Текст книги "Термодинамика реальных процессов"
Автор книги: Альберт Вейник
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 19 (всего у книги 40 страниц)
Частным случаем общего уравнения (244) служит следующая известная формула:
dU = c2dm (246)
где с – скорость света в вакууме. Отсюда видно, что она характеризует лишь небольшую долю фактической суммарной энергии тела. Эта доля соответствует кинетической степени свободы системы и относится только к тому частному случаю, когда масса отщепляется или присоединяется к телу со скоростью света. Все остальные степени свободы и условия формула (246) игнорирует; она не дает также оснований для отождествления универсальной меры количества поведения вещества – энергии U с мерой количества метрического вещества – массой m [18, с.430] [ТРП, стр.256-257].
7. Простое ротационное явление.
Теоретический и экспериментальный анализ показывает, что в природе существует некая истинно простая ротационная, или круговращательная, форма явления (от латинского rotatio – круговращение), которая распадается на соответствующие ротационное вещество и ротационное поведение этого вещества. Ротационное явление обладает всеми теми главными общими свойствами, о которых уже говорилось. Что же касается специфики, то ротационное явление наделяет объекты природы свойством круговращения.
Экстенсором ротационного явления служит ротациор Еr , а интенсиалом – ротациал Рr . Ротационная работа, равная изменению энергии системы:
dQr = Pr dEr = dU (247)
Ротационная форма явления подчиняется всем законам ОТ. Она присутствует на всех уровнях мироздания. В наномире ротационное вещество обладает силовыми свойствами, в микромире – дискретными, в макромире – континуальными.
Опыты с хрононами показывают, что при отражении от зеркала их знак изменяется на обратный, причем одноименные хрононы притягиваются, а разноименные отталкиваются (см. параграф 11 гл. XVIII). В этом может быть повинна только ротационная степень свободы микрочастиц, ибо хрональное нанополе обладает однонаправленными отталкивающими свойствами (см. параграф 9 гл. XVIII). Как видим, ротационное вещество на уровне наномира демонстрирует прямо противоположную силовую картину по сравнению с электрическим.
О дискретности ротационного вещества на уровне микромира можно судить по тому факту, что так называемый спин, который представляет собой внутренний момент количества движения микрочастицы, имеет порционную, квантовую структуру.
На уровне макромира из истинно простого ротационного явления в частном случае могут быть получены условно простые вращательное и кинетовращательное, для них экстенсоры и интенсиалы хорошо известны. Эти два частных явления находятся в таком же отношении к ротационному, как перемещательное и кинетические к метрическому.
Однако следует подчеркнуть, что истинно простое ротационное явление нельзя понимать слишком упрощенно: оно содержит такие специфические черты, о которых мы пока даже не подозреваем, в частности, мы даже не знаем специфических размерностей ротациора и ротациала. Отдельные намеки на это можно получить, рассматривая различные частные условно простые спиновое, вращательное и кинетовращательное явления и углубляя аналогию между ротационным и метрическим (см. также параграф 14 гл. XV) [ТРП, стр.257-258].
8. Условно простое микроротационное (спиновое) явление.
Хорошей иллюстрацией к истинно простому ротационному явлению служит условно простое спиновое. Понятие спина было введено в науку Дж. Уленбеком и С. Гаудсмитом в 1925 г. применительно к электрону. Спин определяет внутренний момент количества движения микрочастицы и не связан с перемещением частицы как целого, поэтому для объяснения спина образ вращающегося тела может быть использован лишь грубо приближенно. Факт существования спина подтвержден экспериментом. Но мы не располагаем необходимыми понятиями для определения основного истинно простого ротационного явления. Спин выражается через постоянную Планка (размерность – Дж?с), следовательно, если его рассматривать как экстенсор, то интенсиал будет иметь размерность частоты вращения (с-1). Обе эти характеристики не удовлетворяют требованию своеобразия, поэтому спиновое явление не может считаться истинно простым. Условность спинового явления подтверждается также фактом нарушения закона сохранения количества и момента количества движения в определенных условиях. Все это ограничивает область применимости спинового явления (см. также параграф 14 гл. XV) [ТРП, стр.258-259].
9. Условно простое вращательное явление.
Подобно тому как из метрического явления можно вывести перемещательное, подобно этому из ротационного можно найти условно простое вращательное, причем между перемещательным и вращательным явлениями существует известная аналогия. Вращательное явление характеризует поворот системы на некоторый угол под действием момента силы. Экстенсором для перемещательного явления служит угол поворота ? , измеряемый в радианах, а интенсиалом – момент силы М , равный силе, умноженной на длину плеча (Н?м). Работа вращения
dQ? = Md? = dU (248)
Главная условность вращательного явления, как и перемещательного, заключается в том, что ему нельзя сопоставить определенное вещество, то есть угол поворота не служит мерой количества какого-либо вещества. Кроме того, интенсиал не обладает должной специфичностью. Подобно перемещению, вращение тела является процессом легко наблюдаемым, оно фиксируется по изменению угла поворота тела.
Впервые угол поворота и момент силы, характеризующие работу вращения, были введены в науку гениальным Леонардо да Винчи. В ОТ смысл вращательного явления несколько видоизменяется, оно становится частным случаем истинно простого ротационного, суть которого пока еще до конца не выяснена. Дополнительные сведения о ротационном явлении можно получить при анализе его третьего частного случая – кинетовращательного [ТРП, стр.259].
10. Условно простое кинетовращательное явление.
В термодинамике кинетовращательное явление вначале было принято определять с помощью экстенсора МК , именуемого моментом количества движения (Дж?с), причем
МК =I? (249)
где I – момент инерции тела относительно оси вращения, Дж?с2 ; ? – угловая скорость (частота) вращения тела, с-1 . Интенсиалом служила угловая скорость ? , следовательно, кинетовращательная работа
dQМ = ?2d МК = ?d(I?) = dU (250)
После того как нами было установлено, что момент количества движения не подчиняется закону сохранения, в качестве экстенсора был предложен момент инерции I . В результате кинетовращательная работа [21, с.113]
dQI = ?2dI = dU (251)
Как видим, кинетовращательное явление очень напоминает кинетическое. Сходство указанных явлений подчеркивается фактом, согласно которому уравнения (250) и (251) получаются из уравнений (243) и (244), если в последних массу и скорость заменить на момент инерции и угловую скорость. Подобную же замену допускают и законы механики Ньютона, они остаются одинаково справедливыми как для кинетического, так и для кинетовращательного явлений. Все это могло бы навести на мысль о несамостоятельности ротационного явления, о том, что условно простые вращательное и кинетовращательное явления вполне могут быть получены в качестве частных случаев не из ротационного, а из метрического и, следовательно, ротационное вообще утрачивает свое значение.
Однако такой вывод из всего предыдущего был бы слишком поспешным. Как показывает более глубокий анализ, на самом деле никакого сходства между ротационным, и метрическим явлениями нет: это два совершенно различных явления, каждому из которых присущи свои особые и неповторимые черты, и поэтому свести их друг к другу в принципе невозможно. Упомянутое сходство является кажущимся, оно обусловлено только тем, что метрическое явление вторгается в ротационное и таким способом навязывает ему свои собственные свойства. Иными словами, законы механики не затрагивают сути ротационного явления, а отражают лишь меру участия метрического явления в ротационном.
Действительно, согласно исходному определению, порции (кванты) ротационного вещества должны придавать телам (ансамблям) способность как-то круговращаться, но свойствами протяженности и порядка положения они не обладают и, стало быть, не имеют массы m (объема ?). Это значит, что ротационное вещество, подобно хрональному и всем остальным, существует параллельно пространству, «размазано» в его объеме. Следовательно, если бы ансамбль не содержал квантов метрического вещества, тогда ротационное вещество, существующее параллельно с метрическим, наделяло бы свойством круговращения лишь скрепленные с ним другие вещества и не затрагивало пространства. В результате круговращение такого без (вне) пространственного ансамбля не сопровождалось бы перемещением активных квантов метрического вещества (массы) относительно пассивных (парена) и законы механики были бы ни при чем, ротационное явление обходилось бы без них. Только благодаря тому что ансамбль содержит кванты метрического вещества, происходит увлечение массы и вступают в действие законы механики. Таким образом, суть дела фактически сводится к эффекту увлечения, который порождается универсальным взаимодействием, а формулы (249)-(251) отражают количественную сторону этого эффекта. Указанное обстоятельство, а также неспецифичность экстенсора и интенсиала в уравнении (251) делают кинетовращательное явление условно простым с ограниченной областью применимости.
При всем том продолжает оставаться открытым вопрос о количественном определении экстенсора и интенсиала для основного истинно простого ротационного явления. Возможно, что в качестве экстенсора Еr можно было бы выбрать плоский угол ? , измеряемый в радианах, либо телесный угол Qг , измеряемый в стерадианах. Тогда размерность интенсиала Р , в первом случае будет равна Дж/рад, а во втором – Дж/стер. Второй случай – круговращение одновременно в трех измерениях – труднее себе вообразить, но оба они в равной мере допускают изменение знака круговращения (силового взаимодействия) в условиях отражения частиц от зеркала. В принципе не исключено круговращение и в одном измерении. Характер круговращения должен как-то проявлять себя в процессах особого рода поляризации при отражении. Здесь решающее слово должно принадлежать опыту [ТРП, стр.259-261].
11. Простое вибрационное явление.
В соответствии с парадигмой в ОТ постулируется существование простой вибрационной формы явления (от латинского vibratio – колебание, дрожание), состоящего из вибрационного вещества и его поведения. Вибрационное вещество, как и ротационное, существует параллельно с пространством. Главный специфический признак вибрационного вещества заключается в том, что оно сообщает телам природы вибрационные, колебательные свойства.
Мерой количества вибрационного вещества, или вибрационным экстенсором, служит вибрациор Е? , мерой качества поведения вибрационного вещества, или вибрационным интенсиалом, – вибрациал Р? , вибрационная работа
dQ? = P? dE? = dU (252)
Вибрационное явление строго подчиняется всем законам ОТ. В наномире вибрационное вещество обладает силовыми свойствами, в микромире – дискретными, в макромире – континуальными. Вибрационное вещество мы пока не умеем ни наблюдать, ни измерять, поэтому не в состоянии присвоить вибрациору и вибрациалу необходимые специфические размерности. Известные представления о свойствах вибрационного явления можно получить на основе анализа условно простых планковского, колебательного и волнового явлений, вытекающих из вибрационного в качестве частных случаев [ТРП, стр.261-262].
12. Условно простое микровибрационное (планковское) явление.
В 1900 г. М. Планк предложил известную формулу, определяющую энергию фотона через его частоту колебаний ? и квант действия (постоянная Планка) h . В нашей интерпретации эта формула имеет вид [18, с.58; 21, с.120]
QП = ?h = U (253)
где
h = 6,62491?10-34 (254)
В элементарном акте взаимодействия величина h (Дж?с) играет роль экстенсора, частота ? (с-1) – роль интенсиала, а все явление, определяемое уравнением (253), можно рассматривать как некое микроскопическое вибрационное (планковское). Наличие у величин h и ? неспецифических размерностей, содержащих время, делает планковское явление условно простым, оно позволяет лучше понять основное вибрационное. В частности, этому будет способствовать более глубокое изучение колебательных движений фотонов и других микрочастиц в процессах поляризации, дифракции и интерференции [ТРП, стр.262].
13. Условно простое колебательное явление.
Другим частным случаем простого вибрационного явления служит условно простое колебательное. В макромире оно определяет процесс распространения в твердой, жидкой и газообразной средах упругих волн – вибраций, звука и т.д. Роль экстенсора играет величина Ек (кг), интенсиала – Рк (м2/с2), вибрационная работа [18, с.43; 21, с.116]
dQk = PkdEk = dU (255)
Ek = ??tF (256)
Pk = a2?2 (257)
? – плотность среды, кг/м3; ? – скорость распространения волны, м/с; t – время, с; F – площадь сечения волновода, м2; а – амплитуда колебания, м; ? – круговая частота, с-1 .
По формуле типа (255) в макроскопической теории принято определять энергию упругой волны. Равенство (256) определяет массу охваченного процессом волновода, а равенство (257) – квадрат скорости частиц среды. Обе характеристики (Ек и Рк) выражены через большое число других экстенсоров и интенсиалов, поэтому рассматриваемое явление есть условно простое.
Колебательное явление имеет некоторое сходство с кинетическим, что прямо следует из тождественности размерностей их экстенсоров и интенсиалов. Это вполне естественно, так как, при колебаниях среды происходят перемещения метрического вещества с определенными скоростями. Однако сами по себе кинетические эффекты не специфичны для вибрационного явления, они суть следствия эффекта увлечения: благодаря универсальному взаимодействию кванты (порции) вибрационного вещества увлекают за собой кванты метрического и таким образом возникают наблюдаемые нами колебательные движения среды. Аналогичная ситуация отмечалась ранее в кинетовращательном явлении.
Любопытно также сравнить простое вибрационное явление и вытекающие из него планковское и колебательное с простым ротационным и вытекающими из него спиновым и кинетовращательным. Из предыдущего ясно, что оба простых явления – вибрационное и ротационное – не раскрыли пока до конца своего истинного физического механизма, в частности, мы не знаем их экстенсоров и интенсиалов. Намеки на этот механизм и убедительные подтверждения факта существования указанных самостоятельных явлений содержатся в их микроаналогах – планковском и спиновом, причем более выпукло это представлено в микровибрационном. Очень характерно эффекты увлечения метрического вещества вибрационным и ротационным выступают в колебательном и кинетовращательном явлениях.
Согласно ОТ, аналогичные эффекты взаимного влияния можно обнаружить в опытах между обсуждаемыми и всеми остальными простыми явлениями. В частности, сами ротационное и вибрационное явления тоже должны увлекать друг друга, и это должно служить косвенным подтверждением факта самостоятельного их существования. На этом принципе могут быть основаны соответствующие процессы взаимных преобразований различных форм движения. В частности, должны наблюдаться процессы превращения вращательного движения в вибрационное и наоборот.
Первого вида превращения хорошо всем известны, вибрации вращающихся устройств представляют собой бич современной техники. Что касается обратных превращений, то это значительно менее изученная область. Однако подобное превращение вполне возможно, что впервые широко продемонстрировал Г.Б. Вальц [21. с.117]: он создал целую серию приборов, в которых вибратор передает через твердую, жидкую или газообразную среду колебания на приемник, приходящий во вращательное движение. В качестве вибратора служит электрический моторчик с эксцентриком, электромагнит, питаемый переменным током, боек, периодически ударяющий по раме, или динамический громкоговоритель, связанный с вибрирующей пластиной. Приемником является пропеллер, диск или иное тело, свободно вращающееся на оси. После включения вибратора приемник начинает быстро вращаться. Плоскость вращения может быть горизонтальной, вертикальной или наклоненной под углом к горизонту (рис. 7). Одновременно может работать несколько различных приемников, которые могут быть открытыми или находиться в герметически замкнутом пространстве.
Крайне интересно то обстоятельство, что Г.Б. Вальц по произволу задает направление вращения приемника. На основе идей Л. Пастера, открывшего эффект правого и левого вращения плоскости поляризации света зеркально-симметричными образцами кристаллов, он установил, что при зеркально-симметричном преобразовании прибора направление вращения приемника изменяется на обратное. Под зеркально-симметричным понимается такое преобразование, когда все устройства данного прибора (вибратор, приемник, зажимы и т.д.) располагаются зеркально-симметрично по отношению к другому.
В описанных опытах Г.Б. Вальца налицо эффект передачи вибрации через различные среды (твердую, жидкую, газообразную) и преобразования их во вращательное движение приемника. В данном случае имеет место обычный эффект увлечения одного явления другим; этот эффект может быть использован, например, для определения перекрестных коэффициентов в уравнениях состояния и переноса [ТРП, стр.262-265].
14. Условно простое волновое явление.
В 1924 г. Л. де Бройль в своей диссертации на соискание ученой степени доктора философии предположил, что все тела способны излучать определенные волны, которые впоследствии были названы волнами де Бройля. Это послужило основанием, чтобы ввести понятие дебройлевской формы явления и определить ее с помощью особых экстенсора и интенсиала [18, с.58; 21, с.119].
Однако следует сразу же оговориться, что самостоятельной волновой формы явления, обеспеченной своим специфическим родным веществом, в природе не существует. Речь может идти лишь об условно простом волновом явлении, при этом надо различать два наиболее характерных типа волновых процессов.
К первому относятся процессы, в которых решающее значение имеют такие явления, как метрическое, например в лице перемещательного, и вибрационное, например в лице планковского. В ходе одновременно происходящих перемещения с определенной скоростью и колебания с определенной частотой движущийся таким образом ансамбль (например, элементарная частица, в том числе фотон, или так называемая электромагнитная волна) описывает траекторию в виде волны и способен оставить соответствующий волновой след. Отсюда и возникло представление о волновой форме движения. Однако в действительности волна – это результат наложения двух различных самостоятельных явлений: перемещательного и колебательного. Именно это делает волновую форму сугубо условной, несамостоятельной, зависящей от большого числа всевозможных факторов, определяющих составляющие ее основные явления.
Кстати, при такой постановке вопроса легко и наглядно объясняются все известные эффекты, такие, как дифракция, интерференция, поляризация и т.д. Становятся понятными и многие другие вызывавшие недоумение факты: например, каким образом «электромагнитная радиоволна» длиной в несколько километров умещается в микроансамбле ничтожных размеров? Оказывается, все определяется только скоростью движения и частотой колебания ансамбля (частицы) как целого.
Ко второму типу относятся процессы, в которых взаимное наложение метрического и вибрационного явлений решающего значения не имеет, при этом главную роль играют любые другие явления. Например, при периодическом тепловом воздействии на поверхность можно наблюдать распространение внутри тела температурной (тепловой) волны. Аналогичный волновой процесс возникает при соответствующем воздействии на тело электрическим зарядом. Упругие деформации среды с частотой ? вызывают продольные колебания, описываемые формулами (255)-(257). Распространение поперечной волны на поверхности жидкости имеет похожий механизм. Процессы второго типа рассматриваются в соответствующих дисциплинах по принадлежности, здесь мы на них останавливаться не будем. Весьма существенно, что в перечисленных примерах обязательно фигурирует определенная среда – твердая, жидкая или газообразная. В отличие от этого процессы первого типа могут происходить и в вакууме.
Правильно понять процессы первого типа можно только в том случае, если учесть влияние на них хронального и метрического явлений. С этой целью прежде всего надо обратить внимание на разницу в количественном определении спинового и планковского явлений, с одной стороны, и кинетического, кинетовращательного и колебательного, с другой. В первом случае в выражении для энергии, определяемой как произведение интенсиала на экстенсор, интенсиалом служит частота, взятая в первой степени (см. формулу (253)). Аналогичным образом выражается энергия и для многих других явлений, например для хронального, вермического, электрического и магнитного (см. формулы (236), (262), (264) и (266)), куда величины ? , ? , ? и Рм , играющие роль интенсиалов, входят тоже в первой степени. Во втором случае интенсиалом служит квадрат частоты или скорости (см. формулы (244), (251) и (255)).
Нетрудно сообразить, что в имеющейся разнице повинны хрональное и метрическое явления. О вторжении метрического явления в кинетовращательное достаточно подробно говорилось в параграфе 10 гл. XV. Совместно с хрональным оно не позволяет использовать в качестве экстенсоров количество и момент количества движения (см. формулы (242) и (249)), ибо эти величины не подчиняются второму началу ОТ – закону сохранения. В результате интенсиалами для кинетического и кинетовращательного явлений становятся квадраты прежних интенсиалов, то есть квадраты скорости и частоты вращения (см. формулы (244) и (251)). Очевидно, что то же самое происходит и с колебательным явлением, у которого интенсиал представляет собой скорость в квадрате (см. формулу (257)). Следовательно, любое отдельно взятое истинно простое явление вполне может оцениваться по общей формуле, которую можно записать в виде
Q = ?? = U (258)
где ? – интенсиал; ? – сопряженный с ним экстенсор. При такой постановке вопроса смело можно говорить о существовании перемещений метрического вещества, вращений ротационного вещества и колебаний вибрационного вещества внутри ансамбля, не связанных с перемещением, вращением и колебанием частицы как целого. Хорошим примером служит известное ныне понятие спина. В частном случае при ? = ? и ? = h из общего уравнения (258) получается формула Планка (253).
В противоположность этому дружная хронально-метрическая пара явлений может поставить данное, например кинетическое, кинетовращательное и колебательное, в исключительные условия, выделив их в особую группу, подведомственную механике (так называемая группа механических явлений). В этих условиях энергию ансамбля придется определять уже по новой формуле, имеющей следующий общий вид:
dQ = ?2dH = dU (259)
где ? – экстенсор, отличный от ? .
В данном случае речь должна идти о перемещении, вращении и колебании микроскопического или макроскопического ансамбля как целого. При этом для кинетического явления интенсиал ?2 ? ?2 и экстенсор Н ? m , для кинетовращательного ?2 ? ?2 и Н ? I (см. формулы (244) и (251)). Чтобы и колебательное явление соответствовало рассматриваемому случаю, надо при выборе интенсиала и экстенсора отправляться не от уравнения (255), а от (253). В результате для частного случая колебания ансамбля как целого из формулы (259) получаем
dQk = ?2dH = dU (260)
Здесь величина ? имеет тот же смысл, что и в уравнении (253), а экстенсор Н существенно отличается от h .
Из сказанного должно быть ясно, что в формулу Планка (253) заложен принцип колебания вибрационного вещества внутри частицы без участия в этом колебании самой частицы как целого (наглядной аналогией служит спин). Это может происходить, например, в условиях, когда в частице отсутствует метрическое вещество, либо когда универсальным взаимодействием между вибрационным и метрическим веществами можно пренебречь – вспомним закон тождественности (см. параграф 4 гл. XVI). В общем виде такая идея заложена в формулу (258).
В отличие от этого формула (260) отражает колебание вибрационного вещества вместе с частицей как целого. При этом связью между вибрационным, метрическим и хрональным веществами пренебречь уже нельзя. Например, по этому принципу колеблются частицы, оставляющие дифракционные следы при прохождении через малое отверстие или щель, а также макротела. К подобным частицам формулу Планка надо применять с большой осторожностью, для них более подходит уравнение (260), если в нем отбросить знаки дифференциала.
Как видим, наличие хронального и метрического веществ наделяет наш хронально-метрический мир многими весьма специфическими свойствами, в частности связанными с перемещениями, вращениями и колебаниями. Еще более интересные свойства должны проявляться у бесхрональных, безметрических и бесхронально-безметрических ансамблей, .это можно обнаружить с помощью рассуждений, аналогичных приведенным выше, из такого рода экзотических ансамблей построены особые тонкий и сверхтонкий миры (см. параграфы 9 и 10 гл. XXVII).
В свете изложенного напрашивается вывод о необходимости дополнить известные законы сохранения количества и момента количества движения аналогичным новым законом, а именно законом сохранения количества вибродвижения. Под количеством вибродвижения можно понимать, например, произведение массы на некоторую среднюю скорость колебательного движения тела. При различных взаимодействиях вибрирующих тел суммарное количество вибродвижения должно сохраняться неизменным.
Однако новый закон, как и два предыдущих, нарушается в определенных условиях – при разном ходе времени на взаимодействующих телах. Поэтому все перечисленные три закона, относящиеся к группе механических явлений, заслуживают наименования квазизаконов (от латинского guasi – как бы, якобы, мнимый).
Интересные варианты движения и нарушения квазизаконов сохранения возникают при соответствующем взаимном наложении перечисленных механических явлений. О суммировании кинетического и колебательного явлений уже говорилось. Кинетическое может сочетаться также с вращательным, а вращательное – с колебательным. Наиболее сложная картина взаимодействия получается при одновременном участии всех трех явлений.
Что касается волн де Бройля, то уравнение его имени выводится путем приравнивания энергий, соответствующих кинетическому и планковскому условно простым явлениям. Из выражений (244) и (253), приняв во внимание, что длина волны ? и частота ? связаны равенством
? = ??
находим искомое соотношение де Бройля
? = h/P = h/(m?) (261)
где Р – импульс, равный количеству движения системы К = m? (см. формулу (242)).
В связи с этим необходимо сказать, что в общем случае кинетическая и планковская составляющие энергии системы (частицы, тела) могут изменяться независимо друг от друга в широких пределах, поэтому у нас нет никаких оснований считать их одинаковыми и делать из этого далеко идущий вывод о существовании волн де Бройля. Приходится также признать, что не существует и волн информации, которые определялись бы соотношением (261), как иногда думают. Кстати, замечу, что информацию о всех телах природы – живых и неживых – несут в себе частицы хрононы, но это особый вопрос, требующий специального рассмотрения (см. гл. XVIII и XXVI) [ТРА, стр.265-269].
15. Простое вермическое (термическое) явление.
Согласно ОТ, в природе существует истинно простое термическое явление, оно состоит из термического вещества и термического поведения этого вещества. Такая постановка вопроса характерна только для ОТ. Поэтому, чтобы подчеркнуть специальный физический смысл, вкладываемый общей теорией в термические явления, я предлагаю принять для них новое наименование вермические явления. Оно происходит от немецкого слова die Warme – теплота, тепло, жар.
Необходимо заметить, что принятие нового термина для тепловых явлений вызвано не прихотью автора, а жестокой необходимостью. Первоначальное использование мною общепринятых названий приводило к столкновению производных терминов и как следствие к неправильному восприятию моих идей. Например, в понятиях теплопроводности и теплоемкости приходилось каждый раз специально оговаривать, что именно служит объектом переноса (теплота или термическое вещество) и по отношению к чему берется емкость. Чтобы еще более определенно подчеркнуть новое понимание тепловых явлений, я сделал даже попытку придать разный смысл известным словам "тепловой" и "термический". В частности, старое понимание теплоты я определил словом «тепловой», а новое – словом "термический". Но и эта попытка не имела успеха. Все это вынудило меня прибегнуть к крайним мерам...
Главное общее свойство вермического явления заключается в его объективности и абсолютности, главная специфическая особенность, отличающая вермическое от всех остальных явлений, сводится к сообщению телам природы тепловых свойств.
Мерой количества вермического вещества, или вермическим экстенсором, служит вермиор ? (Дж/К), мерой качества поведения вермического вещества, или вермическим интенсиалом, – вермиал, или абсолютная температура Т (К). Вермическая работа, или количество тепла:
dQ? = Т d? = dU (262)
Простое вермическое явление подчиняется всем законам ОТ. Вермическое вещество присутствует на всех уровнях мироздания. В наномире оно обладает силовыми свойствами, в микромире – квантовыми, порционными, зернистыми, величина кванта вермического вещества, или вермианта, определяется в параграфе 6 гл. ХХ различными способами. На макроуровне вермическое вещество создает все наблюдаемые нами тепловые эффекты.
Вермическое вещество неуничтожимо, так как подчиняется второму началу ОТ – закону сохранения. Оно не обладает свойствами длительности, протяженности (не имеет размеров, массы и веса), не вращается и не колеблется и т.д., ибо коренным образом отличается от хронального, метрического, ротационного, вибрационного и других простых веществ. Вермическое вещество существует параллельно с другими веществами, может накладываться на них; обладая тепловыми свойствами, оно наделяет ими ансамбль, в состав которого входит.