрат скорости [53, с.94]; в XIX в. Кориолис исправил это выражение, введя в него множитель, равный одной второй [53, с.95]. Так энергия оказалась связанной с кинетическими представлениями.


    Ваша оценка произведения:

Популярные книги за неделю